JPS61245899A - Treatment of organic waste water - Google Patents

Treatment of organic waste water

Info

Publication number
JPS61245899A
JPS61245899A JP60086251A JP8625185A JPS61245899A JP S61245899 A JPS61245899 A JP S61245899A JP 60086251 A JP60086251 A JP 60086251A JP 8625185 A JP8625185 A JP 8625185A JP S61245899 A JPS61245899 A JP S61245899A
Authority
JP
Japan
Prior art keywords
sludge
reaction tank
aeration reaction
separated
liquid mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60086251A
Other languages
Japanese (ja)
Other versions
JPH0232960B2 (en
Inventor
Hiroshi Kobayashi
浩志 小林
Tadashi Suzuki
正 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP60086251A priority Critical patent/JPS61245899A/en
Publication of JPS61245899A publication Critical patent/JPS61245899A/en
Publication of JPH0232960B2 publication Critical patent/JPH0232960B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To attain to enhance efficiency, by a method wherein org. waste water is subjected to biological treatment in a hermetically closed aeration reaction tank while aerated by oxygen-containing gas under pressure and the treated liquid mixture is introduced into a sludge separation tank held under atmospheric pressure to be separated into floated conc. sludge and a low concn. liquid mixture. CONSTITUTION:Org. waste water 1 receives biological treatment under pressure of 0.2-3 atm in an aertin reaction tank 2 and the treated liquid mixture after decomposition treatment is introduced into a sludge separation tank 8 held under atmospheric pressure through a check valve 7. In this case, the dissolved gas in the treated liquid mixture is converted to fine gas bubbles by the pressure difference between both tanks and sludge is floated and separated at a high speed by said fine gas bubbles. The floated and separated sludge is returned to the aeration reaction tank 2 by a return pump P2 through a sludge return line 9. The low concn. sludge liquid mixture is introduced into a membrane separation apparatus 10 and the treated water transmitted therethrough is dis charged out of the system through a conduit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生し尿1.産業廃水などの有機性廃水の処理
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention provides raw human urine1. This invention relates to a method for treating organic wastewater such as industrial wastewater.

〔従来の技術〕[Conventional technology]

生し尿、産業廃水などの有機性廃水中には、一般に多量
の有機物のほか、アンモニア性窒素や有機性窒素などの
窒素化合物が含有されておシ、これらの有機性廃水は曝
気反応槽内にて曝気しながら高濃度の好気性微生物で処
理すると共に部分的に曝気を停止することによυ通性嫌
気性微生物の働きによって有機物と共に窒素化合物もか
なシ高い効率で除去されることが広く知られている。し
かし、曝気反応槽内でこれらの高濃度の微生物にて処理
された処理混合液は1通常、最終沈澱池で汚泥と処理水
とに分離されるが、特に曝気反応槽内での汚泥濃度を高
くず本はど、微生物処理効率の向上とは逆に最終沈澱池
での分離効率が著しく低下する欠点があつ九〇 ・ そこで、曝気反応槽内にて高濃度の微生物で処理された
処理混合液を膜分離装置によって透過液を系外に排出す
る一方、未透過濃縮残液を曝気反応槽に返送して曝気反
応槽内の微生物濃度を高濃度に維持する方法が開発され
ている。
Organic wastewater such as raw human waste and industrial wastewater generally contains large amounts of organic matter as well as nitrogen compounds such as ammonia nitrogen and organic nitrogen. It is widely known that by treating with a high concentration of aerobic microorganisms while aerating the plant and partially stopping aeration, nitrogen compounds as well as organic matter can be removed with high efficiency by the action of facultative anaerobic microorganisms. It is being However, the treated mixed liquid treated with these highly concentrated microorganisms in the aeration reactor is usually separated into sludge and treated water in the final settling tank, but it is especially important to reduce the sludge concentration in the aeration reactor. However, despite the improvement in microbial treatment efficiency, there is a drawback that the separation efficiency in the final sedimentation tank is significantly reduced. A method has been developed in which the permeated liquid is discharged from the system using a membrane separation device, while the unpermeated concentrated residual liquid is returned to the aeration reaction tank to maintain a high microbial concentration in the aeration reaction tank.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記の方法は高い微生物濃度を維持する
と共に、比較的高速で処理液を得ることができる点で優
れてはいるが、曝気反応槽での微生物濃度を高くすると
、膜分離装置における透過液量が急激に減少し、膜分離
装置での所要動力が非常に大きくなシ、しかも処理混合
液と膜との接触面積を広くするために膜分離装置が大型
化し、広い設置面積を要するなどの几め、曝気反応槽に
おける微生物の高濃度化には実用上、制約があった0 〔問題点を解決するための手段〕 本発明は、かかる現状に鑑み、有機性廃水を密閉曝気反
応槽内にて加圧下で散票含有ガスを曝気せしめながら微
生物処理し、この処理混合液を大気圧下の汚泥分離槽に
導入して大気圧との差圧によって生ずる微細気泡にて浮
上濃縮汚泥と低濃度混合液とに分離し、浮上濃縮汚泥を
密閉曝気反応槽に返送する一方、低濃度混合液を膜分離
装置にて透過分離して透過液を系外に排出し、未透過濃
縮残液全密閉曝気反応槽に返送することを特徴とするも
のである。
However, although the above method is superior in that it can maintain a high microbial concentration and obtain a treated liquid at a relatively high speed, increasing the microbial concentration in the aeration reactor causes the permeate to flow through the membrane separation device. The amount of water decreases rapidly, and the power required for the membrane separation equipment is extremely large.Moreover, the membrane separation equipment becomes larger and requires a larger installation area to increase the contact area between the treated mixture and the membrane. In view of the current situation, the present invention aims at increasing the concentration of microorganisms in a closed aeration reaction tank. The sludge-containing gas is treated with microorganisms while being aerated under pressure, and this treated mixed liquid is introduced into a sludge separation tank under atmospheric pressure, where microbubbles generated by the pressure difference with atmospheric pressure float up and form concentrated sludge. The concentrated sludge is separated from the concentrated mixed liquid and sent back to the closed aeration reaction tank, while the low-concentrated mixed liquid is permeated and separated using a membrane separator, the permeated liquid is discharged outside the system, and all of the unpermeated concentrated residual liquid is removed. It is characterized by being returned to a closed aeration reactor.

