JPS6125008B2 - - Google Patents

Info

Publication number
JPS6125008B2
JPS6125008B2 JP52041562A JP4156277A JPS6125008B2 JP S6125008 B2 JPS6125008 B2 JP S6125008B2 JP 52041562 A JP52041562 A JP 52041562A JP 4156277 A JP4156277 A JP 4156277A JP S6125008 B2 JPS6125008 B2 JP S6125008B2
Authority
JP
Japan
Prior art keywords
glycol
iodine
reaction
ethylene
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52041562A
Other languages
Japanese (ja)
Other versions
JPS53127406A (en
Inventor
Tadamitsu Kyora
Isamu Sudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP4156277A priority Critical patent/JPS53127406A/en
Publication of JPS53127406A publication Critical patent/JPS53127406A/en
Publication of JPS6125008B2 publication Critical patent/JPS6125008B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、オレフインを分子状の酸素で酸化
し、直接一段の反応でグリコールを製造する方
法、さらに、詳細には水を溶媒とし、液相中でオ
レフインを分子状酸素で酸化し該オレフインに対
応するグリコールを製造する方法に関する。 従来、グリコール、たとえば、エチレングリコ
ール、を製造する方法としては、銀を主成分とす
る触媒の存在下にエチレンを分子状酸素と反応さ
せて、エチレンオキサイドを製造し、得られたエ
チレンオキサイドを、さらに、水と反応させてエ
チレングリコールを得る方法が広く工業的に実施
されている。 しかし、この方法は二段階の反応工程を必要と
するうえに、エチレンの酸化によるエチレンオキ
サイドの製造工程の選択率が、高々70〜75%程度
の値しか得られず、転化率も低いために製造効率
が極めて悪いという欠点がある。 このような従来法の欠点を克服する目的で提案
されているグリコールの製造法としては、つぎの
二つの系統のものがある。 第一の系統に属する方法は、酢酸溶媒中で臭素
および酢酸に可溶な塩の存在下に、オレフインを
分子状酸素で酸化し、グリコールの酢酸エステル
を合成し、得られたグリコールの酢酸エステル
を、さらに、加水分解してグリコールを製造する
方法である。 第二の系統に属する方法は、水を溶媒として、
塩素もしくは塩化水素、タリウム塩および銅塩の
共存下にオレフインを分子状酸素で酸化し、グリ
コールを製造する方法である。 しかしながら、前記の第一の系統に属する方法
は、オレフインの酸化により直接得られる化合物
はグリコールの酢酸エステルであり、グリコール
を得るには、さらに、加水分解工程が必要であ
る。加水分解により副生する酢酸水溶液を濃縮
し、反応触媒として循環再使用するのに多大のエ
ネルギーを必要とする、などの欠点がある。さら
に、前記の第二の系統に属する方法は、オレフイ
ンの酸化により直接グリコールが得られるが、
触媒として用いるタリウム塩は極めて有毒な物質
であり、タリウム塩の再酸化が困難である、な
どの欠点がある。 本発明者らは、オレフインの分子状酸素による
酸化反応により直接一段の反応でグリコールを製
造し、従来法のような欠点のない方法を提案する
ことを目的として、水溶液中でオレフインの分子
状酸素による酸化反応を詳細に研究した結果、沃
素もしくは沃素化合物と(1)ジルコニウム、イツト
リウム、ランタン、セリウム、バナジウム、クロ
ム、タングステン、マンガンおよびニツケルから
なる群から選ばれた元素の塩(以下、これらの元
素の塩を金属塩と略称する)の一種以上、または
(2)バナジウム、クロム、マンガン、鉄、ニツケ
ル、テルル、タングステンおよびビスマスから成
る群から選ばれた元素の酸化物(以下、これらの
元素の酸化物を金属酸化物を略称する)を含有す
る水溶液中で、オレフインを分子状酸素で酸化す
ると効率よくグリコールを与えることを見出し、
本発明を完成するに至つた。 すなわち、本発明の方法は、水溶液中で前記の
金属塩もしくは金属酸化物および沃素もしくは沃
素化合物の存在下にオレフインを分子状酸素と反
応させ、オレフインから直接一段の反応でグリコ
ールを製造するものであつて、従来法のような欠
点もなく、工業的に有利にグリコールを製造する
ことができる。 本発明の方法で用いられるオレフインは、とく
に限定はないが、好ましくは、エチレンまたはプ
ロピレンであり、とくにエチレンが多用され、生
成物としてエチレングリコールが得られる。 本発明の方法で用いられる分子状酸素は、酸素
分子もしくは空気、またはこれらを不活性ガスム
で希釈した酸素含有気体でもよい。 希釈に用いる不活性ガスは、窒素、希ガスまた
はメタンなどであり、スチームで希釈してもよ
い。 本発明の方法で用いられる溶媒は水であり、水
は反応溶媒であると同時に反応成分でもある。 本発明の方法で、触媒の一成分としては沃素も
しくは沃素化合物が用いられる。沃素は、分子状
の沃素が用いられ、沃素化合物としては、沃素水
素、沃化水素酸または沃素を含有する有機化合
物、たとえば、沃化エチル、二沃化エチル、など
が多用される。 水溶媒中に添加する沃素もしくは沃素化合物の
濃度は、とくに制限はないが、通常、1×
10-3mol/ないし2mol/の範囲が好ましい。 本発明の方法では、沃素もしくは沃素化合物の
他に触媒成分として、(1)ジルコニウム、イツトリ
ウム、ランタン、セリウム、バナジウム、クロ
ム、タングステン、マンガンおよびニツケルから
なる群から選ばれた元素の塩の一種以上、または
(2)バナジウム、クロム、マンガン、鉄、コバル
ト、ニツケル、テルル、タングステンおよびビス
マスからなる群から選ばれた元素の酸化物を用い
る。 すなわち、本発明の方法で触媒として用いる前
記(1)の金属塩としては、たとえば、塩化セリウ
ム、臭化ニツケルなどのハロゲン化物;硫酸ジル
コニウム、硫酸ランタン、硫酸クロムなどの硫酸
塩;酢酸マンガンなどの酢酸塩;ナフテン酸タン
グステンなどのナフテン酸塩;硫酸マンガン、硫
酸パナジルなどの硫酸塩;などが用いられる。用
いる塩の原子価は、如何なる原子価状態のもでも
よいが、通常は、高原子価の塩が多用される。こ
れらの金属塩を水溶媒中に添加する量は、1×
