JPS6355908A - Manufacture of rare-earth resin magnet - Google Patents

Manufacture of rare-earth resin magnet

Info

Publication number
JPS6355908A
JPS6355908A JP61198106A JP19810686A JPS6355908A JP S6355908 A JPS6355908 A JP S6355908A JP 61198106 A JP61198106 A JP 61198106A JP 19810686 A JP19810686 A JP 19810686A JP S6355908 A JPS6355908 A JP S6355908A
Authority
JP
Japan
Prior art keywords
resin
temperature
magnet
rare earth
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61198106A
Other languages
Japanese (ja)
Inventor
Jun Nakagawa
準 中川
Norishige Yamaguchi
山口 紀繁
Koji Tanabe
孝司 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61198106A priority Critical patent/JPS6355908A/en
Publication of JPS6355908A publication Critical patent/JPS6355908A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the resin-hardened type magnet having excellent characteristics by a method wherein the thermosetting resin, having the hardening temperature of 150 deg.C or below, is impregnated into anisotropic rare earth- iron-boron magnetic powder while the temperature of which is being lowered to 150 deg.C or below. CONSTITUTION:Nd, Pe, B and the like are mixed at the prescribed percentage, they are fused by applying a high temperature, formed into an ingot, crushed into coarse grains, formed into fine powder, molded into a lump in a magnetic field, a high temperature sintering operation is performed, an aging treatment is conducted and they are formed into a sintered body. Then, this anisotropic sintered magnet is reduced to powder, and formed into the prescribed molded body by pressing in a magnetic field, but no resin coupling agent is used this time. Subsequently, the mechanical distortion, generated while the press work is performed, is removed by performing a heat treatment at 600-1050 deg.C, thermosetting resin is impregnated, and a hardening treatment is conducted at 150 deg.C. The use of epoxy acrylate, unsaturated polyester and the like in the above- mentioned procedure is desirable.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は希土類−鉄−ホウ素系磁石用樹脂磁石の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing a resin magnet for rare earth-iron-boron magnets.

〔従来技術とその問題点〕[Prior art and its problems]

現在良く知られている希土類−鉄−ホウ素系磁石は、原
料金属元素を所定の割合で配合し高周波溶解してインゴ
ットをつくり、これをジヨウクラッシャーやプラクンミ
ルで粗粉砕し、次いでジェットミル、ボールミル等で微
粉砕し、磁場中で配向プレス成形した後、焼結し、時効
処理することKよシ製作される。
Rare earth-iron-boron magnets, which are well known today, are made by blending raw metal elements in a predetermined ratio and melting them at high frequency to create an ingot, which is coarsely crushed using a Jio crusher or plaque mill, and then a jet mill, ball mill, etc. It is manufactured by pulverizing it, oriented press forming in a magnetic field, sintering, and aging treatment.

しかし、このような焼結磁石は硬くてもろいために複雑
な形状の加工が困難であり、精密な加工度が要求される
場合にはコスト高となる。そこで、加工性を上ける九め
に粉末磁石とプラスチック材料の混合物よ9成るプラス
チックまたはゴム磁石が用いられている。
However, since such sintered magnets are hard and brittle, it is difficult to process them into complex shapes, and when precision processing is required, the cost becomes high. Therefore, plastic or rubber magnets made of a mixture of powdered magnets and plastic materials are used to improve workability.

希土類−鉄−ホウ素系のプラスチック磁石は、高速急冷
法で作られた磁石リボンを粉砕、熱処理し、プラスチッ
クで成形することによシ製作される。しかしこの磁石は
異方性化が困難であシ等方性であるために焼結磁石に比
べて磁気特性がはるかに劣る。
Rare earth-iron-boron based plastic magnets are manufactured by crushing magnetic ribbons made by a high-speed quenching method, heat-treating them, and molding them with plastic. However, it is difficult to make this magnet anisotropic, and since it is isotropic, its magnetic properties are far inferior to that of sintered magnets.