〔作用〕[Effect]

本発明は、上記の構成を有するので、密閉曝気反応槽に
おいては、該曝気反応槽を加圧下に維持して有機性廃水
への酸素溶解濃度を高め、微生物の活性を増進し、比較
的コンパクトな装置で・高速処理を可能ならしめると共
に、次の汚泥分離槽においては前記の曝気反応槽で加圧
下で廃水中に溶解せしめたガスおよび微生物処理により
廃水中に生じたガスを大気圧下で微細気泡となし、この
気泡にて浮上分離を行ない、浮上濃縮汚泥と低濃度汚泥
混合液とに高速で分離し、浮上濃縮汚泥全曝気反応槽に
返送して曝気反応槽内の微生物濃度を高濃度に維持する
ことを可能ならしめ、さらに膜分離装置においては前記
汚泥分離槽で大半の汚泥が分離されて低濃度とされた低
濃度汚泥混合液を膜分離によシ安価な動力費で高速で透
過して三次処理の必要のない高度の処理水を得ることを
可能ならしめる。なお、膜分離装置における未透過濃縮
残液は曝気反応槽内に返送され、膜分離の高負荷を回避
し、曝気反応槽内の微生物濃度の高濃度維持に寄与する
と共に、未透過濃縮残液中の未処理物が再処理に供され
、高効率の微生物処理を可能とする。
Since the present invention has the above configuration, the sealed aeration reaction tank maintains the aeration reaction tank under pressure to increase the dissolved oxygen concentration in organic wastewater, promotes the activity of microorganisms, and is relatively compact. In addition, in the next sludge separation tank, the gas dissolved in the wastewater under pressure in the aeration reaction tank and the gas generated in the wastewater by microbial treatment are processed under atmospheric pressure. This creates fine air bubbles, which perform flotation and separation at high speed into flotation thickened sludge and low-concentration sludge mixture, and return the flotation thickened sludge to the aeration reaction tank to increase the concentration of microorganisms in the aeration reaction tank. Furthermore, in the membrane separation device, most of the sludge is separated in the sludge separation tank and the low concentration sludge mixture, which has been reduced to a low concentration, is separated by membrane separation at low power costs and at high speed. This makes it possible to obtain highly treated water that does not require tertiary treatment. The unpermeated concentrated residual liquid in the membrane separation device is returned to the aeration reaction tank, which avoids the high load of membrane separation and contributes to maintaining a high microbial concentration in the aeration reaction tank. The untreated material inside is subjected to reprocessing, enabling highly efficient microbial treatment.