10-5mol/ないし2mol/の範囲が多用される
が、とくに制限はない。 また触媒として用いる前記(2)の金属酸化物は、
前記した元素と酸素との化合物であればよく、酸
化物の原子価は、たとえば、マンガンであれば、
4価のMnO2であつても、3価のMn2O3であつて
もよく、ニツケルであれば、4価のNiO2であつ
ても、3価のNi2O3であつてもよいように、如何
なる原子価状態のものでも使用できる。これらの
金属酸化物を水溶媒中に添加する量は、1×
10-5mol/ないし5mol/であるが、好ましく
は、1×10-4mol/ないし1mol/の範囲であ
る。 本発明の方法では、沃素もしくは沃素化合物と
前記金属塩もしくは金属酸化物とを併用すること
が必須であり、沃素もしくは沃素化合物単独で
は、グリコールの生成は全く認められないか、生
成物が認められても僅少である。なお、前述した
金属塩のうちで、たとえば、沃化ニツケル、沃化
鉄のような沃化物を触媒として単独で用いても、
少量のグリコールが生成するが、これらの沃化物
単独使用の場合よりも、さらに沃素もしくは他の
沃素化合物を共存させた場合の方が、グリコール
の生成量が多い。したがつて、沃化ニツケルや沃
化鉄のような沃化物の場合も、沃素もしくは他の
沃素化合物を併用する。 本発明の方法の反応温度は、60〜250℃の範囲
であるが、好ましくは、100〜180℃の範囲であ
る。 反応圧力は、この温度範囲で、水が液相を保つ
に要する圧力以上であればよく、たとえば、100
〜180℃の温度であれば、対応する圧力値は1.0〜
10.2Kg/cm2であるから、オレフインおよび酸素含
有気体の反応時の圧力は、この圧力範囲より高く
保つ必要がある。 通常、気相のオレフインおよび分子状酸素の全
圧は、10〜200Kg/cm2の範囲が用いられる。オレ
フインと分子状酸素との比率は、とくに制限はな
いが、爆発範囲外にオレフインと酸素との比率を
保つことが好ましい。 反応に要する時間は、反応温度および圧力によ
り定まるが、反応をバツチ式で実施した場合に
は、140〜180℃の温度で、通常、1〜10時間の範
囲である。 反応を実施する際には、本発明の方法に用いる
金属塩もしくは金属酸化物および沃素もしくは沃
素化合物を添加した水溶媒を耐圧容器に仕込み、
これにオレフインおよび分子状酸素を圧入し、常
法にしたがつて加熱撹拌する。反応の形式は、バ
ツチ式、または流通法による連続式であり、反応
器は槽式または気泡塔式が用いられる。 以下、実施例により本発明を具体的に説明す
る。 実施例 1 内容積50mlのハステロイ製ミクロオートクレー
ブに水10ml、沃化セリウム0.31g、沃素0.13gを仕
込み、気相にエチレンを40Kg/cm2、酸素を5Kg/
cm2で圧入し、反応温度160℃で3時間、加熱、撹
拌した。オートクレーブを放冷後、液相に生成し
たエチレングリコールを、ガスクロマトグラフイ
ーで常法により定量し、ガスクロマトグラフイー
で分取したものをIRで標品と比較分析したとこ
ろ、仕込んだエチレンに対し21.5%、仕込んだ酸
素に対して90.3%の収率でエチレングリコールが
生成した。 気相には未反応エチレンが残存し、エチレング
リコール以外の副生成物は痕跡量であつた。 実施例 2 実施例1と同じ反応装置と反応条件で圧入する
エチレンと酸素含有気体の量のみを、エチレン5
Kg/cm2、空気70Kg/cm2に変えて反応させた。反応
後、生成したエチレングリコールを実施例1と同
様に分析したところ、仕込んだエチレンに対して
96%のエチレングリコールが生成していた。エチ
レングリコール以外の副生成物は痕跡量であつ
た。 実施例 3 実施例1と同様の反応容器に、水10ml硫酸ジル
コニウム0.5g、沃化水素酸0.5gを添加し、気相に
エチレンを40Kg/cm2、酸素を20Kg/cm2で各々圧入
し、160℃で3時間反応させた。反応後の液相を
ガスクロマトグラフイーで定量したところエチレ
ングリコール1.04gが生成していた。仕込んだエ
チレン基準で30.8%の収率である。また、反応後
の気相を真空にした容器に全量取り出し、その体
積と圧力および気相組成のガスクロ分析値からエ
チレンの転化率は33%、反応したエチレングリコ
ールへの選択率は93mol%であつた。 実施例 4〜12 実施例3と同様の方法で用いる触媒を変えて実
験した。 結果を表−1に示す。
The present invention provides a method for directly producing glycol by one-step reaction by oxidizing olefin with molecular oxygen, and more specifically, oxidizing olefin with molecular oxygen in a liquid phase using water as a solvent to produce glycol. It relates to a method for producing the corresponding glycols. Conventionally, as a method for producing glycol, for example, ethylene glycol, ethylene is reacted with molecular oxygen in the presence of a silver-based catalyst to produce ethylene oxide, and the resulting ethylene oxide is Furthermore, a method of obtaining ethylene glycol by reacting it with water is widely practiced industrially. However, this method requires a two-step reaction process, and the selectivity of the ethylene oxide manufacturing process by oxidizing ethylene is only about 70-75%, and the conversion rate is low. The drawback is that manufacturing efficiency is extremely low. There are the following two types of glycol production methods that have been proposed to overcome the drawbacks of the conventional methods. A method belonging to the first family involves oxidizing an olefin with molecular oxygen in the presence of bromine and an acetic acid-soluble salt in an acetic acid solvent to synthesize acetate ester of glycol. This is a method for producing glycol by further hydrolyzing. Methods belonging to the second family use water as a solvent,