また、高速急冷法を用いずに、焼結法で製作された希土
類−鉄−ホウ素系磁石を粉砕機で粉砕した粉末を用いる
方法も公知であるが、この系の磁石は粉砕すると粒界層
が乱れ、保磁力が著しく低下する。粉砕後熱処理を施す
ことによりiHeを回復できるが、次に樹脂を加えて加
圧成形すると、そのときに加わる機械的歪のために磁気
特性は低下する。
Another known method is to use powder obtained by pulverizing rare earth-iron-boron magnets produced by sintering using a pulverizer, without using the high-speed quenching method. is disturbed, and the coercive force decreases significantly. iHe can be restored by heat treatment after crushing, but when resin is then added and pressure molded, the magnetic properties deteriorate due to the mechanical strain applied at that time.

しかし、この系の磁石はSm −Co系磁石粉末に比べ
て安価であシ、特性も良いから、樹脂磁石としたときに
本来の特性が維持でき、且つ寸法精度及び耐衝撃性に優
れた希土類樹脂磁石が望まれている。
However, this type of magnet is cheaper and has better characteristics than Sm-Co type magnet powder, so when it is made into a resin magnet, the original characteristics can be maintained, and rare earth magnets with excellent dimensional accuracy and impact resistance are used. Resin magnets are desired.

〔出願人の試み〕[Applicant's attempt]

この問題点に対して、本発明者は別の出願で機械歪を残
さない製造方法を提供した。同方法は異方性焼結希土類
−鉄−ホウ素系磁石を粉砕し、得られた磁性粉末を磁場
中で所定の形状に成形し、これを600〜1050℃の
温度で熱処理し、次いでこの熱処理された成形体に樹脂
を含浸させることを%徴とする、希土類−鉄−ホウ素系
樹脂磁石の製造方法である。特に樹脂として熱硬化性樹
脂を用いると寸法精度及び機械的強度が増すが、しかし
樹脂の種類によっては磁気特性が低下することがわかっ
た。この点は実は熱硬化時の温度が原因であることがわ
かった。すなわち、希土類−鉄−ホウ素系磁石は高温度
で熱処理すると特性が向上するが、これを再び低温で熱
処理すると折角向上した特性が大幅に低下してしまう。
In order to address this problem, the present inventor provided a manufacturing method that does not leave mechanical distortion in another application. The method involves crushing an anisotropic sintered rare earth-iron-boron magnet, molding the resulting magnetic powder into a predetermined shape in a magnetic field, heat-treating it at a temperature of 600 to 1050°C; This is a method for producing a rare earth-iron-boron resin magnet, which involves impregnating a molded body with a resin. In particular, it has been found that when a thermosetting resin is used as the resin, dimensional accuracy and mechanical strength are increased, but magnetic properties are lowered depending on the type of resin. It was found that this point was actually caused by the temperature during thermosetting. That is, when a rare earth-iron-boron magnet is heat-treated at a high temperature, its properties are improved, but when it is heat-treated again at a low temperature, the improved properties are significantly degraded.

この点を第1図、第2図に示す。実験に用いたサンプル
はHd −Fe −B 系磁石であシ、Nd −Fe 
−B 粉を磁場プレス後900℃、1 hr  のAr
中熱処理した成型体を、樹脂を含浸させずにAr雰囲気
で1 hr加熱した結果であシ、図1図は保磁力(iH
e)、第2図はエネルギー積((BH)。ax)が低温
処理温度に依存していずれも低下し、特に150℃以上
で著しいことを示している。
This point is illustrated in FIGS. 1 and 2. The samples used in the experiment were Hd -Fe -B magnets and Nd -Fe magnets.
-B powder was pressed in a magnetic field and then heated at 900°C for 1 hr in Ar.
Figure 1 shows the results of heating a medium heat-treated molded body in an Ar atmosphere for 1 hour without impregnating it with resin.
e) and FIG. 2 show that the energy product ((BH).ax) decreases depending on the low temperature treatment temperature, and is particularly significant at temperatures above 150°C.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、特性の良い樹脂硬化形の希土類樹脂磁
石を提供することにある。
An object of the present invention is to provide a resin-cured rare earth resin magnet with good characteristics.

