JPS61241482A - Vane type compressor - Google Patents

Vane type compressor

Info

Publication number
JPS61241482A
JPS61241482A JP8380685A JP8380685A JPS61241482A JP S61241482 A JPS61241482 A JP S61241482A JP 8380685 A JP8380685 A JP 8380685A JP 8380685 A JP8380685 A JP 8380685A JP S61241482 A JPS61241482 A JP S61241482A
Authority
JP
Japan
Prior art keywords
vane
rotor
oil
spring
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8380685A
Other languages
Japanese (ja)
Inventor
Tatsuhisa Taguchi
辰久 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8380685A priority Critical patent/JPS61241482A/en
Publication of JPS61241482A publication Critical patent/JPS61241482A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0845Vane tracking; control therefor by mechanical means comprising elastic means, e.g. springs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To prevent vane noise to enable smooth running and achieve the attainment of high efficiency of the whole refrigerating cycle due to the reduction in the filling quantity of refrigerator oil by providing a ring-form fitting and a spring which provide vanes with elastic force in a prescribed position of vane in the interior of a rotor. CONSTITUTION:It is so constituted that a ring-form fitting 18 which is concentric with a rotor 12 and a spring 19 whose one end is suspended on the ring-form fitting 18 and the other end on the rotor 12 are provided in the rotor 12, and that the back of vane 14 is pressed by the ring-form fitting 18 approximately for the zone in which the vane 14 passes the place where the rotor 12 is in close vicinity to a cylinder 11. Thus, the vane noise due to vane jump can be prevented, and the smooth running of the vanes 14 can be enabled. In other words, this provides a secure vane noise prevention means not relying on a refrigerator, and simple constitution. Further, since refrigerator oil for the prevention of vane noise becomes unnecessary and a great extent of reduction in the filling quantity of oil can be obtained, the enhancement in the filling quantity of oil can be obtained, the enhancement in the efficiency of whole refrigerating cycle can be achieved and further, since the space for filling refrigerator oil can be reduced, the compressor itself can be made lightweight as well as miniaturized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動車冷房用等に供されるベーン式コンプレッ
サの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in a vane compressor used for cooling automobiles and the like.

従来の技術 近年、自動車の空調装置は安全性、快適性の面から今や
必需品であシ、自動車の高級化、高性能化と共に、空調
装置における高性能化はもちろん、静粛性、高効率化等
の要求が高まっている。とりわけ、小型、静粛性を大き
な特徴とするベーン式コンプレッサは自動車のFF化等
のニーズともマツチし、その数は年々増えつつある。
Conventional technology In recent years, air conditioning systems for automobiles have become a necessity in terms of safety and comfort.As automobiles become more sophisticated and high-performance, air conditioning systems are becoming more efficient, quieter, and more efficient. Demand is increasing. In particular, vane compressors, which are characterized by their small size and quietness, meet the needs of automobiles such as front-wheel drive, and their number is increasing year by year.

ベーン式コンプレッサは古くからその構造は良く知られ
、特有の問題とされてきたべ−7のチャタリング現象は
、以下に述べる方法で解決されている。真円または楕円
状シリンダのマルチベーンタイプでは、ベーンの背部空
間の圧縮過程を利用した油の閉じ込みによる背圧増加法
がある(例えば冷凍空調技術’ 82−11 、Vol
 33,4393.P47)。
The structure of the vane type compressor has been well known for a long time, and the chattering phenomenon, which has been regarded as a unique problem, has been solved by the method described below. For multi-vane type cylinders with perfect circular or elliptical cylinders, there is a method of increasing back pressure by trapping oil using the compression process of the back space of the vanes (for example, Refrigeration and Air Conditioning Technology' 82-11, Vol.
33,4393. P47).

第6図はその具体例で、以下にその原理を説明する。FIG. 6 shows a specific example of this, and the principle thereof will be explained below.

第6図において、1は円筒状内壁を有するシリンダで、
その内側に偏心して配設された真円のロータ2がある。
In FIG. 6, 1 is a cylinder having a cylindrical inner wall;
There is a perfectly circular rotor 2 that is eccentrically arranged inside the rotor.