This method produces glycol by oxidizing olefin with molecular oxygen in the coexistence of chlorine or hydrogen chloride, thallium salt, and copper salt. However, in the methods belonging to the first group mentioned above, the compound directly obtained by oxidation of olefin is an acetate ester of glycol, and a hydrolysis step is additionally required to obtain glycol. There are drawbacks such as the need for a large amount of energy to concentrate the aqueous acetic acid solution produced as a by-product of hydrolysis and reuse it as a reaction catalyst. Furthermore, in the methods belonging to the second family mentioned above, glycols are directly obtained by oxidation of olefins, but
The thallium salt used as a catalyst is an extremely toxic substance and has drawbacks such as difficulty in reoxidizing the thallium salt. The present inventors aimed to directly produce glycol in one step through the oxidation reaction of olefin with molecular oxygen, and to propose a method that does not have the disadvantages of conventional methods. As a result of detailed research on the oxidation reaction caused by Salts of elements are abbreviated as metal salts), or
(2) An aqueous solution containing an oxide of an element selected from the group consisting of vanadium, chromium, manganese, iron, nickel, tellurium, tungsten, and bismuth (hereinafter, oxides of these elements are abbreviated as metal oxides). Among them, he discovered that oxidizing olefins with molecular oxygen efficiently yields glycols.
The present invention has now been completed. That is, in the method of the present invention, an olefin is reacted with molecular oxygen in the presence of the metal salt or metal oxide and iodine or an iodine compound in an aqueous solution, and glycol is produced directly from the olefin in a one-step reaction. In addition, glycol can be produced industrially advantageously without the drawbacks of conventional methods. The olefin used in the method of the present invention is not particularly limited, but is preferably ethylene or propylene, and ethylene is particularly frequently used to obtain ethylene glycol as a product. The molecular oxygen used in the method of the invention may be molecular oxygen or air, or an oxygen-containing gas obtained by diluting these with an inert gas. The inert gas used for dilution is nitrogen, rare gas, methane, etc., and may be diluted with steam. The solvent used in the process of the invention is water, which is both a reaction solvent and a reaction component. In the method of the invention, iodine or an iodine compound is used as a component of the catalyst. Molecular iodine is used as the iodine, and hydrogen iodine, hydriodic acid, or organic compounds containing iodine, such as ethyl iodide and ethyl diiodide, are often used as the iodine compound. The concentration of iodine or iodine compound added to the aqueous solvent is not particularly limited, but is usually 1×