〔発明の概要〕[Summary of the invention]

本発明の方法は異方性希土類−鉄−ホウ素系磁性粉末を
150℃以下の硬化温度を有する熱硬化性樹脂で150
℃以下の温度で固めることを特徴とする。より具体的に
は磁性粉末は磁中成形され、熱処理されたものを用い、
熱硬化性樹脂は含浸硬化されるものである。
In the method of the present invention, anisotropic rare earth-iron-boron magnetic powder is heated to 150°C using a thermosetting resin having a curing temperature of 150°C or less.
It is characterized by being hardened at temperatures below ℃. More specifically, magnetic powder is molded in a magnetic field and heat treated.
Thermosetting resins are impregnated and hardened.

熱硬化性樹脂が150℃以下の硬化温度を有し、且つ硬
化処理が150℃以下で行われるとき、硬化中に熱的歪
が加わらず、特性の良い希土類−鉄−ホウ素系樹脂磁石
を得ることができる。
When the thermosetting resin has a curing temperature of 150°C or lower and the curing treatment is performed at 150°C or lower, no thermal strain is applied during curing to obtain a rare earth-iron-boron resin magnet with good characteristics. be able to.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明の出発原料は異方性希土類−鉄−ホウ素焼結磁石
である。ここに希土類としてはNd、La。
The starting material of the present invention is an anisotropic rare earth-iron-boron sintered magnet. The rare earths here include Nd and La.

C・、Pr等の任意の希土類元素であシ、例えばNd 
−Fe −B  系、或いはミツシエメタル(Nd 。
Any rare earth element such as C., Pr, etc., for example Nd
-Fe -B series or Mitsushi Metal (Nd.

La、 Co、 Pr f、含有)などが使用できる。La, Co, Prf, etc. can be used.

また他の成分が少量含有されていても良い。この異方性
希土類−鉄−ホウ素系焼結磁石は磁場中焼成などの任意
の公知方法により製造することができる。
In addition, other components may be contained in small amounts. This anisotropic rare earth-iron-boron based sintered magnet can be manufactured by any known method such as firing in a magnetic field.

例えば、希土類−鉄−ホウ素系原料、例えばNd、 F
e、 B の所定割合に混合し、高温で溶解してインゴ
ットを作り、これをショークラッシャー、ブラウンミル
等で粗粉砕し、次いでジェットミル、ボールミ等で微粉
砕し、磁場中で塊状に成形し、高温焼結及び時効処理し
、焼結体を得る。このものは磁気異方性を有する、高特
性の焼結磁石であるO 次に、この異方性焼結磁石を上記と同様にして粉砕し、
粉末磁石とし、次いで磁場中プレスすることによシ所定
の成形体にする、このとき樹脂結合剤は使用しない。
For example, rare earth-iron-boron raw materials, such as Nd, F
E and B are mixed in a predetermined ratio and melted at high temperature to make an ingot, which is coarsely crushed using a show crusher, brown mill, etc., then finely crushed using a jet mill, ball mill, etc., and formed into a lump in a magnetic field. , high temperature sintering and aging treatment to obtain a sintered body. This is a high-performance sintered magnet with magnetic anisotropy.Next, this anisotropic sintered magnet is crushed in the same manner as above,
It is made into a powder magnet and then pressed into a predetermined molded body by pressing in a magnetic field, without using a resin binder.

