JPH0232960B2 - - Google Patents

Info

Publication number
JPH0232960B2
JPH0232960B2 JP60086251A JP8625185A JPH0232960B2 JP H0232960 B2 JPH0232960 B2 JP H0232960B2 JP 60086251 A JP60086251 A JP 60086251A JP 8625185 A JP8625185 A JP 8625185A JP H0232960 B2 JPH0232960 B2 JP H0232960B2
Authority
JP
Japan
Prior art keywords
sludge
reaction tank
concentration
aeration reaction
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60086251A
Other languages
Japanese (ja)
Other versions
JPS61245899A (en
Inventor
Hiroshi Kobayashi
Tadashi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP60086251A priority Critical patent/JPS61245899A/en
Publication of JPS61245899A publication Critical patent/JPS61245899A/en
Publication of JPH0232960B2 publication Critical patent/JPH0232960B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生し尿、産業廃水などの有機性廃水
の処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for treating organic wastewater such as human waste and industrial wastewater.

〔従来の技術〕[Conventional technology]

生し尿、産業廃水などの有機性廃水中には、一
般に多量の有機物のほか、アンモニア性窒素や有
機性窒素などの窒素化合物が含有されており、こ
れらの有機性廃水は曝気反応槽内にて曝気しなが
ら高濃度の好気性微生物で処理すると共に部分的
に曝気を停止することにより通性嫌気性微生物の
働きによつて有機物と共に窒素化合物もかなり高
い効率で除去されることが広く知られている。し
かし、曝気反応槽内でこれらの高濃度の微生物に
て処理された処理混合液は、通常、最終沈澱池で
汚泥と処理水とに分離されるが、特に曝気反応槽
内での汚泥濃度を高くするほど、微生物処理効率
の向上とは逆に最終沈澱池での分離効率が著しく
低下する欠点があつた。
Organic wastewater such as human waste and industrial wastewater generally contains a large amount of organic matter as well as nitrogen compounds such as ammonia nitrogen and organic nitrogen, and these organic wastewaters are treated in an aeration reaction tank. It is widely known that by treating with a high concentration of aerobic microorganisms while aerating and partially stopping aeration, nitrogen compounds as well as organic matter can be removed with a fairly high efficiency by the action of facultative anaerobic microorganisms. There is. However, the treated mixed solution treated with these highly concentrated microorganisms in the aeration reactor is usually separated into sludge and treated water in the final settling tank, but it is especially important to reduce the sludge concentration in the aeration reactor. The higher the concentration, the more the microbial treatment efficiency is improved, but the disadvantage is that the separation efficiency in the final sedimentation tank is significantly lowered.

そこで、曝気反応槽内にて高濃度の微生物で処
理された処理混合液を膜分離装置によつて透過液
を系外に排出する一方、未透過濃縮残液を曝気反
応槽に返送して曝気反応槽内の微生物濃度を高濃
度に維持する方法が開発されている。
Therefore, the permeated liquid of the treated mixed liquid treated with highly concentrated microorganisms in the aeration reaction tank is discharged out of the system using a membrane separator, while the unpermeated concentrated residual liquid is returned to the aeration reaction tank and aerated. Methods have been developed to maintain a high concentration of microorganisms in a reaction tank.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記の方法は高い微生物濃度を
維持すると共に、比較的高速で処理液を得ること
ができる点で優れてはいるが、曝気反応槽での微
生物濃度を高くすると、膜分離装置における透過
液量が急激に減少し、膜分離装置での所要動力が
非常に大きくなり、しかも処理混合液と膜との接
触面積を広くするために膜分離装置が大型化し、
広い設置面積を要するなどのため、曝気反応槽に
おける微生物の高濃度化には実用上、制約があつ
た。
However, although the above method is superior in that it can maintain a high microbial concentration and obtain a treated liquid at a relatively high speed, increasing the microbial concentration in the aeration reactor causes the permeate to flow through the membrane separation device. The amount of wastewater decreased rapidly, the power required for the membrane separation equipment became extremely large, and the membrane separation equipment became larger in order to increase the contact area between the treated mixture and the membrane.
In practice, increasing the concentration of microorganisms in an aeration reactor is limited because it requires a large installation area.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、かかる現状に鑑み、有機性廃水を密
閉曝気反応槽内にて加圧下で酸素含有ガスを曝気
せしめながら微生物処理し、この処理混合液を大
気圧下の汚泥分離槽に導入して大気圧との差圧に
よつて生ずる微細気泡にて浮上濃縮汚泥と低濃度
混合液とに分離し、浮上濃縮汚泥を密閉曝気反応
槽に返送する一方、低濃度混合液を膜分離装置に
て透過分離して透過液を系外に排出し、未透過濃
縮残液を密閉曝気反応槽に返送することを特徴と
するものである。
In view of the current situation, the present invention has been developed by subjecting organic wastewater to microbial treatment in a closed aeration reaction tank under pressure while aerating oxygen-containing gas, and introducing this treated liquid mixture into a sludge separation tank under atmospheric pressure. The floating thickened sludge and the low-concentration mixed liquid are separated by micro bubbles generated by the pressure difference between atmospheric pressure and the floating thickened sludge is returned to the closed aeration reaction tank, while the low-concentration mixed liquid is passed through the membrane separation device. This system is characterized by performing permeation separation, discharging the permeated liquid out of the system, and returning the unpermeated concentrated residual liquid to the closed aeration reaction tank.