ロータ2には複数個の放射状スリット3があり、その中
をヘ−7(4a、4b、4c )が出没自在に挿入され
ている。図中、A、Hの位置のべ一74a、4bの背後
空間!a、5bは側板(図示せず)に設けられた馬蹄形
の油溝6に連通し、ベー74a、4bは油圧にょシシリ
ンダ1の内壁に押圧される。Cの位置のべ一74cの背
後空間5cは、油溝6には連通せず、ベーン4cのスリ
ット3内への進入による圧縮作用により、ベーン4Cの
背後空間6cの油圧はロータ2の回転と共に上昇する。
The rotor 2 has a plurality of radial slits 3, into which the grooves 7 (4a, 4b, 4c) are inserted so as to be freely retractable. In the figure, the space behind the benches 74a and 4b at positions A and H! a, 5b communicate with a horseshoe-shaped oil groove 6 provided in a side plate (not shown), and bees 74a, 4b are pressed against the inner wall of the hydraulic cylinder 1. The space 5c behind the bevel 74c at position C does not communicate with the oil groove 6, and due to the compression effect caused by the entry of the vane 4c into the slit 3, the oil pressure in the space 6c behind the vane 4C increases with the rotation of the rotor 2. Rise.

この機構により、吐出孔7からロータ2とシリンダ1の
近接点8付近で発生するベーンのジャンプはシリンダ1
内のガス圧縮による圧力上昇に対し、ベーン背後空間5
c内の油圧高揚により打勝たせ、防止されている。
With this mechanism, the vane jump that occurs near the point 8 where the rotor 2 and cylinder 1 are close to each other from the discharge hole 7 can be avoided.
The space behind the vane 5
This is overcome and prevented by increasing the oil pressure in c.

また、別の方法として、ロータを買通するベーンと、特
殊形状のシリンダとを組合せた、いわゆるスルースロッ
トタイプも実用化されている。この方法は、高い加工精
度と共に高粘度の冷凍機油を使い、ベーンとシリンダ内
壁のシールを実現している。
In addition, as another method, a so-called through-slot type, which combines vanes that pass through the rotor and a specially shaped cylinder, has also been put into practical use. This method uses high processing precision and high viscosity refrigeration oil to achieve a seal between the vane and the cylinder inner wall.

発明が解決しようとする問題点 しかしながら、両者の方法とも、冷凍機油に依存した構
成であり、冷凍機油が不充分ないし、粘度が低下した場
合にはベーン音の発生、効率の低下、吐出濃度の上昇な
どの問題を生ずる。特に、冷凍サイクル全体の効率の向
上には冷凍機油の量を減少させるか、粘度の低下の方向
があり、高効率化の障害となっている。
Problems to be Solved by the Invention However, both methods rely on refrigerating machine oil, and if there is insufficient refrigerating machine oil or its viscosity decreases, vane noise may occur, efficiency may decrease, and discharge concentration may decrease. This causes problems such as rising. In particular, in order to improve the efficiency of the entire refrigeration cycle, the amount of refrigerating machine oil must be reduced or the viscosity must be lowered, which is an obstacle to increasing efficiency.

問題点を解決するための手段 本発明は上記欠点を解消するものであり、ベーンのロー
タ内の所定の位置で弾性力をベーンに与える環状金具及
びバネをロータに設けることによシ、ベーン式コンプレ
ッサの更なる静粛化と、冷凍機油の充てん量の削減によ
−る冷凍サイクル全体の高効率化を同時に図ることを目
的とし、このため円筒状内壁を有するシリンダと、前記
シリンダ内に配設され、複数の放射状スリットを有する
ロータと、前記スリット内を滑動するベーンによって構
成されるベーン式コンプレッサにおいて、前記ロータ内
に、ロータと同心の環状金具と、一方が前記環状金具に
、他方がロータに懸架されたバネを装備したものである
Means for Solving the Problems The present invention solves the above-mentioned drawbacks by providing the rotor with an annular fitting and a spring that apply elastic force to the vane at a predetermined position within the rotor. The aim is to simultaneously make the compressor even quieter and to increase the efficiency of the entire refrigeration cycle by reducing the amount of refrigeration oil filled.To this end, a cylinder with a cylindrical inner wall and a A vane compressor comprising a rotor having a plurality of radial slits and a vane that slides within the slits, wherein the rotor includes an annular fitting concentric with the rotor, one of which is attached to the annular fitting, and the other of which is attached to the rotor. It is equipped with a spring suspended from.

