JPS61240844A - Magnetizing method for magnet for dc motor - Google Patents

Magnetizing method for magnet for dc motor

Info

Publication number
JPS61240844A
JPS61240844A JP7939385A JP7939385A JPS61240844A JP S61240844 A JPS61240844 A JP S61240844A JP 7939385 A JP7939385 A JP 7939385A JP 7939385 A JP7939385 A JP 7939385A JP S61240844 A JPS61240844 A JP S61240844A
Authority
JP
Japan
Prior art keywords
yoke
magnet
ring
yokes
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7939385A
Other languages
Japanese (ja)
Inventor
Masami Oguriyama
小栗山 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP7939385A priority Critical patent/JPS61240844A/en
Publication of JPS61240844A publication Critical patent/JPS61240844A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To increase the quantity of magnetic flux and magnetize a magnet in a sine waveform, by forming the space dimension between the respective convex yokes of a magnetizing yoke, extremely smaller than the width of the convex yoke, and by setting the distance between the magnetizing yoke and the magnet, within a specified limit. CONSTITUTION:When the inner peripheral face and the end face of a ring magnet 8 are magnetized at the same time by an inner peripheral face magnetizing yoke 16 and an end face magnetizing yoke 17, then the space dimension between the respective convex yokes 18a-18d of the inner peripheral face magnetizing yoke 16 is formed much smaller than the width in the peripheral direction of the respective yokes 18a-18d, and the space dimension between the respective segment-like yokes 19a-19d of the end face magnetizing yoke 17 is also formed much smaller than the width of the respective yokes 19a-19d. Besides, the distances T1, T2 between the ring magnet 8 and the respective magnetizing yokes 16, 17 are respectively set to be 1mm<=T1<=5mm, 1mm<=T2<=3 mm. As the result, the magnetic flux density can be distributed in a sine waveform, and the flux quantity can be sufficiently increased.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、直流モータ用マグネットの着磁方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of magnetizing a magnet for a DC motor.

(従来の技術) 第2図は、直流モータの1つであるDCブラシレスモー
タの断面図である。同図において、1はファン等が設け
られているロータ側ケース、2はロータ、3は界磁用マ
グネットを構成するリング状マグネ・ント(ロータマグ
ネット)、4はステータ、5はリング状マグネット3の
内周面側に位置決めされたホールIC16はステータ4
の巻線(4極の場合、4つある)に適切な位相を持つ電
流を流す制御をする駆動回路が設けられている駆動回路
基盤、および1°はステータ側ケースである。
(Prior Art) FIG. 2 is a sectional view of a DC brushless motor, which is one type of DC motor. In the figure, 1 is a rotor side case in which a fan etc. are installed, 2 is a rotor, 3 is a ring-shaped magnet (rotor magnet) constituting a field magnet, 4 is a stator, and 5 is a ring-shaped magnet 3. The Hall IC 16 positioned on the inner peripheral surface side of the stator 4
The drive circuit board is provided with a drive circuit that controls the flow of current with an appropriate phase through the windings (in the case of 4 poles, there are four), and 1° is the stator side case.

リング状マグネット3としては、例えば、第3図に示す
4極のものが用いられる。第3図(a)および(b)は
それぞれ、リング状マグネット3の平面図および正面図
である。リング状マグネット3の内周面7はステータに
適当な磁束量の界磁を与えるために、図示のように着磁
されている。この着磁を行なうためには、第5図に示す
ように、硬磁性体材料で形成されたリング状磁石8の内
周面内に挿入された内周面磁化ヨーク9が用いられる。
As the ring-shaped magnet 3, for example, a four-pole magnet shown in FIG. 3 is used. FIGS. 3(a) and 3(b) are a plan view and a front view of the ring-shaped magnet 3, respectively. The inner circumferential surface 7 of the ring-shaped magnet 3 is magnetized as shown in the figure in order to provide a field with an appropriate amount of magnetic flux to the stator. In order to perform this magnetization, as shown in FIG. 5, an inner circumferential surface magnetization yoke 9 inserted into the inner circumferential surface of a ring-shaped magnet 8 made of a hard magnetic material is used.