〔作 用〕[Effect]

本発明は、上記の構成を有するので、密閉曝気
反応槽においては、該曝気反応槽を加圧下に維持
して有機性廃水への酸素溶解濃度を高め、微生物
の活性を増進し、比較的コンパクトな装置で、高
速処理を可能ならしめると共に、次の汚泥分離槽
においては前記の曝気反応槽で加圧下で廃水中に
溶解せしめたガスおよび微生物処理により廃水中
に生じたガスを大気圧下で微細気泡となし、この
気泡にて浮上分離を行ない、浮上濃度汚泥と低濃
度汚泥混合液とに高速で分離し、浮上濃縮汚泥を
曝気反応槽に返送して曝気反応槽内の微生物濃度
を高濃度に維持することを可能ならしめ、さらに
膜分離装置においては前記汚泥分離槽で大半の汚
泥が分離されて低濃度とされた低濃度汚泥混合液
を膜分離により安価な動力費で高速で透過して三
次処理の必要のない高度の処理水を得ることを可
能ならしめる。なお、膜分離装置における未透過
濃縮残液は曝気反応槽内に返送され、膜分離の高
負荷を回避し、曝気反応槽内の微生物濃度の高濃
度維持に寄与すると共に、未透過濃縮残液中の未
処理物が再処理に供され、高効率の微生物処理を
可能とする。
Since the present invention has the above configuration, the sealed aeration reaction tank maintains the aeration reaction tank under pressure to increase the dissolved oxygen concentration in organic wastewater, promotes the activity of microorganisms, and is relatively compact. This equipment enables high-speed treatment, and in the next sludge separation tank, the gas dissolved in the wastewater under pressure in the aeration reaction tank and the gas generated in the wastewater by microbial treatment are processed under atmospheric pressure. This creates fine air bubbles, and these air bubbles perform flotation separation to separate floating concentrated sludge and low-concentration sludge mixture at high speed, and the floating concentrated sludge is returned to the aeration reaction tank to increase the microbial concentration in the aeration reaction tank. In addition, in the membrane separation device, most of the sludge is separated in the sludge separation tank, and the low concentration sludge mixture is permeated through membrane separation at low power costs and at high speed. This makes it possible to obtain highly treated water that does not require tertiary treatment. The unpermeated concentrated residual liquid in the membrane separation device is returned to the aeration reaction tank, which avoids the high load of membrane separation and contributes to maintaining a high microbial concentration in the aeration reaction tank. The untreated material inside is subjected to reprocessing, enabling highly efficient microbial treatment.

〔実施例〕〔Example〕

以下、本発明を図示の実施例に従つて詳細に説
明することとする。
Hereinafter, the present invention will be explained in detail according to illustrated embodiments.

図において、1は生し尿、産業廃水等の有機性
廃水にして、特に高濃度有機性廃水、アンモニア
性窒素や有機性窒素を含有する窒素含有有機性廃
水などが好適である。
In the figure, reference numeral 1 indicates organic wastewater such as human waste or industrial wastewater, and highly concentrated organic wastewater, nitrogen-containing organic wastewater containing ammonia nitrogen or organic nitrogen, etc. are particularly suitable.