磁場中プレスの工程では機械的歪によシ磁石粉には内部
応力が発生して磁気特性が低下する。従って、次に60
0〜1050℃、好ましくは700〜1000℃の温度
で処理する。このとき、非硬化性雰囲気を用いることが
望ましい。またこの熱処理は特性が十分に改善される時
間、例えば1時間行う。これによシブレス加工の際に生
じた機械的な歪が除去される。
In the process of pressing in a magnetic field, internal stress is generated in the magnet powder due to mechanical strain, which deteriorates the magnetic properties. Therefore, next 60
The treatment is carried out at a temperature of 0 to 1050°C, preferably 700 to 1000°C. At this time, it is desirable to use a non-hardening atmosphere. Further, this heat treatment is carried out for a time such that the characteristics are sufficiently improved, for example, 1 hour. This eliminates mechanical distortions that occur during shiveless processing.

以上のように処理された磁石成形体には熱硬化性樹脂を
含浸し九上150℃以下の温度で硬化処理する。150
℃よシも高い温度で硬化処理を行うと、磁石成形体は熱
的歪を受けるので避けなければならない。従って熱硬化
性樹脂としては150℃以下の温度で硬化しうる樹脂、
好ましくは100℃以下の温度で硬化しうる樹脂を用い
ることが重要である。なお、大ていの硬化性樹脂は、1
50℃以下の温度でも時間さえ問題としなければ硬化す
るから、ここでは、注目する樹脂に対して、硬化時間が
12時間で実用上全く問題のない硬い成形体が得られる
ような温度の下限を以って硬化温度と定義する、その温
度が150℃以下のときに本発明の熱硬化性樹脂として
適当である。
The magnet molded body treated as described above is impregnated with a thermosetting resin and cured at a temperature of 150° C. or lower. 150
If the hardening treatment is performed at a temperature higher than ℃, the molded magnet will undergo thermal distortion and must be avoided. Therefore, thermosetting resins include resins that can be cured at temperatures below 150°C.
It is important to use a resin that can preferably be cured at a temperature of 100° C. or lower. In addition, most curable resins are 1
Since it will harden even at temperatures below 50°C if time is not an issue, here we will set the lower temperature limit for the resin we are focusing on so that a hard molded product with no practical problems can be obtained in 12 hours. Therefore, when the temperature is 150° C. or lower, which is defined as the curing temperature, it is suitable as the thermosetting resin of the present invention.

希土類−鉄−ホウ素系の磁石は150℃以下の樹脂硬化
温度に耐えられ、高い特性が得られるが、材料の特性を
十二分に発揮させるには100’C以下の硬化温度であ
ることが望ましい。
Rare earth-iron-boron magnets can withstand resin curing temperatures of 150°C or less and have high properties, but in order to fully utilize the material's properties, the curing temperature must be 100'C or less. desirable.

実施例 (BH)m、x30 MGOeのNd−Fe−B焼結磁
石をブラウンミルを用いて粉砕したのち、10 kO@
磁場中でプレスし、成形体を得た0 この成形体に900℃でAr中1時間の熱処理を施し、
100℃、150℃で硬化する。エポキシアクリレート
と常温で硬化する不飽和ポリエステルを真空含浸させ九
Example (BH) m, x30 After pulverizing an Nd-Fe-B sintered magnet of MGOe using a Brown mill, 10 kO@
A molded body was obtained by pressing in a magnetic field. This molded body was heat treated in Ar at 900°C for 1 hour.
Cures at 100°C and 150°C. 9. Vacuum impregnated with epoxy acrylate and unsaturated polyester that cures at room temperature.

比較例として、同じ成形体に175℃で硬化するエポキ
シ樹脂を含浸させた。
As a comparative example, the same molded body was impregnated with an epoxy resin that hardens at 175°C.

以上の工程で得られた各成形体を上記硬化温度でキュア
ーし、磁気特性を測定した。
Each molded article obtained in the above steps was cured at the above curing temperature, and its magnetic properties were measured.

