JPS61247002A - Manufacture of magnetic powder for compound magnet - Google Patents

Manufacture of magnetic powder for compound magnet

Info

Publication number
JPS61247002A
JPS61247002A JP8841585A JP8841585A JPS61247002A JP S61247002 A JPS61247002 A JP S61247002A JP 8841585 A JP8841585 A JP 8841585A JP 8841585 A JP8841585 A JP 8841585A JP S61247002 A JPS61247002 A JP S61247002A
Authority
JP
Japan
Prior art keywords
powder
pulverized
magnetic powder
annealed
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8841585A
Other languages
Japanese (ja)
Inventor
Mikio Yamamoto
幹夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8841585A priority Critical patent/JPS61247002A/en
Publication of JPS61247002A publication Critical patent/JPS61247002A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain wet pulverized powder which has the improved magnetic characteristics and filling characteristics with a resin, by applying a specified amount of stearic acid metallic salt to the magnetic powder obtained by drying the wet pulverized material, mixing and then annealing the powder. CONSTITUTION:The material mixture having a composition represented by a general formula of MO.nFe2O3 (M is one kind or more of Ba, Sr, Pb; n=5.0-6.2) is pre-annealed at the temperature of 1,000 deg.C or more and the pre- annealed powder is roughly pulverized and them minutely pulverized. Next, this powder is annealed at the temperature of 800 deg.C or more. In this type of manufacture for magnet power to be used for a compound magnet, the annealing is accomplished after applying stearic acid metallic salt to the wet pulverized power by 0.5-3 weight per 100 weight magnetic powder and then mixing them. For example, the stearic acid metallic salt is applied to the dried wet pulverized powder and then the dry mixing treatment of them is carried out by means of a ball mill or a vibration mill. This dry mixing treatment allows the form of the wet pulverized powder particles to be round, and thus the filling characteristic and orientation thereof are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は強磁性粉末を樹脂で結合した複合磁石に用いら
れる磁粉、特にハードフェライト粉末の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing magnetic powder, particularly hard ferrite powder, used in a composite magnet in which ferromagnetic powder is bonded with resin.

〔従来の技術〕[Conventional technology]

強磁性粉末を樹脂で結合した複合磁石は、モータ等の回
転機、ブラウン管用センタリング、電子写真用マグネッ
トロール等の種々の用途に使用されている。これは、複
合磁石の磁気特性が異方性焼結磁石よりは劣るものの、
射出成形等の一体成形技術の導入により殆んど仕上加工
を要さずとも最終製品形状が得られることや、軽量でか
つ複雑形状が得やすいことなどが挙げられる。
Composite magnets in which ferromagnetic powder is bonded with resin are used in various applications such as rotating machines such as motors, centering for cathode ray tubes, and magnet rolls for electrophotography. This is because although the magnetic properties of composite magnets are inferior to anisotropic sintered magnets,
With the introduction of integral molding technology such as injection molding, final product shapes can be obtained with almost no finishing processing required, and lightweight and complex shapes can be easily obtained.

複合磁石は強磁性粉末の種類によりいくつかに分類され
るが、価格及び製造の容易さの点からは、強磁性粉末と
してマグネトブランバイト型結晶構構造を有するハード
フェライト粉末を用いたフェライト系複合磁石が有利で
ある。
Composite magnets are classified into several types depending on the type of ferromagnetic powder, but from the point of view of cost and ease of manufacture, ferrite-based composite magnets that use hard ferrite powder with magnetobrambite crystal structure as ferromagnetic powder are preferred. Magnets are advantageous.

このフェライト系交合磁石に注目すると、その用途によ
って要求される性質は多少異なるが、最も重要とされる
のは磁気特性である。
When focusing on this ferrite-based cross-magnet, the properties required differ somewhat depending on its use, but the most important one is its magnetic properties.