〔実施例〕〔Example〕

以下、本発明を図示の実施例に従って詳細に説明するこ
ととする。
Hereinafter, the present invention will be explained in detail according to illustrated embodiments.

図において、1は生し尿、産業廃水等の有機性廃水にし
て、特に高濃度有機性廃水、アンモニア性窒素や有機性
窒素を含有する窒素含有有機性廃水などが好適である。
In the figure, reference numeral 1 indicates organic wastewater such as human waste or industrial wastewater, and highly concentrated organic wastewater, nitrogen-containing organic wastewater containing ammonia nitrogen or organic nitrogen, etc. are particularly suitable.

有機性廃水1は、先ず曝気反応槽2に廃水供給ポンプP
1にて加圧下で廃水供給管3を経て導入される。曝気反
応槽2内の廃水中には多量の好気性微生物や通性嫌気性
微生物が繁殖しており、この繁殖のために酸素含有ガス
、例えば空気がm外部のプロワBから空気供給管4を経
て散気部材5から廃水中に散気される。なお、散気部材
5のほかエジェクターなどを用いても良い。曝気反応槽
2は密閉されており、曝気反応槽2内の圧力は圧力調整
弁6にて大気圧より望ましくは、0.2〜3気圧の加圧
状態に調整される。このように曝気反応槽2内は加圧状
態に維持されるので、廃水に供給される空気中の酸素は
廃水中に多量に溶解することとなり、酸素使用効率が向
上し、曝気反応槽2内に高濃度で存在する微生物の繁殖
に有効に利用され、微生物による有機物の分解反応が著
しく促進される。なお、曝気反応槽2内の圧力は、廃水
の性状、曝気反応槽2内の汚泥濃度(微生物濃度)に関
係する汚泥浮上分離性などを考慮して決定される。
The organic wastewater 1 is first supplied to the aeration reaction tank 2 by a wastewater supply pump P.
At 1, the waste water is introduced under pressure via the waste water supply pipe 3. A large amount of aerobic microorganisms and facultative anaerobic microorganisms are breeding in the wastewater in the aeration reaction tank 2, and for this breeding, oxygen-containing gas, such as air, is passed from the blower B outside to the air supply pipe 4. Then, air is diffused into the wastewater from the air diffusion member 5. Note that in addition to the diffuser member 5, an ejector or the like may be used. The aeration reaction tank 2 is hermetically sealed, and the pressure inside the aeration reaction tank 2 is adjusted by a pressure regulating valve 6 to a pressurized state of preferably 0.2 to 3 atm rather than atmospheric pressure. Since the inside of the aeration reaction tank 2 is maintained in a pressurized state in this way, a large amount of oxygen in the air supplied to the wastewater is dissolved in the wastewater, improving oxygen usage efficiency and increasing the pressure inside the aeration reaction tank 2. It is effectively used for the propagation of microorganisms that exist in high concentrations, and the decomposition reaction of organic matter by microorganisms is significantly accelerated. Note that the pressure within the aeration reaction tank 2 is determined in consideration of the properties of wastewater, sludge flotation and separation properties related to the sludge concentration (microbial concentration) within the aeration reaction tank 2, and the like.

曝気反応槽2内で微生物による分解処理の施された処理
混合液(微生物を含む)は逆上弁7を経て大気圧下の汚
泥分離槽8に導入される。この処理混合液の汚泥分離槽
8への導入には、曝気反応槽2からの処理混合液を汚泥
分離槽8内の液量が減少すれば補充のために自動的に流
入しうるようにすることが望ましい。この場合、汚泥分
離槽8内の液面を曝気反応槽2内の液面よシ高くなるよ
うに設定し、曝気反応槽2の圧力調整弁6を汚泥分離槽
8と曝気反応槽2との液面差にはソ相当する圧力となる
ように調整すれば、汚泥分離槽8の液量が減少すると、
それにつれて曝気反応槽8から処理混合液が流出しては
ソ一定量に維持される。
The treated mixed liquid (containing microorganisms) that has been decomposed by microorganisms in the aeration reaction tank 2 is introduced into a sludge separation tank 8 under atmospheric pressure via a reverse valve 7. In order to introduce this treated mixed liquid into the sludge separation tank 8, the treated mixed liquid from the aeration reaction tank 2 can be automatically flowed in for replenishment when the liquid amount in the sludge separation tank 8 decreases. This is desirable. In this case, the liquid level in the sludge separation tank 8 is set to be higher than the liquid level in the aeration reaction tank 2, and the pressure regulating valve 6 of the aeration reaction tank 2 is set to be higher than the liquid level in the aeration reaction tank 2. If the pressure is adjusted to correspond to the difference in liquid level, when the liquid volume in the sludge separation tank 8 decreases,
As the process progresses, the treated mixed liquid flows out from the aeration reaction tank 8 and is maintained at a constant amount.