A range of 10 -3 mol/ to 2 mol/ is preferred. In the method of the present invention, in addition to iodine or an iodine compound, as a catalyst component, (1) one or more salts of an element selected from the group consisting of zirconium, yttrium, lanthanum, cerium, vanadium, chromium, tungsten, manganese, and nickel; ,or
(2) Use an oxide of an element selected from the group consisting of vanadium, chromium, manganese, iron, cobalt, nickel, tellurium, tungsten, and bismuth. That is, the metal salts (1) used as catalysts in the method of the present invention include, for example, halides such as cerium chloride and nickel bromide; sulfates such as zirconium sulfate, lanthanum sulfate, and chromium sulfate; and manganese acetate. Acetates; naphthenates such as tungsten naphthenate; sulfates such as manganese sulfate and panadil sulfate; and the like are used. The valence of the salt used may be any valence state, but salts with high valence are usually used. The amount of these metal salts added to the water solvent is 1×
A range of 10 -5 mol/ to 2 mol/ is often used, but there is no particular restriction. The metal oxide (2) used as a catalyst is
Any compound of the above-mentioned elements and oxygen may be used, and the valence of the oxide is, for example, if it is manganese,
It may be tetravalent MnO 2 or trivalent Mn 2 O 3 ; in the case of nickel, it may be tetravalent NiO 2 or trivalent Ni 2 O 3 . As such, any valence state can be used. The amount of these metal oxides added to the water solvent is 1×
The amount ranges from 10 -5 mol/ to 5 mol/, preferably from 1×10 -4 mol/ to 1 mol/. In the method of the present invention, it is essential to use iodine or an iodine compound in combination with the metal salt or metal oxide. If iodine or an iodine compound is used alone, no glycol formation is observed, or no glycol formation is observed. However, it is very small. Of the metal salts mentioned above, for example, even if iodides such as nickel iodide and iron iodide are used alone as a catalyst,
Although a small amount of glycol is produced, the amount of glycol produced is greater when iodine or other iodine compounds are co-present than when these iodides are used alone. Therefore, in the case of iodides such as nickel iodide and iron iodide, iodine or other iodine compounds are used in combination. The reaction temperature of the method of the invention ranges from 60 to 250°C, preferably from 100 to 180°C. The reaction pressure should be at least the pressure required for water to remain in the liquid phase within this temperature range, for example, 100
If the temperature is ~180℃, the corresponding pressure value is 1.0 ~