内周面磁化ヨーク9は4極着磁を行なうために、4つの
凸状ヨーク9a〜9dを有する。特にこの着磁方法にお
いては、飽和磁化を得るために、各々の凸状ヨーク9a
〜9dの頂部表面とリング状磁石8の内周面との間の空
隙が可能な限り小さくなるように、磁化ヨーク9が設計
されている。また、各凸状ヨークのヨーク幅1.と隣接
する凸状ヨーク間の空隙の輻t2は、はぼ1対1となる
ように設定されている。そして、凸状ヨーク9a〜9d
に巻回された巻線10を図示する方向に通電することに
より、第3図に示すリング状マグネット3が得られる。
The inner peripheral surface magnetization yoke 9 has four convex yokes 9a to 9d for performing quadrupole magnetization. Particularly in this magnetization method, in order to obtain saturation magnetization, each convex yoke 9a
The magnetizing yoke 9 is designed such that the air gap between the top surface of ~9d and the inner peripheral surface of the ring-shaped magnet 8 is as small as possible. In addition, the yoke width of each convex yoke is 1. The radius t2 of the gap between adjacent convex yokes is set to be approximately 1:1. And convex yokes 9a to 9d
By applying current to the winding 10 wound in the direction shown in the figure, a ring-shaped magnet 3 shown in FIG. 3 is obtained.

このようにして構成されるDCブラシレスモータの動作
について説明すると、リング状マグネット3はステータ
4に対し、界磁のための磁束を与える。一方、ステータ
4の4つのコイルには、駆動回路基盤6から位相制御さ
れた電流が供給される。この結果、リング状マグネット
3からの磁束とステータ4からの磁束との磁気的作用に
より、リング状マグネット3は回転する。この状態にお
いて、リング状マグネット3の内周面側に位置決めされ
ているホールIC5は、リング状マグネット3からのも
れ磁束を検知し、駆動回路基盤6に与える。駆動回路基
盤6は検知されたもれ磁束に基づきリング状マグネット
3の回転角位置を検出し、ステータのコイルに流す電流
の位相を制御する。
The operation of the DC brushless motor constructed in this way will be described. The ring-shaped magnet 3 provides the stator 4 with magnetic flux for a magnetic field. On the other hand, the four coils of the stator 4 are supplied with phase-controlled current from the drive circuit board 6. As a result, the ring-shaped magnet 3 rotates due to the magnetic action of the magnetic flux from the ring-shaped magnet 3 and the magnetic flux from the stator 4. In this state, the Hall IC 5 positioned on the inner peripheral surface side of the ring-shaped magnet 3 detects leakage magnetic flux from the ring-shaped magnet 3 and applies it to the drive circuit board 6. The drive circuit board 6 detects the rotation angle position of the ring-shaped magnet 3 based on the detected leakage magnetic flux, and controls the phase of the current flowing through the stator coil.

しかしながら、上述した第3図に示すリング状マグネッ
ト3を用いた場合、ホールIC5の位置はリング状マグ
ネット3からのもれ磁束を検知するために、リング状マ
グネット3の内周面側にしなければならず、構造が複雑
となってしまう。しかも、もれ磁束を検知する構成のた
め、安定した位置検出ができないという問題点を有する
However, when using the ring-shaped magnet 3 shown in FIG. Otherwise, the structure becomes complicated. Furthermore, since the configuration detects leakage magnetic flux, there is a problem that stable position detection cannot be performed.

この問題点を解決するために、内周面のみに着磁したリ
ング状マグネット3に代えて、ホールIC駆動用として
軸方向端面にも着磁したリング状マグネット3を用いる
ことが提案されている。この種のリング状マグネットを
第4図に示す。同図において、リング状マグネットll
の軸方向端面12には、内周面に着磁される磁極と同一
の磁極が着磁されている。このリング状マグネット11
を第2図のリング状マグネット3に代えて用いることに
より、ホールIC5’ を第2図の破線で示すように、
リング状マグネット[1の端面下に位置決めすることが
でき、前記問題点は解消される。
In order to solve this problem, it has been proposed to use a ring-shaped magnet 3 that is also magnetized on the axial end surface for driving the Hall IC instead of the ring-shaped magnet 3 that is magnetized only on the inner peripheral surface. . This type of ring-shaped magnet is shown in FIG. In the same figure, ring-shaped magnet ll
The axial end face 12 of is magnetized with the same magnetic pole as the magnetic pole magnetized on the inner peripheral surface. This ring-shaped magnet 11
By using the ring-shaped magnet 3 in place of the ring-shaped magnet 3 in FIG. 2, the Hall IC 5' becomes as shown by the broken line in FIG.
It can be positioned under the end face of the ring-shaped magnet [1, and the above problem is solved.