通常のフェライト系複合磁石の(BH)maxは1.2
〜1.7MGOe位であり、異方性焼結フェライト磁石
の(BH)max = 2 、5〜4 、5 MGOe
と比べて低いので、磁気特性を高めるために、例えば強
磁性粉末を有機ケイ素化合物で処理して流動性を高めて
、磁粉の充填量を増す(%公昭55−32206号公報
参照)ことが提案されている。
The (BH)max of a normal ferrite composite magnet is 1.2
~1.7 MGOe, and (BH)max of anisotropic sintered ferrite magnet = 2, 5~4, 5 MGOe
Therefore, in order to improve the magnetic properties, it has been proposed that, for example, ferromagnetic powder be treated with an organosilicon compound to increase its fluidity and increase the amount of magnetic powder packed (see Publication No. 55-32206). has been done.

しかして、磁気特性の点からは、磁粉自体の磁気特性と
粉体性状の改善が最も重要である。
Therefore, from the point of view of magnetic properties, it is most important to improve the magnetic properties of the magnetic powder itself and the powder properties.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

複合磁石用フェライト粉末は、一般に1原料(例えばF
earsとBa(Os)を所定の組成となるように混合
し、1000℃以上の温度で仮焼し、しかる後粗粉砕及
び微粉砕し、次いで800℃以上の温度で歪取りのだめ
の焼鈍を行なう、いわゆる粉砕法によって得られている
。この粉砕法において、上記微粉砕の方法としてはポー
ルミル等による乾式微粉砕、もしくは、アトライタ等に
よる湿式微粉砕が行なわれている。
Ferrite powder for composite magnets is generally made from one raw material (for example, F
ears and Ba (Os) are mixed to have a predetermined composition, calcined at a temperature of 1000°C or higher, then coarsely and finely ground, and then annealed at a temperature of 800°C or higher to remove strain. , is obtained by the so-called pulverization method. In this pulverization method, dry pulverization using a pole mill or the like, or wet pulverization using an attritor or the like is performed.

しかるに、乾式微粉砕は、丸味を帯びた形状の粒子が得
られ、充填性及び配向性が良く吟るので、磁力的には湿
式微粉砕より有利であるが、平均粒径10〜50μmの
粗粉を平均粒径1〜2μmに粉砕するのに多大なエネル
ギーを必要とし、生産性に難点がある。一方湿式微粉砕
は、粉砕後の乾燥を必要とするものの、粉砕効率が高い
だめ生産性の点では乾式微粉砕より有利であるが、磁力
の点では乾式微粉砕より劣るのが実情である。
However, dry pulverization is more advantageous than wet pulverization from a magnetic point of view because particles with a rounded shape are obtained and the filling properties and orientation are well examined. A large amount of energy is required to grind the powder to an average particle size of 1 to 2 μm, which poses a problem in productivity. On the other hand, although wet pulverization requires drying after pulverization, it has an advantage over dry pulverization in terms of productivity due to its high pulverization efficiency, but it is actually inferior to dry pulverization in terms of magnetic force.

本発明の目的は、上述の従来技術の問題点を解消し、樹
脂との充填性及び磁気特性を向上した湿式微粉砕粉を得
ることのできる複合磁石用磁粉の製造方法を提供するこ
とである。
An object of the present invention is to provide a method for producing magnetic powder for a composite magnet, which solves the problems of the prior art described above and can obtain wet finely pulverized powder with improved filling properties with resin and magnetic properties. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明の複合磁石用磁粉の夷造方法は、MC1nFez
es (ただし、MはBa + Sr 、 Pbの内の
1種以上、n==5.0〜6.2)の一般式で表わされ
る組成を有する原料混合物を1000℃以上の温度で仮
焼し、仮焼粉を粗粉砕後湿式微粉砕し、次いで800℃
以上の温度で焼鈍する複合磁石用磁粉の製造方法におい
て、前記湿式微粉砕後乾燥して得た磁粉にステアリン酸
金属塩を磁粉100重量部当り0.3〜3重量部添加し
、混合処理を行なってから焼鈍することを特徴とするも
のである。
The method for producing magnetic powder for a composite magnet of the present invention is as follows: MC1nFez
A raw material mixture having a composition represented by the general formula es (where M is one or more of Ba + Sr and Pb, n = 5.0 to 6.2) is calcined at a temperature of 1000 ° C. or higher. , the calcined powder was coarsely pulverized, then wet-pulverized, and then heated at 800°C.
In the method for producing magnetic powder for a composite magnet, which is annealed at the above temperature, 0.3 to 3 parts by weight of stearic acid metal salt is added to the magnetic powder obtained by drying after the wet pulverization, and a mixing treatment is carried out. It is characterized by annealing after the annealing.