有機性廃水1は、先ず曝気反応槽2に廃水供給
ポンプP1にて加圧下で廃水供給管3を経て導入
される。曝気反応槽2内の廃水中には多量の好気
性微生物や通性嫌気性微生物が繁殖しており、こ
の繁殖のために酸素含有ガス、例えば空気が外部
のブロワBから空気供給管4を経て散気部材5か
ら廃水中に散気される。なお、散気部材5のほか
エジエクターなどを用いても良い。曝気反応槽2
は密閉されており、曝気反応槽2内の圧力は圧力
調整弁6にて大気圧より望ましくは、0.2〜3気
圧の加圧状態に調整される。このように曝気反応
槽2内は加圧状態に維持されるので、廃水に供給
される空気中の酸素は廃水中に多量に溶解するこ
ととなり、酸素使用効率が向上し、曝気反応槽2
内に高濃度で存在する微生物の繁殖に有効に利用
され、微生物による有機物の分解反応が著しく促
進される。なお、曝気反応槽2内の圧力は、廃水
の性状、曝気反応槽2内の汚泥濃度(微生物濃
度)に関係する汚泥浮上分離性などを考慮して決
定される。
The organic wastewater 1 is first introduced into the aeration reactor 2 via the wastewater supply pipe 3 under pressure by the wastewater supply pump P1 . A large amount of aerobic microorganisms and facultative anaerobic microorganisms are breeding in the wastewater in the aeration reaction tank 2, and for this breeding, oxygen-containing gas, such as air, is supplied from an external blower B through the air supply pipe 4. Aeration is diffused into the wastewater from the aeration member 5. Note that in addition to the air diffuser 5, an ejector or the like may be used. Aeration reaction tank 2
is hermetically sealed, and the pressure inside the aeration reaction tank 2 is adjusted by a pressure regulating valve 6 to a pressurized state of preferably 0.2 to 3 atm rather than atmospheric pressure. Since the inside of the aeration reaction tank 2 is maintained in a pressurized state in this way, a large amount of oxygen in the air supplied to the wastewater is dissolved in the wastewater, improving oxygen usage efficiency and increasing the pressure inside the aeration reaction tank 2.
It is effectively used for the propagation of microorganisms that exist in high concentration within the body, and the decomposition reaction of organic matter by microorganisms is significantly accelerated. Note that the pressure within the aeration reaction tank 2 is determined in consideration of the properties of wastewater, sludge flotation and separation properties related to the sludge concentration (microbial concentration) within the aeration reaction tank 2, and the like.

曝気反応槽2内で微生物による分離処理の施さ
れた処理混合液(微生物を含む)は逆止弁7を経
て大気圧下の汚泥分離槽8に導入される。この処
理混合液の汚泥分離槽8への導入には、曝気反応
槽2からの処理混合液を汚泥分離槽8内の液量が
減少すれば補充のために自動的に流入しうるよう
にすることが望ましい。この場合、汚泥分離槽8
内の液面を曝気反応槽2内の液面より高くなるよ
うに設定し、曝気反応槽2の圧力調整弁6を汚泥
分離槽8と曝気反応槽2との液面差にほゞ相当す
る圧力となるように調整すれば、汚泥分離槽8の
液量が減少すると、それにつれて曝気反応槽8か
ら処理混合液が流出してほゞ一定量に維持され
る。なお、曝気反応槽2と汚泥分離槽8との間の
配管に取付けた逆止弁7は処理混合液の不測の逆
流を防止するためのもので、必ずしも必要ではな
い。
The treated mixed liquid (containing microorganisms) that has been subjected to a separation process using microorganisms in the aeration reaction tank 2 is introduced into a sludge separation tank 8 under atmospheric pressure via a check valve 7. In order to introduce this treated mixed liquid into the sludge separation tank 8, the treated mixed liquid from the aeration reaction tank 2 can be automatically flowed in for replenishment when the liquid amount in the sludge separation tank 8 decreases. This is desirable. In this case, sludge separation tank 8
The liquid level in the aeration reaction tank 2 is set to be higher than the liquid level in the aeration reaction tank 2, and the pressure regulating valve 6 of the aeration reaction tank 2 is set to approximately correspond to the liquid level difference between the sludge separation tank 8 and the aeration reaction tank 2. If the pressure is adjusted so that the amount of liquid in the sludge separation tank 8 decreases, the treated mixed liquid flows out from the aeration reaction tank 8 and is maintained at a substantially constant amount. Note that the check valve 7 attached to the pipe between the aeration reaction tank 2 and the sludge separation tank 8 is provided to prevent unexpected backflow of the treated liquid mixture, and is not necessarily required.