ここで、このリング状マグネット11の着磁は、前述し
た内周面磁化ヨーク9と第6図に示す端面磁化ヨークを
用いて同時に行なわれる。第6図は端面磁化ヨークの要
部を示す底面図である。図示の端面磁化ヨーク13は4
極着磁用であって、4つのセグメント状ヨーク14 a
−16dを有し、各セグメント状ヨークには巻線15(
図ではヨーク14dに巻回された巻線のみを示す)が巻
回されている。
Here, the ring-shaped magnet 11 is magnetized simultaneously using the inner circumferential surface magnetizing yoke 9 described above and the end surface magnetizing yoke shown in FIG. FIG. 6 is a bottom view showing the main parts of the end face magnetization yoke. The illustrated end face magnetization yoke 13 has four
Four segment-shaped yokes 14a for polar magnetization
-16d, and each segmented yoke has a winding 15 (
In the figure, only the winding wire wound around the yoke 14d is shown).

゛また、各セグメント状ヨークのヨーク幅t3と隣接す
るセグメント状ヨーク間の空隙の幅t4とは、はぼ1対
1に設定されている。この端面磁化ヨーク13は、図中
破線で示すリング状磁石8の軸方向端面に可能な限り近
接するように、位置決めされる。そして、第5図に示し
た内周面磁化ヨーク9と同時に通電することにより、リ
ング状磁石8は着磁され、第4図に示すリング状マグネ
ット11が得られる。
Further, the yoke width t3 of each segment-like yoke and the width t4 of the gap between adjacent segment-like yokes are set to be approximately 1:1. This end face magnetization yoke 13 is positioned as close as possible to the axial end face of the ring-shaped magnet 8, which is indicated by a broken line in the figure. The ring-shaped magnet 8 is magnetized by simultaneously energizing the inner circumferential surface magnetizing yoke 9 shown in FIG. 5, and the ring-shaped magnet 11 shown in FIG. 4 is obtained.

(発明が解決しようとする問題点) しかしながら、上述した着磁方法により着磁した場合は
、特に界磁用磁束の磁束量および磁束密度分布の点にお
いて良好な磁気特性を得ることができないという問題点
を有する。−例として、内径Ri = 31m!l、外
径R(、=39mm、高さH=7mmのリング状の等方
性フエライトマグネッ)11を得るために、第5図に示
す内周面磁化ヨーク9の各凸状ヨーク98〜9dと内周
面とをほぼ密着させ、一方第6図に示す端面磁化ヨーク
13の各セグメント状ヨーク14a〜14dと端面とを
ほぼ密着させ、同時に着磁した場合に得られたリング状
マグネット11の磁束密度分布を第9図の曲線Aに示す
、これかられかるように、得られた磁束密度分布は理想
的な正弦波状とは異なり、かなり歪んでいる。
(Problems to be Solved by the Invention) However, when magnetized by the above-mentioned magnetization method, there is a problem that good magnetic properties cannot be obtained, especially in terms of the amount of magnetic flux of the field magnetic flux and the distribution of magnetic flux density. Has a point. - As an example, inner diameter Ri = 31 m! In order to obtain the ring-shaped isotropic ferrite magnet 11 with an outer diameter R (39 mm and a height H=7 mm), each of the convex yokes 98 to 9d of the inner peripheral surface magnetized yoke 9 shown in FIG. The ring-shaped magnet 11 obtained by bringing the and inner circumferential surfaces into substantially close contact with each other, and by bringing each of the segmental yokes 14a to 14d of the end face magnetization yoke 13 shown in FIG. The magnetic flux density distribution is shown by curve A in FIG. 9. As can be seen from this, the obtained magnetic flux density distribution differs from the ideal sinusoidal shape and is considerably distorted.