上記混合処理は、例えば、乾式ポールミルにより1〜1
0h行なえばよい。
The above-mentioned mixing treatment is carried out, for example, by a dry pole mill.
All you have to do is go to 0h.

〔作用〕[Effect]

本発明の製造方法は、湿式微粉砕粉を乾燥してから、エ
テアリン酸金属塩を加え、所定時間乾式ポールミルによ
り混合処理を行なうため、丸味を帯びた粒子形状のフェ
ライト粉末を得ることができる。したがって乾式微粉砕
よりも少ないエネルギーで、充填性及び磁気特性の向上
したフェライト粉末を得ることができる。
In the production method of the present invention, after drying the wet finely pulverized powder, ethearic acid metal salt is added and the mixture is mixed in a dry Pall mill for a predetermined period of time, so that a ferrite powder with a rounded particle shape can be obtained. Therefore, ferrite powder with improved filling properties and magnetic properties can be obtained with less energy than dry pulverization.

〔実施例〕〔Example〕

以下本発明の詳細を製造工程順に説明する。 The details of the present invention will be explained below in the order of manufacturing steps.

本発明においては、例えばFetusとSr COs 
(BaC03)を所定のモル比となるように秤量しつい
で両者を混合し、得られた原料混合物を1000〜13
00℃の温度で仮焼し、粒径10〜50μm程度の粒子
に粗粉砕する。得られた仮焼粗粉砕を、アトライタなど
により粒径1〜2μm程度に混式微粉砕しついで乾燥す
る○ 次に上記混式微粉砕粉にステアリン酸金属塩を添加し、
ポールミル又は振動ミルにより乾式混合処理を施す。こ
の乾式混合処理により、湿式微粉砕粉の粒子形状は、丸
味を帯びた形状となるので、充填性及び配向性が改善さ
れる。この乾式混合処理においては、主として磁粉同志
の凝集を防ぎ混合効率を高めるために、ステアリン酸の
金属塩を添加するが、具体的にはステアリン酸カルシウ
ムあるいはステアリン酸亜鉛を用いることが望ましい。
In the present invention, for example, Fetus and Sr COs
(BaC03) was weighed so as to have a predetermined molar ratio, and the two were mixed. The resulting raw material mixture was
It is calcined at a temperature of 00°C and coarsely ground into particles with a particle size of about 10 to 50 μm. The obtained calcined and coarsely pulverized powder is mixedly pulverized to a particle size of about 1 to 2 μm using an attritor, and then dried.Next, a stearate metal salt is added to the mixedly pulverized powder,
Dry mixing treatment is performed using a pole mill or a vibrating mill. Due to this dry mixing treatment, the particle shape of the wet pulverized powder becomes roundish, so that filling properties and orientation are improved. In this dry mixing process, a metal salt of stearic acid is added mainly to prevent agglomeration of magnetic particles and increase mixing efficiency, and specifically, it is desirable to use calcium stearate or zinc stearate.

その添加量は磁粉100重量部当り0.5〜3重量部の
範囲がよい。これは添加量が帆5重量部未満であるとそ
の効果がなく、一方添加量が3重量部を越えると、後の
焼鈍工程での分解除去が困難となるからである。また混
合時間は、1h未満であるとその効果がなく、10hを
越えて混合しても磁気特性の向上に殆んど寄与しないの
で、1〜10hの範囲がよい。
The amount added is preferably in the range of 0.5 to 3 parts by weight per 100 parts by weight of magnetic powder. This is because if the amount added is less than 5 parts by weight, there is no effect, whereas if the amount added exceeds 3 parts by weight, it becomes difficult to decompose and remove in the subsequent annealing step. Further, the mixing time is preferably in the range of 1 to 10 hours, since there is no effect if the mixing time is less than 1 hour, and mixing for more than 10 hours hardly contributes to improving the magnetic properties.