なお、曝気反応槽2と汚泥分離槽8との間の配管に取付
けた逆上弁7は処理混合液の不測の逆流を防止するため
のもので、必ずしも必要ではない。
Note that the backflow valve 7 attached to the pipe between the aeration reaction tank 2 and the sludge separation tank 8 is for preventing unexpected backflow of the treated mixed liquid, and is not necessarily necessary.

汚泥分離槽8は大気圧下にあるため、加圧状態にある曝
気反応槽2からの処理混合液中の溶解ガスが両槽の差圧
によって微細気泡となシ、処理混合液中の汚泥(微生物
を含む)は微細気泡によシ高速で浮上分離される。なお
、処理混合液中の溶解ガスには、曝気反応槽2中で供給
された空気のほか、微生物による有機物の分解で生ずる
炭酸ガスや微生物による脱窒素反応によって生ずる窒素
ガスなどがある。汚泥分離槽8における汚泥の浮上分離
率は、通常の廃水処理の場合のように必ずしも高くなく
て良く、むしろ安価なコストで効率良く分離を行なうこ
とができる利点がある。
Since the sludge separation tank 8 is under atmospheric pressure, the dissolved gas in the treated mixed liquid from the pressurized aeration reaction tank 2 becomes fine bubbles due to the pressure difference between the two tanks, and the sludge in the treated mixed liquid ( (including microorganisms) are floated and separated at high speed by microbubbles. In addition to the air supplied in the aeration reaction tank 2, dissolved gases in the treatment mixture include carbon dioxide gas produced by decomposition of organic matter by microorganisms, nitrogen gas produced by denitrification reaction by microorganisms, and the like. The flotation separation rate of sludge in the sludge separation tank 8 does not necessarily have to be as high as in normal wastewater treatment, but rather has the advantage that separation can be carried out efficiently at low cost.

汚泥分離槽8で浮上分離された汚泥は、汚泥返送ポンプ
P2にて汚泥返送ライン9を経て曝気反応槽2に返送さ
れ、曝気反応槽2内の微生、物濃度が高濃度に維持され
る。なお、一部の汚泥は余剰汚泥として系外に排出され
、また汚泥分離槽8内に沈降した汚泥も必要に応じて曝
気反応槽2へ返送されるか、又は余剰汚泥として系外へ
排出される。
The sludge floated and separated in the sludge separation tank 8 is returned to the aeration reaction tank 2 via the sludge return line 9 by the sludge return pump P2, and the concentration of microorganisms and substances in the aeration reaction tank 2 is maintained at a high concentration. . Note that some of the sludge is discharged out of the system as surplus sludge, and the sludge that has settled in the sludge separation tank 8 is also returned to the aeration reaction tank 2 or discharged as surplus sludge to the outside of the system. Ru.

汚泥分離槽8からの低濃度汚泥混合液は循環ポンプP、
にて膜分離装置10に導入される。膜分離装置10内に
は低濃度汚泥混合液と接触する多数の膜が適宜の間隔を
おいて配装されており、膜の目詰シラ防ぐ友めに低濃度
汚泥混合液と膜とが相対移動するように膜に対して低濃
度汚泥混合液を流動させるか、又は低濃度汚泥混合液に
対して膜を回転運動させるなどの手段が施されている。
The low concentration sludge mixture from the sludge separation tank 8 is circulated through a circulation pump P,
is introduced into the membrane separation device 10. In the membrane separation device 10, a large number of membranes that come into contact with the low concentration sludge mixture are arranged at appropriate intervals, and in order to prevent membrane clogging, the low concentration sludge mixture and the membranes are separated Means such as causing the low concentration sludge mixture to flow relative to the membrane or rotating the membrane relative to the low concentration sludge mixture are used.

この膜としては液体は透過するが、微生物の透過を阻止
する特性を有するものにし−(、例えば限外濾過膜、逆
浸透膜、精密テ過膜などが使用される。
This membrane should have the property of permeating liquid but blocking the permeation of microorganisms (for example, ultrafiltration membranes, reverse osmosis membranes, precision filtration membranes, etc. are used).