しかも、最大磁束密度は第5図に示す内周面磁化ヨーク
9を用いて内周面のみを単独着磁した場合に得られた最
大磁束密度の値約800Gに比べ、約800Gとかなり
減少している。これは、内周面と端面を同時に着磁する
と、内周面を単独で着磁したときに得られる磁束量と磁
束密度分布が、端面側の磁気的影響を受けたことによる
パーミアンスの変化に起因するつ したがって、この発明はこれらの問題点を解決し、内周
面と端面とを同時に着磁したにもかかわらず、界磁用の
磁束量を十分に大きく得ることができ、しかも磁束密度
分布がほぼ正弦波状のリング状マグネットを得ることが
できる着磁方法を提供することを目的とする。
Furthermore, the maximum magnetic flux density is approximately 800G, which is considerably reduced compared to the maximum magnetic flux density of approximately 800G obtained when only the inner peripheral surface is magnetized independently using the inner peripheral surface magnetized yoke 9 shown in FIG. ing. This is because when the inner circumferential surface and the end surface are magnetized simultaneously, the amount of magnetic flux and magnetic flux density distribution obtained when the inner circumferential surface is magnetized alone will change due to changes in permeance due to the magnetic influence of the end surface. Therefore, the present invention solves these problems and can obtain a sufficiently large amount of magnetic flux for the field even though the inner circumferential surface and the end surface are simultaneously magnetized. It is an object of the present invention to provide a magnetization method capable of obtaining a ring-shaped magnet having a substantially sinusoidal distribution.

(問題点を解決するための手段) この発明は、硬磁性体材料で形成されたリング状又はデ
ィスク状磁石の内周面をこの中に位置決めされかつ着磁
すべき極数に等しい数の凸状ヨークを有する内周面磁化
ヨークで着磁し、前記磁石の軸方向端面をこれに沿って
位置決めされかつ前記数に等しいセグメント状ヨークを
有する端面磁化ヨークで前記内周面の着磁と同時に着磁
することによりリング状マグネットを得る直流モータ用
マグネットの着磁方法において、前記各凸状ヨークの頂
部表面と前記内周面との間の空隙T1を1ないし5謄1
に設定するとともに各凸状ヨークのヨーク幅t!と隣接
する凸状ヨーク間の空隙の輻t2とをt+ >>tz 
となるように設定し、一方前記磁石の軸方向端面と前記
各セグメント状ヨークの軸方向表面との間の空隙T2を
1ないし3m層に設定するとともに各セグメント状ヨー
クのヨーク幅t3と隣接するセグメント状ヨーク間の空
隙の幅t4とをt3)t4 となるように設定したこと
を特徴とする直流モータ用マグネットの着磁方法にある
(Means for Solving the Problems) The present invention provides a ring-shaped or disk-shaped magnet made of a hard magnetic material, with a ring-shaped or disk-shaped magnet having protrusions positioned therein and having a number equal to the number of poles to be magnetized. The inner circumferential surface is magnetized by an inner circumferential surface magnetizing yoke having a shaped yoke, and the inner circumferential surface is simultaneously magnetized by an end surface magnetizing yoke having segment shaped yokes positioned along the axial end surface of the magnet and having the same number of segment shaped yokes. In a method for magnetizing a magnet for a DC motor, in which a ring-shaped magnet is obtained by magnetizing, the gap T1 between the top surface of each convex yoke and the inner peripheral surface is set to 1 to 5.
and the yoke width t! of each convex yoke. and the radius t2 of the gap between adjacent convex yokes, t+ >>tz
On the other hand, the gap T2 between the axial end face of the magnet and the axial surface of each segmented yoke is set to 1 to 3 m layer, and the gap T2 is adjacent to the yoke width t3 of each segmented yoke. A method of magnetizing a magnet for a DC motor, characterized in that the width t4 of the gap between the segmented yokes is set to be t3)t4.

(実施例) 以下、この発明を実施例に基づき図面を参照して詳細に
説明する。
(Example) Hereinafter, the present invention will be described in detail based on an example with reference to the drawings.

第1図(a)はこの発明による着磁方法に用いられる内
周面磁化ヨーク16と端面磁化ヨーク17とを着磁すべ
きリング状磁石8に対し位置決めした様子を示す図、お
よび同図(b)は(a)図のA−A線方向の断面図であ
る。
FIG. 1(a) is a diagram showing how the inner circumferential surface magnetizing yoke 16 and the end surface magnetizing yoke 17 used in the magnetization method according to the present invention are positioned with respect to the ring-shaped magnet 8 to be magnetized, and FIG. b) is a sectional view taken along the line A-A in FIG.