Since the pressure is 10.2 Kg/cm 2 , the pressure during the reaction of the olefin and the oxygen-containing gas must be kept higher than this pressure range. Usually, the total pressure of the gas phase olefin and molecular oxygen is in the range of 10 to 200 Kg/cm 2 . The ratio of olefin to molecular oxygen is not particularly limited, but it is preferable to keep the ratio of olefin to oxygen outside the explosive range. The time required for the reaction is determined by the reaction temperature and pressure, but when the reaction is carried out in batches, it is usually in the range of 1 to 10 hours at a temperature of 140 to 180°C. When carrying out the reaction, an aqueous solvent to which the metal salt or metal oxide and iodine or iodine compound used in the method of the present invention are added is placed in a pressure-resistant container.
Olefin and molecular oxygen are pressurized into the mixture, and the mixture is heated and stirred in a conventional manner. The reaction type is a batch type or a continuous type using a flow method, and the reactor used is a tank type or a bubble column type. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 A Hastelloy micro autoclave with an internal volume of 50 ml was charged with 10 ml of water, 0.31 g of cerium iodide, and 0.13 g of iodine, and 40 Kg/cm 2 of ethylene and 5 Kg/cm of oxygen were added to the gas phase.
cm 2 was introduced under pressure, and the mixture was heated and stirred at a reaction temperature of 160° C. for 3 hours. After the autoclave was left to cool, the ethylene glycol produced in the liquid phase was quantified using gas chromatography using a conventional method, and the fraction collected using gas chromatography was compared with a standard sample using IR. %, and ethylene glycol was produced at a yield of 90.3% based on the oxygen charged. Unreacted ethylene remained in the gas phase, and byproducts other than ethylene glycol were present in trace amounts. Example 2 Using the same reactor and reaction conditions as in Example 1, only the amounts of ethylene and oxygen-containing gas to be injected were changed to ethylene 5
Kg/cm 2 and air was changed to 70 Kg/cm 2 for reaction. After the reaction, the produced ethylene glycol was analyzed in the same manner as in Example 1, and it was found that
96% ethylene glycol was produced. By-products other than ethylene glycol were present in trace amounts. Example 3 Into a reaction vessel similar to Example 1, 10ml of water, 0.5g of zirconium sulfate, and 0.5g of hydriodic acid were added, and ethylene was pressurized at 40Kg/cm 2 and oxygen at 20Kg/cm 2 into the gas phase. , and reacted at 160°C for 3 hours. When the liquid phase after the reaction was quantified by gas chromatography, 1.04 g of ethylene glycol was produced. The yield is 30.8% based on the charged ethylene. In addition, the entire amount of the gas phase after the reaction was taken out into a vacuum container, and the gas chromatography analysis of its volume, pressure, and gas phase composition showed that the conversion rate of ethylene was 33%, and the selectivity to the reacted ethylene glycol was 93 mol%. Ta. Examples 4 to 12 Experiments were conducted in the same manner as in Example 3, but with different catalysts. The results are shown in Table-1.