作  用 ベーンがロータとシリンダの近接部を通過する前後の走
行区間で、ベーン背後を前記環状金具で押圧せしめる構
成であり、油に頼らない確実な方法であると共に、冷凍
機油の充てん量の削減が出来るなど、多くの利点を有す
る。
The structure is such that the back of the vane is pressed by the annular metal fitting in the travel section before and after the vane passes near the rotor and cylinder, which is a reliable method that does not rely on oil and reduces the amount of refrigerating machine oil filled. It has many advantages, such as the ability to

実施例 以下に、本発明の一実施例を第1〜6図にもとづいて説
明する。第1図において、11は真円で円筒状内壁を有
するシリンダで、内部には近接部11aで近接して配設
されたロータ12がある。
EXAMPLE An example of the present invention will be described below with reference to FIGS. 1 to 6. In FIG. 1, a cylinder 11 is a perfect circle and has a cylindrical inner wall, and inside thereof there is a rotor 12 disposed adjacently at a proximal portion 11a.

ロータ12には複数の放射状スリット13があり、その
中をベーン14が滑動する。ペー714は両端に段付部
15が設けである。さらにロータ12の両側面には内ぐ
り部16があり、その中には、ペー714に対応した押
接部17をもち、ロータと同心の環状金具18と、一端
が環状金具18に、地対がロータ12に懸架されたコイ
ル状のバネ19が装備されている。
The rotor 12 has a plurality of radial slits 13 through which the vanes 14 slide. The page 714 is provided with stepped portions 15 at both ends. Further, there is a hollow part 16 on both sides of the rotor 12, which has a pressing part 17 corresponding to the page 714, an annular metal fitting 18 concentric with the rotor, and one end of which is connected to the annular metal fitting 18, and has a pressing part 17 corresponding to the page 714. A coil spring 19 suspended from the rotor 12 is installed.

上i成において、動作原理を説明すると、べ一714は
、近接部11aに近づくにつれ、スリット13の中に徐
々に没入してゆくが、近接部11aの前方の所定角度で
、前記環状金具18の押圧部17と、ベーン14の段付
部15は接触し、以降近接部11aまで、ベーン14は
没入運動を継続するため、バネ19は捩られ、ベーン1
4の没入ストロークに対応したバネ力が発生し、ベーン
14はシリンダ壁に押圧される。一方、シリンダ11の
内部では、ロータ12の回転と共に、吸入された冷媒ガ
スは圧縮され、ペー714が近接部11aに近づくにつ
れ、圧力が上昇するため、ペー714は先端部にその圧
力を受け、スリット13内に没入する方向に押圧される
。ゆえに、ペー714がシリンダ11の内壁から離脱す
ることなく摺動するためには、前記バネ圧は少なくとも
、上述したシリンダ内ガス圧とベーン背後圧の圧力差以
上でなければならない。(むろん、遠心力。
To explain the principle of operation in the above formation, the bead 714 gradually sinks into the slit 13 as it approaches the proximal part 11a. The pressing portion 17 of the vane 14 comes into contact with the stepped portion 15 of the vane 14, and since the vane 14 continues its retracting movement up to the proximal portion 11a, the spring 19 is twisted and the vane 1
A spring force corresponding to the retraction stroke of 4 is generated, and the vane 14 is pressed against the cylinder wall. On the other hand, inside the cylinder 11, the sucked refrigerant gas is compressed as the rotor 12 rotates, and as the page 714 approaches the proximal part 11a, the pressure increases, so the page 714 receives that pressure at the tip, It is pressed in the direction of sinking into the slit 13. Therefore, in order for the page 714 to slide without coming off the inner wall of the cylinder 11, the spring pressure must be at least equal to or higher than the pressure difference between the cylinder internal gas pressure and the vane back pressure. (Of course, centrifugal force.