汚泥分離槽8は大気圧下にあるため、加圧状態
にある曝気反応槽2からの処理混合液中の溶解ガ
スが両槽の差圧によつて微細気泡となり、処理混
合液中の汚泥(微生物を含む)は微細気泡により
高速で浮上分離される。なお、処理混合液中の溶
解ガスには、曝気反応槽2中で供給された空気の
ほか、微生物による有機物の分解で生ずる炭酸ガ
スや微生物による脱窒素反応によつて生ずる窒素
ガスなどがある。汚泥分離槽8における汚泥の浮
上分離率は、通常の廃水処理の場合のように必ず
しも高くなくて良く、むしろ安価なコストで効率
良く分離を行なうことができる利点がある。
Since the sludge separation tank 8 is under atmospheric pressure, the dissolved gas in the treatment mixture from the pressurized aeration reaction tank 2 becomes fine bubbles due to the pressure difference between the two tanks, and the sludge in the treatment mixture ( (including microorganisms) are floated and separated at high speed by microbubbles. In addition to the air supplied in the aeration reaction tank 2, dissolved gases in the treatment mixture include carbon dioxide gas generated by decomposition of organic matter by microorganisms, nitrogen gas generated by denitrification reaction by microorganisms, and the like. The flotation separation rate of sludge in the sludge separation tank 8 does not necessarily have to be as high as in normal wastewater treatment, but rather has the advantage that separation can be carried out efficiently at low cost.

汚泥分離槽8で浮上分離された汚泥は、汚泥返
送ポンプP2にて汚泥返送ライン9を経て曝気反
応槽2に返送され、曝気反応槽2内の微生物濃度
が高濃度に維持される。なお、一部の汚泥は余剰
汚泥として系外に排出され、また汚泥分離槽8内
に沈降した汚泥も必要に応じて曝気反応槽2へ返
送されるか、又は余剰汚泥として系外へ排出され
る。
The sludge floated and separated in the sludge separation tank 8 is returned to the aeration reaction tank 2 via the sludge return line 9 by the sludge return pump P2 , and the microorganism concentration in the aeration reaction tank 2 is maintained at a high concentration. Note that some of the sludge is discharged out of the system as surplus sludge, and the sludge that has settled in the sludge separation tank 8 is also returned to the aeration reaction tank 2 or discharged as surplus sludge to the outside of the system. Ru.

汚泥分離槽8からの低濃度汚泥混合液は循環ポ
ンプP3にて膜分離装置10に導入される。膜分
離装置10内には低濃度汚泥混合液と接触する多
数の膜が適宜の間隔をおいて配装されており、膜
の目詰りを防ぐために低濃度汚泥混合液と膜とが
相対移動するように膜に対して低濃度汚泥混合液
を流動させるか、又は低濃度汚泥混合液に対して
膜を回転運動させるなどの手段が施されている。
この膜としては液体は透過するが、微生物の透過
を阻止する特性を有するものにして、例えば限外
過膜、逆浸透膜、精密過膜などが使用され
る。膜分離を行なうにさいしては、前述のように
膜と液との相対移動を行なうと共に、膜の前後に
おける圧力差を生ぜしめることも必要であり、膜
の前方に配したポンプP3を循環用ポンプとする
場合には、膜の後方に配したポンプP4を減圧用
ポンプとして減圧状態を維持せしめ、膜の前方に
配したポンプP3を加圧用ポンプとする場合には
膜の後方のポンプP4は無くても良い。
The low concentration sludge mixture from the sludge separation tank 8 is introduced into the membrane separation device 10 by a circulation pump P3 . A large number of membranes that come into contact with the low concentration sludge mixture are arranged at appropriate intervals in the membrane separation device 10, and the low concentration sludge mixture and the membranes move relative to each other to prevent clogging of the membranes. In this way, means such as flowing a low-concentration sludge mixture through the membrane or rotating the membrane with respect to the low-concentration sludge mixture are used.
This membrane is one that allows liquid to pass through but has the property of blocking the passage of microorganisms, such as ultrafiltration membranes, reverse osmosis membranes, precision filtration membranes, and the like. When performing membrane separation, it is necessary to perform relative movement between the membrane and the liquid as described above, and also to create a pressure difference before and after the membrane. If the pump is used as a pressure pump, the pump P 4 placed behind the membrane is used as a depressurizing pump to maintain the reduced pressure state, and if the pump P 3 placed in front of the membrane is used as the pressurizing pump, the pump P 4 placed behind the membrane is used as a pressurizing pump. Pump P 4 may be omitted.