【表】【table】

【表】 実施例 13 内容積50mlのハステロイ製ミクロオートクレー
ブに水10ml、沃素0.5gおよび酸化マンガン
(MnO2)0.7gを仕込み、エチレンを0Kg/cm2、酸
素を20Kg/cm2を圧入した。オートクレーブを160
℃に加熱撹拌しながら3時間反応させた。反応後
放冷し、水溶液を実施例1と同様に分析したとこ
ろ、エチレングリコールが1.28g生成したことが
認められた。副生成物は、痕跡量のアセトアルデ
ヒド、酢酸およびジオキサンが認められた。気相
成分は、未反応エチレンと酸素であり、炭酸ガス
の生成はほとんど認められなかつた。 実施例 14〜20 実施例13と同様の装置と反応方法により触媒の
種類を変えて反応させた結果を表−2に示した。
[Table] Example 13 10 ml of water, 0.5 g of iodine and 0.7 g of manganese oxide (MnO 2 ) were charged into a Hastelloy microautoclave having an internal volume of 50 ml, and 0 kg/cm 2 of ethylene and 20 kg/cm 2 of oxygen were introduced under pressure. autoclave 160
The mixture was reacted for 3 hours while heating and stirring at ℃. After the reaction, the mixture was allowed to cool and the aqueous solution was analyzed in the same manner as in Example 1, and it was found that 1.28 g of ethylene glycol was produced. Trace amounts of acetaldehyde, acetic acid and dioxane were observed as by-products. The gas phase components were unreacted ethylene and oxygen, and almost no carbon dioxide gas was observed to be produced. Examples 14 to 20 Table 2 shows the results of reactions conducted using the same apparatus and reaction method as in Example 13, but with different types of catalysts.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 オレフインを水溶媒中で分子状酸素と接触さ
せて該オレフインに対応するグリコールを製造す
るに際し、沃素もしくは沃素化合物ならびに、(1)
ジルコニウム、イツトリウム、ランタン、セリウ
ム、バナジウム、クロム、タングステン、マンガ
ン、ニツケルおよび亜鉛からなる群から選ばれた
元素の塩の一種以上、または(2)バナジウム、クロ
ム、マンガン、鉄、ニツケル、テルル、タングス
テンおよびビスマスからなる群から選ばれた元素
の酸化物の存在下に接触させることを特徴とする
グリコールの製造方法。
1. When contacting an olefin with molecular oxygen in an aqueous solvent to produce a glycol corresponding to the olefin, iodine or an iodine compound and (1)
One or more salts of elements selected from the group consisting of zirconium, yttrium, lanthanum, cerium, vanadium, chromium, tungsten, manganese, nickel, and zinc, or (2) vanadium, chromium, manganese, iron, nickel, tellurium, and tungsten. A method for producing glycol, which comprises contacting the glycol with an oxide of an element selected from the group consisting of bismuth and bismuth.
JP4156277A 1977-04-13 1977-04-13 Preparation of glycols Granted JPS53127406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4156277A JPS53127406A (en) 1977-04-13 1977-04-13 Preparation of glycols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4156277A JPS53127406A (en) 1977-04-13 1977-04-13 Preparation of glycols

Publications (2)

Publication Number Publication Date
JPS53127406A JPS53127406A (en) 1978-11-07
JPS6125008B2 true JPS6125008B2 (en) 1986-06-13

Family

ID=12611870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4156277A Granted JPS53127406A (en) 1977-04-13 1977-04-13 Preparation of glycols

Country Status (1)

Country Link
JP (1) JPS53127406A (en)

Also Published As

Publication number Publication date
JPS53127406A (en) 1978-11-07

Similar Documents

Publication Publication Date Title
EP1105214B1 (en) Molybdenum-vanadium based catalyst for low temperature selective oxidation of propylene, methods of making and using the same
CA1181098A (en) Hydroxylation of olefins
JPH05208926A (en) Decomposition of organic hydroperoxide
US4824969A (en) Process for preparing cyclic carbonate esters from olefins in a single reaction mixture
KR100965633B1 (en) A process for the preparation of p-toluic acid by liquid phase oxidation of p-xylene in water
JP4182237B2 (en) Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same
JP3715492B2 (en) Improved process for the production of benzaldehyde by catalytic liquid phase air oxidation of toluene
US6458994B2 (en) Process for producing aromatic polycarboxylic acid
JPS6048496B2 (en) Method for producing methacrylic acid
CN113683530B (en) Method for preparing heptafluoroisobutyronitrile by gas phase hydrocyanation
JPS6125008B2 (en)
US4226790A (en) Process for oxidizing thallium (I) to thallium (III)
JP6245605B2 (en) Process for producing .ALPHA.,. BETA.-unsaturated carbonyl compounds.
JPS6048495B2 (en) Method for producing methacrylic acid
US4058556A (en) Process for the preparation of acetoxybutanal
JP3230243B2 (en) Phenol production catalyst and phenol production method
US3637834A (en) Oxidation of olefines to unsaturated aldehydes and unsaturated acids
JP3550716B2 (en) Epoxidation catalyst
JPWO2006062003A1 (en) Catalyst for oxidation of 2,2,2-trifluoroethanol and method for producing trifluoroacetaldehyde
CN117482956A (en) Manganese oxide loaded cobalt-chromium catalyst, preparation and application thereof in p-chlorobenzaldehyde synthesis
JPH07309793A (en) Oxidation of hydrocarbons
JPS5921855B2 (en) Production method of malonic acid diesters
JPS645012B2 (en)
JP2000095725A (en) Production of unsaturated carboxylic acid
SU696000A1 (en) Method of preparing glycols