混合処理した湿式微粉砕粉は、例えば外熱式ロータリー
キルンに投入り、、800℃以上(好ましくは900〜
1100℃)の温度で歪取りのための焼鈍を行々う。こ
の焼鈍工程でステアリン酸金属塩は分解・除去される。
The wet finely pulverized powder that has been mixed is put into an external heating rotary kiln, for example, and heated to a temperature of 800°C or higher (preferably 900°C or higher).
Annealing is performed at a temperature of 1100° C. for strain relief. In this annealing step, the metal stearate is decomposed and removed.

本発明に従って得られたフェライト粉末を用いて、例え
ば次のような方法で初合磁石を製造することができる。
Using the ferrite powder obtained according to the present invention, an initial magnet can be manufactured, for example, by the following method.

原料としては、フェライト粉末のほかにバインダーとし
て有機重合体を準備する。公知の有機重合体として゛は
、ポリアミド、塩化ビニル、ポリエチレン、ポリスチレ
ン、ボリズロビレン、エチレン共重合体、ポリビニルア
セタール、ポリカーボネート等の熱可塑性樹脂、エポキ
シ、フェノール。
As raw materials, in addition to ferrite powder, an organic polymer is prepared as a binder. Examples of known organic polymers include thermoplastic resins such as polyamide, vinyl chloride, polyethylene, polystyrene, borizlopyrene, ethylene copolymer, polyvinyl acetal, and polycarbonate, epoxy, and phenol.

エリア、メラミン、アルキド、不飽和ポリエステル、ジ
アリルフタレート、ポリウレタン等の熱硬化性樹脂、塩
化ゴム、塩酸ゴム、エボナイト等の天然ゴム、およびイ
ソプレン、ブタジェン、クロロプレン、クロ°ロスルホ
ン化ポリエチレン等の合成ゴムが挙げられる。このほか
の原料としては、公知の可塑剤、加硫剤、滑剤2表面改
質剤、酸化防止斉1および熱安定剤の内の1種又は2種
以上を少t(数重′I#、チ以下)用いてもよい。
Thermosetting resins such as polyurethane, melamine, alkyd, unsaturated polyester, diallyl phthalate, and polyurethane; natural rubbers such as chlorinated rubber, hydrochloric acid rubber, and ebonite; and synthetic rubbers such as isoprene, butadiene, chloroprene, and chlorosulfonated polyethylene. Can be mentioned. Other raw materials include a small amount of one or more of known plasticizers, vulcanizing agents, lubricants, surface modifiers, antioxidants, and heat stabilizers. (below) may be used.

上記の各原料を十分に混合し、加熱混練し、冷却固化し
そしてベレタイジングしてコンパウンドを得る。フェラ
イト粉末と有機重合体の配合比は、磁気特性と成形性の
点から重量比で50〜95 : 50〜5(好ましくは
80〜90 : 20〜10)の範囲がよい。
The above raw materials are thoroughly mixed, kneaded by heating, solidified by cooling, and pelletized to obtain a compound. The blending ratio of the ferrite powder and the organic polymer is preferably in the range of 50 to 95:50 to 5 (preferably 80 to 90:20 to 10) by weight from the viewpoint of magnetic properties and moldability.

次に上記コンパウンドを、射出成形、押出成形あるいは
圧縮成形等の手法により磁場中で成形を行って成形体を
得る。この成形体に所定の着磁を施して複合磁石が得ら
れる。
Next, the compound is molded in a magnetic field by injection molding, extrusion molding, compression molding, or the like to obtain a molded body. A composite magnet is obtained by subjecting this molded body to a predetermined magnetization.

〔実験例〕[Experiment example]

以下、本発明を実験例により更に詳細に説明する0 実験例1 モル比にてFe20s/SrO= 5.50なる組成の
原料混合物(Peg’s 、 5rCOs )を準備し
、1 j 00℃の温度で仮焼し、ショークラッシャー
により平均粒径20μmに粗粉砕した。この粗粉砕粉を
アトライタにより平均粒径1μmに微粉砕してから乾燥
した。次いでこの微粉砕粉100重景部にステアリン酸
カルシウム1重量部を添加し、ポールミルに投入して処
理時間を変えて混合処理を行なった。
Hereinafter, the present invention will be explained in more detail with reference to experimental examples.0 Experimental Example 1 A raw material mixture (Peg's, 5rCOs) having a molar ratio of Fe20s/SrO=5.50 was prepared, and a temperature of 1 j 00°C was prepared. The powder was calcined using a show crusher and coarsely crushed to an average particle size of 20 μm. This coarsely pulverized powder was pulverized to an average particle size of 1 μm using an attritor and then dried. Next, 1 part by weight of calcium stearate was added to 100 parts by weight of this finely pulverized powder, and the mixture was put into a pole mill and mixed for different processing times.