慣性力等も作用するが、低速回転時には無視できるオー
ダーである。) このように、一対の環状金具とバネにより、複数のベー
ンを必要な区間のみ有効にバネ圧を作用させる構造であ
り、取付の為の形状の拡大をすることなく、かつ、少な
い部品点数で構成されている。
Although inertial force etc. also act, it is of the order that can be ignored at low speed rotation. ) In this way, the structure uses a pair of annular metal fittings and a spring to effectively apply spring pressure to only the necessary sections of multiple vanes, without enlarging the shape for installation, and with a small number of parts. It is configured.

この実施例では、真円のシリンダの場合を示したが、楕
円状のシリンダの場合でも同様に構成できる。さらには
、バネとしてコイル状の線バネを示したが、板状のつる
巻状バネにし、懸架部をロータの軸部に設ゆても良い。
In this embodiment, a case of a perfectly circular cylinder is shown, but the same structure can be applied to an elliptical cylinder. Further, although a coiled wire spring is shown as the spring, a plate-shaped helical spring may be used, and the suspension portion may be provided on the shaft of the rotor.

また、環状金具とバネは一対でなく、片側のみでも原理
上は同じである。
Further, the principle is the same even if the annular fitting and the spring are not a pair, but only one side.

発明の効果 以上のように、本発明では、円筒状内壁を有するシリン
ダと、前記シリンダ内に配設され、複数の放射状スリッ
トを有するロー夛と、前記スリット内を滑動するベーン
からなるベーン式コンプレッサにおいて、前記ロータ内
にロータと同心の環状金具と、一方が環状金具に、他方
がロータに懸架lされたバネを装備し、ベーンがロータ
とシリンダの近接部を通過する前後の区間、前記環状金
具でベーン背後を押圧せしめる構成であり、冷凍機油に
頼らない確実なベーン音防止手段であると共K、複数の
ベーンを最低1ケづつの環状金具とバネにより押圧する
シンプルな構成である。さらには、冷凍機油は、ベーン
音防止のためには必要がなくなシ、大幅な充ても量の削
減が出来るため、冷凍サイクル全体の効率の向上が図れ
ると共に、コンプレッサ自体も冷凍機油光てんの為のス
ペースの縮小ができ、小型・軽量化ができるなど、その
波及効果は大なるものがある。
Effects of the Invention As described above, the present invention provides a vane compressor comprising a cylinder having a cylindrical inner wall, a row member disposed within the cylinder and having a plurality of radial slits, and a vane sliding within the slit. The rotor is equipped with an annular metal fitting concentric with the rotor, and a spring suspended on one side by the annular metal fitting and on the other side by the rotor, and the area before and after the vane passes near the rotor and the cylinder, It has a configuration in which the back of the vane is pressed by a metal fitting, and is a reliable vane noise prevention means that does not rely on refrigerating machine oil.It is also a simple configuration in which a plurality of vanes are pressed by at least one annular metal fitting and a spring. Furthermore, refrigeration oil is no longer needed to prevent vane noise, and the amount of oil required can be significantly reduced, improving the efficiency of the entire refrigeration cycle. The ripple effects are significant, such as reducing the amount of space required for the device, making it smaller and lighter, and so on.

【図面の簡単な説明】[Brief explanation of drawings]

ts1図は本発明のベーン式コンプレッサの圧縮部の横
断面図、第2図は第1図の縦断面図である。 第3図は本発明の一実施例のベーン式コンプレッサに装
備される環状金具の斜視図、第4図はバネの斜視図、第
5図はベーンの斜視図である。第6図は従来のべ−7式
コンプレッサの圧縮部の横断面図である。 12・・・・・・C2−タ、14・・・・・・ベーン、
18・・・・・・環状金具、19・・・・・・バネ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第3
図 第4図
ts1 is a cross-sectional view of the compression section of the vane compressor of the present invention, and FIG. 2 is a vertical cross-sectional view of FIG. 1. FIG. 3 is a perspective view of an annular fitting installed in a vane compressor according to an embodiment of the present invention, FIG. 4 is a perspective view of a spring, and FIG. 5 is a perspective view of a vane. FIG. 6 is a cross-sectional view of the compression section of a conventional Ba-7 type compressor. 12...C2-ta, 14...Vane,
18... Annular metal fitting, 19... Spring. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 3
Figure 4