膜分離装置10を透過した処理水は導管を経て
系外に排出され、膜分離装置10からの未透過濃
縮残液は膜に過度の負荷を与えることなく導管を
経て曝気反応槽2に返送され、曝気反応槽2内の
微生物濃度を高濃度に維持すると共に、自己消化
を促進し、余剰汚泥の発生を僅少となし、廃水中
の有機物にも繰返し微生物による酸化処理を施す
ことにより処理効率を高めることができる。
The treated water that has permeated through the membrane separator 10 is discharged out of the system through a conduit, and the unpermeated concentrated residual liquid from the membrane separator 10 is returned to the aeration reaction tank 2 through the conduit without putting an excessive load on the membrane. , maintains the microbial concentration in the aeration reaction tank 2 at a high concentration, promotes self-digestion, minimizes the generation of surplus sludge, and improves treatment efficiency by repeatedly applying oxidation treatment to organic matter in wastewater using microorganisms. can be increased.

以上の処理工程において、膜分離装置10への
供給液量は予定の処理水(透過液)量の1〜5倍
程度とし、汚泥分離槽8から曝気反応槽2への返
送量は浮上濃縮汚泥濃度によつて異なるが、予定
の処理水量の0.1〜2倍とすることが望ましい。
In the above treatment process, the amount of liquid supplied to the membrane separator 10 is approximately 1 to 5 times the planned amount of treated water (permeate), and the amount returned from the sludge separation tank 8 to the aeration reaction tank 2 is the floated concentrated sludge. Although it varies depending on the concentration, it is desirable to set the amount to 0.1 to 2 times the planned amount of water to be treated.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上の説明から明らかなように、密
閉曝気反応槽内を加圧下に維持して酸素溶解濃度
を高め、微生物の活性を増進し、コンパクトな装
置で高速処理を可能とし、この処理により得られ
た処理混合液中の汚泥は廃水中に溶解したガスの
圧力差に基づく微細気泡化を利用した浮上分離に
より安価に高速で分離され、曝気反応槽に返送さ
れるので、曝気反応槽内の微生物濃度を高濃度に
維持し、高速処理および余剰汚泥の発生の抑制を
可能とし、さらに大半の汚泥が分離された低濃度
汚泥混合液が膜分離装置に導入されるので、高濃
度の汚泥混合液を膜分離する場合に比して著しく
安価な動力費(汚泥分離の費用を含めても)で高
速処理を可能とするなどの実用上における優れた
作用効果を奏しうるものである。
As is clear from the above description, the present invention maintains the inside of a closed aeration reactor under pressure to increase the dissolved oxygen concentration and promote the activity of microorganisms, and enables high-speed processing with a compact device. The sludge in the treated mixed liquid obtained by It maintains a high concentration of microorganisms in the sludge, enabling high-speed processing and suppressing the generation of excess sludge. Furthermore, since the low-concentration sludge mixture from which most of the sludge has been separated is introduced into the membrane separation device, high-concentration Compared to membrane separation of a sludge mixture, this method can provide excellent practical effects such as enabling high-speed treatment at significantly lower power costs (even including the cost of sludge separation).