はじめに、内周面磁化ヨーク1Bについて、第7図を用
いて説明する。第7図は、リング状磁石8内に挿入され
た内周面磁化ヨーク16の断面図である。図示の内周面
磁化ヨーク1Bは4極着磁の例で。
First, the inner peripheral surface magnetized yoke 1B will be explained using FIG. 7. FIG. 7 is a cross-sectional view of the inner peripheral surface magnetization yoke 16 inserted into the ring-shaped magnet 8. As shown in FIG. The illustrated inner peripheral surface magnetized yoke 1B is an example of four-pole magnetization.

巻線が巻回された4つの凸状ヨーク+8a〜18dを有
する。この内周面磁化ヨーク16の特徴は、第1に各凸
状ヨーク18a−18dのヨーク幅1.を隣接するヨー
ク間の空隙の幅t2に対し、t+>>j2としたことに
ある。換言すれば、各凸状ヨークの頂部表面(リング状
成形体8の内周面と対抗する面)の表面積を最大限に大
きくする。従来、このような内周面磁化ヨークを用いて
内周面を単独に着磁した場合、得られる磁束密度分布は
第9図の曲QBに示すように矩形波状になり好ましくな
いとされていた。しかしながら、この発明によれば、こ
のような内周面磁化ヨーク16と後述する端面磁化ヨー
ク17とを用いて同時に着磁すれば、極めて良好な磁気
特性が得られることが確認された。また、この内周面磁
化ヨークIBの第2の特徴は、各凸状ヨーク18a−1
8dとリング状磁石8の内周面との間の空隙の幅T!を
lないし5IIlに保持することにある。従来は、前述
したように、可能な限り空隙を小さくするようにしてい
たが、このように空隙を設けることにより磁束密度分布
はより一層正弦波状に近くなることが確認された。
It has four convex yokes +8a to 18d around which windings are wound. The inner circumferential surface magnetized yoke 16 has the following characteristics: First, each of the convex yokes 18a to 18d has a yoke width of 1. is set to t+>>j2 with respect to the width t2 of the gap between adjacent yokes. In other words, the surface area of the top surface of each convex yoke (the surface facing the inner peripheral surface of the ring-shaped molded body 8) is maximized. Conventionally, when the inner circumferential surface was individually magnetized using such an inner circumferential surface magnetization yoke, the resulting magnetic flux density distribution became rectangular wave-like as shown in curve QB in Figure 9, which was considered undesirable. . However, according to the present invention, it has been confirmed that extremely good magnetic properties can be obtained by simultaneously magnetizing using such an inner circumferential surface magnetization yoke 16 and an end surface magnetization yoke 17 described later. Further, the second feature of this inner peripheral surface magnetized yoke IB is that each convex yoke 18a-1
Width T of the gap between 8d and the inner peripheral surface of the ring-shaped magnet 8! The purpose is to maintain the value between 1 and 5IIl. Conventionally, as described above, the air gap has been made as small as possible, but it has been confirmed that by providing the air gap in this way, the magnetic flux density distribution becomes even more similar to a sine wave shape.

尚、T、を1mmより小さくすると磁束密度分布は満足
すべき正弦波状とはならず、また5ffi−より大きく
すると満足すべき磁束量が得られない。
Note that if T is smaller than 1 mm, the magnetic flux density distribution will not have a satisfactory sine wave shape, and if T is larger than 5ffi-, a satisfactory amount of magnetic flux will not be obtained.