Claims (1)

【特許請求の範囲】[Claims] 円筒状内壁を有するシリンダと、前記シリンダ内に配設
され、複数の放射状スリットを有するロータと、前記ス
リット内を滑動する複数のベーンを有するベーン式コン
プレッサにおいて、前記ロータ内に、このロータと同心
の環状金具を設けると共に一方が前記環状金具に、他方
が前記ロータに懸架されたバネを装備し、前記環状金具
は前記ベーンの後端部と当接し、前記ベーンのロータ内
への没入時に前記バネの弾性力で前記ベーンをシリンダ
内壁へ押圧する構造としたベーン式コンプレッサ。
A vane type compressor having a cylinder having a cylindrical inner wall, a rotor disposed within the cylinder and having a plurality of radial slits, and a plurality of vanes sliding within the slits, the rotor having a plurality of vanes concentric with the rotor. an annular metal fitting is provided, and one side is equipped with a spring suspended on the annular metal fitting and the other side is suspended on the rotor, the annular metal fitting abuts the rear end of the vane, and when the vane is retracted into the rotor, the annular metal fitting A vane compressor having a structure in which the vane is pressed against the inner wall of the cylinder by the elastic force of a spring.
JP8380685A 1985-04-19 1985-04-19 Vane type compressor Pending JPS61241482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8380685A JPS61241482A (en) 1985-04-19 1985-04-19 Vane type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8380685A JPS61241482A (en) 1985-04-19 1985-04-19 Vane type compressor

Publications (1)

Publication Number Publication Date
JPS61241482A true JPS61241482A (en) 1986-10-27

Family

ID=13812906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8380685A Pending JPS61241482A (en) 1985-04-19 1985-04-19 Vane type compressor

Country Status (1)

Country Link
JP (1) JPS61241482A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772192A (en) * 1985-10-11 1988-09-20 Bayerische Motoren Werke Aktiengelleschaft Vane-type compressor
US6896502B1 (en) * 2004-07-09 2005-05-24 1564330 Ontario Inc. Fluid cannon positive displacement pump
US8602757B2 (en) 2009-06-25 2013-12-10 Albert W. Patterson Rotary device
WO2014181141A1 (en) * 2013-05-07 2014-11-13 ZANATI, Géza Universal side-priming pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772192A (en) * 1985-10-11 1988-09-20 Bayerische Motoren Werke Aktiengelleschaft Vane-type compressor
US6896502B1 (en) * 2004-07-09 2005-05-24 1564330 Ontario Inc. Fluid cannon positive displacement pump
US8602757B2 (en) 2009-06-25 2013-12-10 Albert W. Patterson Rotary device
WO2014181141A1 (en) * 2013-05-07 2014-11-13 ZANATI, Géza Universal side-priming pump

Similar Documents

Publication Publication Date Title
JP5828863B2 (en) Gas compressor
US5370156A (en) Reduced noise valve stop
JP3024743B2 (en) Rotary compressor
US4501537A (en) Vane compressor having an endless camming surface minimizing torque fluctuations
JPS61241482A (en) Vane type compressor
US20020121747A1 (en) Low stress seal
US5396930A (en) Dual radius valve stop
CN204663878U (en) Scroll compressor and air-conditioning system
US4865527A (en) Lubrication of sealed compressors
JPS61106992A (en) Rotary compressor
JPS62684A (en) Vane type compressor
US20110135526A1 (en) Rotary compressor
US4700740A (en) Discharge valve
CN111779673A (en) Coaxial internal gear pump of motor
JPS62153586A (en) Vane type compressor
JPH0217195Y2 (en)
JPH01224490A (en) Gas compressor
CN219344968U (en) Pump body assembly and compressor
CN115388006A (en) Pump body subassembly and compressor
CN100375846C (en) Anti-reverse device of vortex compressor
CN110206728B (en) Scroll compressor and air conditioner
CN218817008U (en) Oil blocking noise elimination structure of rotor assembly, compressor and air conditioner
US3235172A (en) Vacuum pump
KR100469462B1 (en) Fixed scroll for scroll compressor
KR100286313B1 (en) Compressor