膜分離を行なうにさいしては、前述のように膜と液との
相対移動を行なうと共に、膜の前後における圧力差を生
せしめることも必要であり、膜の前方に配したポンプP
st循環用ポンプとする場合には、膜の後方に配したポ
ンプP4を減圧用ポンプとして減圧状態を維持せしめ、
膜の前方に配し几ポンプPat”加圧用ポンプとする場
合には膜の後方のポンプ&は無ぐても良い。
When performing membrane separation, it is necessary to perform relative movement between the membrane and the liquid as described above, and also to create a pressure difference before and after the membrane.
When using the st circulation pump, the pump P4 arranged behind the membrane is used as a pressure reduction pump to maintain a reduced pressure state,
If the pressure pump is placed in front of the membrane, the pump & at the rear of the membrane may be omitted.

膜分離装置10t−透過した処理水は導管を経て系外に
排出され、膜分離装置10からの未透過濃縮残液は膜に
過度の負荷を与えることなく導管を経て曝気反応槽2に
返送され、曝気反応槽2内の微生物濃度を高濃度に維持
すると共に、自己消化全促進し、余剰汚泥の発生を僅少
となし、廃水中の有機物にも繰返し微生物による酸化処
理を施すことにより処理効率を高めることができる。
Membrane separator 10t - The permeated treated water is discharged outside the system via a conduit, and the unpermeated concentrated residual liquid from the membrane separator 10 is returned to the aeration reaction tank 2 via the conduit without putting an excessive load on the membrane. In addition to maintaining the microbial concentration in the aeration reaction tank 2 at a high concentration, self-digestion is fully promoted, the generation of excess sludge is minimized, and organic matter in wastewater is repeatedly oxidized by microorganisms, thereby improving treatment efficiency. can be increased.

以上の処理工程において、膜分離装置10への供給液量
は予定の処理水(透過液〕量の1〜5倍程度とし、汚泥
分離槽8から曝気反応槽2への返送量は浮上濃縮汚泥濃
度によって異なるが、予定の処理水量の0.1〜2倍と
することが望ましい。
In the above treatment process, the amount of liquid supplied to the membrane separation device 10 is approximately 1 to 5 times the planned amount of treated water (permeate), and the amount returned from the sludge separation tank 8 to the aeration reaction tank 2 is the amount of floated concentrated sludge. Although it varies depending on the concentration, it is preferably 0.1 to 2 times the planned amount of water to be treated.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上の説明から明らかなように、密閉曝気反
応槽内金加圧下に維持して酸素溶解濃度を高め、微生物
の活性を増進し、コンパクトな装置で高速処理を可能と
し、この処理にょシ得られた処理混合液中の汚泥は廃水
中に溶解したガスの圧力差に基づく微細気泡化を利用し
た浮上分離によシ安価に高速で分離され、曝気反応槽に
返送されるので、曝気反応槽内の微生物濃度を高濃度に
維持し、高速処理および余剰汚泥の発生の抑制を可能と
し、さらに大半の汚泥が分離された低濃度汚泥混合液が
膜分離装置に導入されるので、高濃度の汚泥混合液を膜
分離する場合に比して著しく安価な動力費(汚泥分離の
費用を含めても)で高速処理を可能とするなどの実用上
における優れた作用効果を奏しうるものである。
As is clear from the above description, the present invention maintains metal under pressure in a closed aeration reactor to increase dissolved oxygen concentration and promote microbial activity, and enables high-speed processing with a compact device. The sludge in the resulting treatment mixture is separated at low cost and at high speed by flotation separation, which utilizes microbubble formation based on the pressure difference in the gas dissolved in the wastewater, and is returned to the aeration reactor. It maintains the microbial concentration in the aeration reactor at a high concentration, enabling high-speed processing and suppressing the generation of surplus sludge. Furthermore, since the low-concentration sludge mixture from which most of the sludge has been separated is introduced into the membrane separation device, It has excellent practical effects, such as enabling high-speed processing at a significantly lower power cost (even including the cost of sludge separation) than when membrane-separating a high-concentration sludge mixture. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る有機性廃水の処理方法の一実施例を
示す概略説明図である。
The drawing is a schematic explanatory diagram showing one embodiment of the method for treating organic wastewater according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 有機性廃水を密閉曝気反応槽内にて加圧下で酸素含有ガ
スを曝気せしめながら微生物処理し、この処理混合液を
大気圧下の汚泥分離槽に導入して大気圧との差圧によっ
て生ずる微細気泡にて浮上濃縮汚泥と低濃度汚泥混合液
とに分離し、浮上濃縮汚泥を密閉曝気反応槽に返送する
一方、低濃度汚泥混合液を膜分離装置にて透過分離して
透過液を系外に排出し、未透過濃縮残液を密閉曝気反応
槽に返送することを特徴とする有機性廃水の処理方法。
Organic wastewater is treated with microorganisms in a closed aeration reaction tank under pressure while aerating oxygen-containing gas, and this treated mixture is introduced into a sludge separation tank under atmospheric pressure to remove fine particles generated by the pressure difference between atmospheric pressure and The sludge is separated into floated thickened sludge and low-concentration sludge mixture using air bubbles, and the floated thickened sludge is returned to the sealed aeration reaction tank, while the low-concentration sludge mixture is permeated and separated using a membrane separation device, and the permeated liquid is removed from the system. A method for treating organic wastewater, which comprises discharging the organic wastewater into a water tank, and returning the unpermeated concentrated residual liquid to a sealed aeration reaction tank.
JP60086251A 1985-04-24 1985-04-24 Treatment of organic waste water Granted JPS61245899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086251A JPS61245899A (en) 1985-04-24 1985-04-24 Treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086251A JPS61245899A (en) 1985-04-24 1985-04-24 Treatment of organic waste water