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る有機性廃水の処理方法の一
実施例を示す概略説明図である。 1:有機性廃水、2:曝気反応槽、5:散気部
材、6:圧力調整弁、8:汚泥分離槽、10:膜
分離装置。
The drawing is a schematic explanatory diagram showing one embodiment of the method for treating organic wastewater according to the present invention. 1: organic wastewater, 2: aeration reaction tank, 5: aeration member, 6: pressure regulating valve, 8: sludge separation tank, 10: membrane separation device.

Claims (1)

【特許請求の範囲】[Claims] 1 有機性廃水を密閉曝気反応槽内にて加圧下で
酸素含有ガスを曝気せしめながら微生物処理し、
この処理混合液を大気圧下の汚泥分離槽に導入し
て大気圧との差圧によつて生ずる微細気泡にて浮
上濃縮汚泥と低濃度汚泥混合液とに分離し、浮上
濃縮汚泥を密閉曝気反応槽に返送する一方、低濃
度汚泥混合液を膜分離装置にて透過分離して透過
液を系外に排出し、未透過濃縮残液を密閉曝気反
応槽に返送することを特徴とする有機性廃水の処
理方法。
1 Organic wastewater is treated with microorganisms while aerating oxygen-containing gas under pressure in a closed aeration reaction tank,
This treated mixed liquid is introduced into a sludge separation tank under atmospheric pressure, where it is separated into a floated thickened sludge and a low-concentration sludge mixture using fine bubbles generated by the pressure difference between the floated and concentrated sludge, and the floated thickened sludge is sealed and aerated. While returning to the reaction tank, the low-concentration sludge mixture is permeated and separated in a membrane separator, the permeated liquid is discharged outside the system, and the unpermeated concentrated residual liquid is returned to the closed aeration reaction tank. How to treat wastewater.
JP60086251A 1985-04-24 1985-04-24 Treatment of organic waste water Granted JPS61245899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086251A JPS61245899A (en) 1985-04-24 1985-04-24 Treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086251A JPS61245899A (en) 1985-04-24 1985-04-24 Treatment of organic waste water

Publications (2)

Publication Number Publication Date
JPS61245899A JPS61245899A (en) 1986-11-01
JPH0232960B2 true JPH0232960B2 (en) 1990-07-24

Family

ID=13881599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086251A Granted JPS61245899A (en) 1985-04-24 1985-04-24 Treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPS61245899A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2740613B2 (en) * 1993-03-18 1998-04-15 日本メムテック株式会社 Membrane treatment method
CN100363271C (en) * 2002-12-31 2008-01-23 中国科学院生态环境研究中心 Bubble-free oxygen supply film biological reactor
CN100453480C (en) * 2005-11-21 2009-01-21 桂林电子工业学院 Inner aeration type aeration method and device
JP4709792B2 (en) * 2007-03-14 2011-06-22 株式会社東芝 Wastewater treatment system

Also Published As

Publication number Publication date
JPS61245899A (en) 1986-11-01

Similar Documents

Publication Publication Date Title
JP4088630B2 (en) Wastewater treatment equipment
JP4632356B2 (en) Biological nitrogen removal method and system
HK1076618A1 (en) Process and assembly for the treatment of waste water on ships
GB1603299A (en) Process and apparatus for the aerobic biological treatment of waste water
JPH0232960B2 (en)
JPS61111198A (en) Apparatus for producing ultra-pure water
JP3383504B2 (en) Organic wastewater treatment method and treatment device
US20050051482A1 (en) Flood and drain wastewater treatment system and associated methods
KR102299760B1 (en) High concentrated organic wastewater treatment system
JPH09187785A (en) Recovery and purification device for drain
JPH0312957B2 (en)
JPH07214056A (en) Device for treating waste water
CA1098224A (en) Waste water treatment
JP2947684B2 (en) Nitrogen removal equipment
JPS6048196A (en) Method for removing phosphorus from organic waste liquid
JPS6218232B2 (en)
JPH0630784B2 (en) Treatment method for human waste
JP2007190491A (en) Method and apparatus for treating nitrogen-containing wastewater
JPH0568998A (en) Treatment of waste water
JPH0659478B2 (en) Organic wastewater treatment method
JPH06328099A (en) Soil water treating device
JPS62225296A (en) Biological nitrification and denitrification device
JPS59109293A (en) Biological denitrification method of waste water
JPS5845919B2 (en) Water treatment method for denitrification
JPH0785800B2 (en) Water treatment equipment