次に、端面磁化ヨーク17について説明する。第8図は
端面磁化ヨーク17の底面図である。図示の端面磁化ヨ
ーク17は4極着磁の例で、巻線15が巻回された4つ
のセグメント状ヨーク19a N19dを有する。この
端面磁化ヨーク17の第1の特徴は、各セグメント状ヨ
ークのヨーク幅t3を隣接するヨーク間の空隙の幅t4
に対し、ts)> tsとしたことにある。換言すれば
、各セグメント状ヨークの軸方向端面の表面積を可能な
限り大きくする。また、第2の特徴は、第1図(b)に
示すように、各セグメント状ヨーク19a−19dの軸
方向端面とリング状磁石8との間の空隙の幅T2を1な
いし3a+mに設定したことにある。端面磁化ヨーク1
7をこのように構成することにより、得られる磁束密度
分布はほぼ正弦波状となり、また内周面側に作用する磁
束成分が少なくなるので、内周面側の磁束量を充分に得
ることができる。
Next, the end face magnetization yoke 17 will be explained. FIG. 8 is a bottom view of the end face magnetization yoke 17. The illustrated end face magnetized yoke 17 is an example of quadrupole magnetization, and has four segmented yokes 19a to 19d around which the winding 15 is wound. The first feature of this end face magnetized yoke 17 is that the yoke width t3 of each segment-like yoke is changed to the width t4 of the gap between adjacent yokes.
The reason is that ts)>ts. In other words, the surface area of the axial end face of each segmental yoke is made as large as possible. The second feature is that, as shown in FIG. 1(b), the width T2 of the gap between the axial end face of each segment-shaped yoke 19a-19d and the ring-shaped magnet 8 is set to 1 to 3a+m. There is a particular thing. End face magnetization yoke 1
By configuring 7 in this way, the obtained magnetic flux density distribution becomes almost sinusoidal, and the magnetic flux component acting on the inner peripheral surface side is reduced, so that a sufficient amount of magnetic flux can be obtained on the inner peripheral surface side. .

上述した内周面磁化ヨーク1Bと端面磁化ヨーク17は
リング状磁石に第1図に示すように位置決めされ、内周
面磁化ヨーク16の巻線および端面磁化ヨーク17の巻
線に接続されたリード線20に電流を供給することによ
り、リング状磁石8の内周面と端面ば同時に着磁され、
第4図(a)に示すような界磁用とホールIC駆動用の
磁気が着磁されたリング状マグネットを得ることができ
る。
The inner circumferential surface magnetizing yoke 1B and the end surface magnetizing yoke 17 described above are positioned on a ring-shaped magnet as shown in FIG. By supplying current to the wire 20, the inner peripheral surface and end surface of the ring-shaped magnet 8 are simultaneously magnetized,
It is possible to obtain a ring-shaped magnet magnetized with magnets for the field and for driving the Hall IC as shown in FIG. 4(a).

第9図の曲線Cは、内径Ri =31mm、外径R。Curve C in FIG. 9 has an inner diameter Ri = 31 mm and an outer diameter R.

= 39+am、高さH=7mmのリング状磁石に対し
、空隙T1=1mm、空隙T2=2ml腸とし、更に1
+/12=2/l、t3/14=5/l、に設定した場
合に得られた磁束密度分布を示す。同図から明らかなよ
うに、従来の同時着磁方法により得られた磁束密度分布
曲線Aにくらべ、磁束量は200G程度向上しかつ分布
はほぼ正弦波状となっている。
= 39+am, height H = 7mm ring-shaped magnet, gap T1 = 1mm, gap T2 = 2ml, and further 1
The magnetic flux density distribution obtained when setting +/12=2/l and t3/14=5/l is shown. As is clear from the figure, compared to the magnetic flux density distribution curve A obtained by the conventional simultaneous magnetization method, the amount of magnetic flux is improved by about 200 G, and the distribution is almost sinusoidal.

以上、この発明を4極着磁の場合を例にして説明した。The present invention has been described above using the case of four-pole magnetization as an example.

この発明は2極や6極以上の着磁の場合にも同様に実施
できる。
The present invention can be similarly implemented in the case of magnetization with two poles or six or more poles.