そして900℃の温度で1.5h焼鈍を行ない、しかる
後ヘンシェルミキサーで解砕して平均粒径1.10μm
のフェライト粉末を得た。
Then, it was annealed at a temperature of 900°C for 1.5 hours, and then crushed with a Henschel mixer to have an average particle size of 1.10 μm.
ferrite powder was obtained.

実験例2 仮焼粗粉を、ポールミルに、粗粉6.54 、エタノー
ル0.07 、ボール93.39の重量比率で投入して
、乾式粉砕を行なってから焼鈍する以外は実験例1と同
様の条件でフェライト粉末を得た。
Experimental Example 2 Same as Experimental Example 1 except that the calcined coarse powder was put into a pole mill at a weight ratio of 6.54% coarse powder, 0.07% ethanol, and 93.39% balls, and was dry-pulverized and then annealed. Ferrite powder was obtained under these conditions.

実験例3 実験例1及び2で得られたフェライト粉末を用いて次の
ような条件で複合磁石を製造した。
Experimental Example 3 A composite magnet was manufactured using the ferrite powders obtained in Experimental Examples 1 and 2 under the following conditions.

まずフェライト粉末89.0重量部とエチレン・エチル
アクリレート共重合体(日本ユニカー製DPDJ−80
26)11重量部とをヘンシェルミキサーで予備混合し
、ついで2軸押比機により240℃の温度で混練し、3
〜5fi角にベレタイジングしてフンバウンドを作成し
た。次にこのコンパウンドを射出成形機に投入し、30
0℃の温度、700ks/iの圧力下で、90℃に加熱
した金型内に注入して、磁場中で10w X 10 t
 X 20 t (w)の寸法の成形体を得た。ここで
成形空間の表面における配向磁場強度は6000(G)
とした。得られた成形体に所定の着磁を施;7、磁気特
性を測定した□磁気特性の測定結果を1g1表に示す。
First, 89.0 parts by weight of ferrite powder and ethylene/ethyl acrylate copolymer (DPDJ-80 manufactured by Nippon Unicar Co., Ltd.
26) 11 parts by weight were premixed using a Henschel mixer, and then kneaded at a temperature of 240°C using a twin screw press ratio machine.
A hun bound was created by beretizing to ~5fi angle. Next, put this compound into an injection molding machine and
Injected into a mold heated to 90°C at a temperature of 0°C and a pressure of 700ks/i, 10w x 10t in a magnetic field.
A molded body having dimensions of X 20 t (w) was obtained. Here, the orientation magnetic field strength on the surface of the molding space is 6000 (G)
And so. The obtained molded body was subjected to predetermined magnetization; 7. The magnetic properties were measured. □ The measurement results of the magnetic properties are shown in Table 1g1.

またフェライト粉末の微粉砕効率を同じく第1表に示す
、−。
The pulverization efficiency of ferrite powder is also shown in Table 1.

第   1   表 第1表から本発明法によって得られたフェライト粉末を
用いることにより、乾式微粉砕して得られたフェライト
粉末より優れた磁気特性を有する複合磁石を得られるこ
とがわかる。
Table 1 It can be seen from Table 1 that by using the ferrite powder obtained by the method of the present invention, a composite magnet having magnetic properties superior to that of the ferrite powder obtained by dry pulverization can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上に記述の如く、本発明によれば、湿式微粉砕後特定
の混合処理を行なうので、磁気特性の向上した複合磁石
用磁粉を効率よく製造することができる。
As described above, according to the present invention, since a specific mixing treatment is performed after wet pulverization, magnetic powder for composite magnets with improved magnetic properties can be efficiently produced.