表 1 表1に示したように、低温で硬化する樹脂を用いること
によυ高性能な樹脂磁石が得られる。
Table 1 As shown in Table 1, high-performance resin magnets can be obtained by using resins that harden at low temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はNd −F・−B磁石の温度による保磁力低下
を示す図、及び第2図は同磁石の温度によるBH積低下
を示す図である。 第1図 第2図
FIG. 1 is a diagram showing a decrease in coercive force due to temperature of an Nd-F·-B magnet, and FIG. 2 is a diagram showing a decrease in BH product due to temperature of the same magnet. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)異方性希土類−鉄−ホウ素系磁性粉末を150℃
以下の硬化温度を有する熱硬化性樹脂で150℃以下の
温度で硬化することを特徴とする異方性樹脂磁石の製造
方法。
(1) Anisotropic rare earth-iron-boron magnetic powder at 150℃
A method for producing an anisotropic resin magnet, characterized by curing at a temperature of 150°C or less using a thermosetting resin having a curing temperature of:
(2)磁性粉末は磁場中成形され、熱処理されたもので
あり、熱硬化性樹脂は含浸硬化されたものである前記第
1項記載の異方性樹脂磁石の製造方法。
(2) The method for manufacturing an anisotropic resin magnet according to item 1 above, wherein the magnetic powder is molded in a magnetic field and heat treated, and the thermosetting resin is impregnated and hardened.
JP61198106A 1986-08-26 1986-08-26 Manufacture of rare-earth resin magnet Pending JPS6355908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61198106A JPS6355908A (en) 1986-08-26 1986-08-26 Manufacture of rare-earth resin magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61198106A JPS6355908A (en) 1986-08-26 1986-08-26 Manufacture of rare-earth resin magnet

Publications (1)

Publication Number Publication Date
JPS6355908A true JPS6355908A (en) 1988-03-10

Family

ID=16385586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61198106A Pending JPS6355908A (en) 1986-08-26 1986-08-26 Manufacture of rare-earth resin magnet

Country Status (1)

Country Link
JP (1) JPS6355908A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290205A (en) * 1988-05-18 1989-11-22 Tokin Corp Manufacture of high-polymer composite type rare-earth magnet
CN108231310A (en) * 2016-12-15 2018-06-29 北京中科三环高技术股份有限公司 A kind of preparation method of modified NdFeB magnetic powder, modified NdFeB magnetic powder and NbFeB sintered body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290205A (en) * 1988-05-18 1989-11-22 Tokin Corp Manufacture of high-polymer composite type rare-earth magnet
CN108231310A (en) * 2016-12-15 2018-06-29 北京中科三环高技术股份有限公司 A kind of preparation method of modified NdFeB magnetic powder, modified NdFeB magnetic powder and NbFeB sintered body
CN108231310B (en) * 2016-12-15 2021-05-28 北京中科三环高技术股份有限公司 Preparation method of modified neodymium iron boron magnetic powder, modified neodymium iron boron magnetic powder and neodymium iron boron sintered body

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
JPS63211706A (en) Manufacture of magnetic powder for bond magnet
JPS6354702A (en) Manufacture of rare earth-iron boron resin magnet
JPS6355908A (en) Manufacture of rare-earth resin magnet
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JPS62177150A (en) Permanent magnet material and its production
JPH0559572B2 (en)
JPH07118408B2 (en) Method for manufacturing polymer composite rare earth magnet
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JPH0450725B2 (en)
JP2005019714A (en) Method of manufacturing anisotropical bond magnet
JPS62281308A (en) Manufacture of nd-fe-b plastic magnet
JPS62281307A (en) Nd-fe-b plastic magnet and its manufacture
JPS6393105A (en) Manufacture of isotropic bonded magnet
JPH0831676A (en) Rare earth bond magnet and manufacture thereof
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPH0483307A (en) Manufacture of rare-earth element magnet
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPH0256904A (en) Manufacture of resin-bound rare-earth magnet
JPH02257603A (en) Bonded magnet
JPS63272008A (en) Manufacture of anisotropic plastic magnet
JPH04314315A (en) Manufacture of bond magnet
JPH11329826A (en) Manufacture of anisotropic permanent magnet
JPH02306601A (en) Manufacture of polymer composite type rare earth magnetic powder