Publications (2)

Publication Number Publication Date
JPS61245899A true JPS61245899A (en) 1986-11-01
JPH0232960B2 JPH0232960B2 (en) 1990-07-24

Family

ID=13881599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086251A Granted JPS61245899A (en) 1985-04-24 1985-04-24 Treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPS61245899A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269640A (en) * 1993-03-18 1994-09-27 Nippon Memutetsuku Kk Membrane treatment apparatus
CN100363271C (en) * 2002-12-31 2008-01-23 中国科学院生态环境研究中心 Bubble-free oxygen supply film biological reactor
JP2008221163A (en) * 2007-03-14 2008-09-25 Toshiba Corp Wastewater treatment system
CN100453480C (en) * 2005-11-21 2009-01-21 桂林电子工业学院 Inner aeration type aeration method and device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269640A (en) * 1993-03-18 1994-09-27 Nippon Memutetsuku Kk Membrane treatment apparatus
CN100363271C (en) * 2002-12-31 2008-01-23 中国科学院生态环境研究中心 Bubble-free oxygen supply film biological reactor
CN100453480C (en) * 2005-11-21 2009-01-21 桂林电子工业学院 Inner aeration type aeration method and device
JP2008221163A (en) * 2007-03-14 2008-09-25 Toshiba Corp Wastewater treatment system
JP4709792B2 (en) * 2007-03-14 2011-06-22 株式会社東芝 Wastewater treatment system

Also Published As

Publication number Publication date
JPH0232960B2 (en) 1990-07-24

Similar Documents

Publication Publication Date Title
US4824563A (en) Equipment for treating waste water
JP4632356B2 (en) Biological nitrogen removal method and system
JPH09314177A (en) Method and apparatus for treating organic waste water
JP6750930B6 (en) Sewage purification system
CN104710077A (en) Treatment system and treatment method of synthetic rubber wastewater
JPS61245899A (en) Treatment of organic waste water
JP3383504B2 (en) Organic wastewater treatment method and treatment device
JPS6139120B2 (en)
JP3483081B2 (en) Organic wastewater treatment method and treatment device
JP3763444B2 (en) Organic wastewater treatment method
KR102299760B1 (en) High concentrated organic wastewater treatment system
JP2000070989A (en) Method and apparatus removing nitrogen in waste water
JP2947684B2 (en) Nitrogen removal equipment
JPS6048196A (en) Method for removing phosphorus from organic waste liquid
JPH07214056A (en) Device for treating waste water
JPH0630784B2 (en) Treatment method for human waste
JPH0568998A (en) Treatment of waste water
JPH06328099A (en) Soil water treating device
JPS6218232B2 (en)
JPH03232597A (en) Treatment of organic waste water
JPH05154495A (en) Method for nitrifying and denitrifying organic waste water
JPS59109293A (en) Biological denitrification method of waste water
JPH0929282A (en) Method for biological denitrification of wastewater, and device therefor
JPS62225296A (en) Biological nitrification and denitrification device
JPS6075396A (en) Removal of phosphorus from organic waste liquid