Claims (1)

【特許請求の範囲】 1、MO・nFe_2O_3(ただし、MはBa、Sr
、Pbの内の1種以上、n=5.0〜6.2)の一般式
で表わされる組成を有する原料混合物を1000℃以上
の温度で仮焼し、仮焼粉を粗粉砕後湿式微粉砕し、次い
で800℃以上の温度で焼鈍する複合磁石用磁粉の製造
方法において、前記湿式微粉砕粉にステアリン酸の金属
塩を磁粉100重量部当り0.5〜3重量部添加し、混
合処理を行なってから焼鈍することを特徴とする複合磁
石用磁粉の製造方法。 2、前記混合処理を乾式ポールミル又は湿式ミルにより
1〜10h行なうことを特徴とする特許請求の範囲第1
項記載の複合磁石用磁粉の製造方法。
[Claims] 1. MO・nFe_2O_3 (M is Ba, Sr
, Pb, n = 5.0 to 6.2) is calcined at a temperature of 1000°C or higher, and the calcined powder is coarsely pulverized and then wet-pulverized. In a method for producing magnetic powder for a composite magnet, which involves pulverizing and then annealing at a temperature of 800° C. or higher, 0.5 to 3 parts by weight of a metal salt of stearic acid is added to the wet finely pulverized powder per 100 parts by weight of the magnetic powder, and a mixing treatment is performed. 1. A method for producing magnetic powder for a composite magnet, characterized in that magnetic powder for a composite magnet is annealed after performing the following steps. 2. Claim 1, characterized in that the mixing treatment is carried out for 1 to 10 hours using a dry pole mill or a wet mill.
A method for producing magnetic powder for a composite magnet as described in .
JP8841585A 1985-04-24 1985-04-24 Manufacture of magnetic powder for compound magnet Pending JPS61247002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8841585A JPS61247002A (en) 1985-04-24 1985-04-24 Manufacture of magnetic powder for compound magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8841585A JPS61247002A (en) 1985-04-24 1985-04-24 Manufacture of magnetic powder for compound magnet

Publications (1)

Publication Number Publication Date
JPS61247002A true JPS61247002A (en) 1986-11-04

Family

ID=13942162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8841585A Pending JPS61247002A (en) 1985-04-24 1985-04-24 Manufacture of magnetic powder for compound magnet

Country Status (1)

Country Link
JP (1) JPS61247002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022777A1 (en) * 1992-04-24 1993-11-11 Tdk Corporation Method of producing anisotropic ferrite magnet, anisotropic ferrite magnet, hexagonal ferrite particles, and method for producing them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022777A1 (en) * 1992-04-24 1993-11-11 Tdk Corporation Method of producing anisotropic ferrite magnet, anisotropic ferrite magnet, hexagonal ferrite particles, and method for producing them

Similar Documents

Publication Publication Date Title
US4308155A (en) Rubber or plastic magnet and magnetic powder for making the same
US4278556A (en) Process for producing flexible magnets
JP6797735B2 (en) Ferrite powder for bonded magnets and its manufacturing method
JPS61247002A (en) Manufacture of magnetic powder for compound magnet
JP2020072245A (en) Method of producing bonded magnet and compound for bonded magnet
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JPS59135705A (en) Resin magnet material
JPH0521220A (en) Method for producing injection-molded pure iron-sintered soft magnetic material with high residual magnetic flux density
JPS6286803A (en) Manufacture of compound magnet
JPS61225814A (en) Manufacture of permanent magnet
KR100201684B1 (en) Rare-earth magnet manufacturing method
KR810002082B1 (en) Magnetic powder for rubber and plastic magnet
JPH03160707A (en) Manufacture of ferrite magnetic powder for anisotropic bonded magnet
JPS6353202A (en) Production of rare earth element-iron type plastic magnetic material
JPS61240609A (en) Manufacture of magnetic powder for composite magnet
JP2709068B2 (en) Dust core
JPS62123702A (en) Resin magnet composition
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet
JPH0757691B2 (en) Magnetic powder for plastic or rubber magnet and method for producing the same
JPS6355908A (en) Manufacture of rare-earth resin magnet
JPS60233803A (en) Manufacture of anisotropic oxide permanent magnet
JPS62281308A (en) Manufacture of nd-fe-b plastic magnet
JPH02116104A (en) Manufacture of resin-bonded permanent magnet
JPH0480903A (en) Manufacture of forming material for bonded magnet
JPS6354701A (en) Manufacture of composite magnet