(発明の効果) 以上説明したように、この発明によれば、界磁用の磁束
量を充分大きく得ることができ、しかも磁束密度分布は
ほぼ正弦波状となるリング状又はディスク状マグネット
を得ることができる直流モータ用マグネットの着磁方法
を提供することができる。また、この発明によれば内周
面磁化ヨークの各凸状ヨークとリング状又はディスク状
磁石の内周面との間の空隙の幅T1および端面磁化ヨー
クの各セグメント状ヨークの軸方向端面とリング状又は
ディスク状磁石の軸方向端面との間の空隙の幅T2をあ
る一定範囲に保つように構成しているので、換言すれば
1つの内周面磁化ヨークと端面磁化ヨークの組み合わせ
で、内径Riが異なる複数種類のリング状マグネットを
得ることができる。この発明により得られたリング状又
はディスク状マグネットをDCブラシレスモータに適用
すれば、回転ムラ等を防止でき、しかもリング状又はデ
ィスク状マグネットの回転位置を安定して検出できる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to obtain a ring-shaped or disk-shaped magnet in which a sufficiently large amount of magnetic flux for the field can be obtained and the magnetic flux density distribution is approximately sinusoidal. A method for magnetizing a DC motor magnet can be provided. According to the present invention, the width T1 of the air gap between each convex yoke of the inner circumferential surface magnetizing yoke and the inner circumferential surface of the ring-shaped or disk-shaped magnet, and the axial end surface of each segment-like yoke of the end surface magnetizing yoke. Since the width T2 of the air gap between the axial end face of the ring-shaped or disk-shaped magnet is kept within a certain range, in other words, the combination of one inner circumferential surface magnetizing yoke and one end face magnetizing yoke, A plurality of types of ring-shaped magnets having different inner diameters Ri can be obtained. If the ring-shaped or disc-shaped magnet obtained according to the present invention is applied to a DC brushless motor, uneven rotation can be prevented, and the rotational position of the ring-shaped or disc-shaped magnet can be stably detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)はこの発明に用いられる内周面磁化ヨーク
と端面磁化ヨークの構成例を示す図、第1図(b)は第
1図(a)のA−A線断面図、第2図はDCブラシレス
モータの断面図、第3図(a)および(b)はそれぞれ
リング状マグネットの平面図および正面図、第4図(a
)および(b)はそれぞれホールIC駆動用の磁気を有
するリング状マグネットの平面図および正面図、第5図
は従来の内周面磁化ヨークの断面図、第6図は従来の端
面磁化ヨークの底面図、第7図はこの発明に用いられる
内周面磁化ヨークの断面図、第8図はこの発明に用いら
れる端面磁化ヨークの底面図、および第9図は従来の着
磁方法およびこの発明の着磁方法により得られたリング
状マグネットの磁束密度分布を示す図である。 3.11  ・・・ リング状マグネット、4 ・・・
 ステータ、   5 ・・・ ポールIC16・・・
 駆動回路基盤、7 ・・・ 内周面、8 ・・・ リ
ング状磁石、 9 ・・・ 内周面磁化ヨーク、 9d〜9d・・・ 凸状ヨーク、 lO・・・ 巻線、     12  ・・・ 端面、
■3  ・・・ 端面磁化ヨーク、 +4a−14d・・・ セグメント状ヨーク、15  
・・・ 巻線、 16  ・・・ 内周面磁化ヨーク、 17  ・・・ 端面磁化ヨーク、 18a〜18d・・・ 凸状ヨーク、 19a〜19d・・・ セグメント状ヨー久20  ・
・・  リード線。
FIG. 1(a) is a diagram showing an example of the configuration of an inner peripheral surface magnetized yoke and an end surface magnetized yoke used in the present invention, FIG. 1(b) is a sectional view taken along the line A-A in FIG. Figure 2 is a sectional view of the DC brushless motor, Figures 3 (a) and (b) are a plan view and front view of the ring magnet, respectively, and Figure 4 (a).
) and (b) are respectively a plan view and a front view of a ring-shaped magnet having magnetism for driving a Hall IC, FIG. 5 is a cross-sectional view of a conventional inner peripheral surface magnetized yoke, and FIG. 6 is a cross-sectional view of a conventional end surface magnetized yoke. A bottom view, FIG. 7 is a cross-sectional view of the inner peripheral surface magnetization yoke used in the present invention, FIG. 8 is a bottom view of the end face magnetization yoke used in the present invention, and FIG. 9 is a conventional magnetization method and the present invention. FIG. 3 is a diagram showing the magnetic flux density distribution of a ring-shaped magnet obtained by the magnetization method of FIG. 3.11... Ring-shaped magnet, 4...
Stator, 5... Pole IC16...
Drive circuit board, 7... Inner circumferential surface, 8... Ring-shaped magnet, 9... Inner circumferential surface magnetization yoke, 9d to 9d... Convex yoke, lO... Winding wire, 12... · End face,
■3... End face magnetized yoke, +4a-14d... Segmented yoke, 15
... Winding wire, 16 ... Inner peripheral surface magnetized yoke, 17 ... End face magnetized yoke, 18a to 18d... Convex yoke, 19a to 19d... Segmented yoke 20.
·· Lead.

Claims (1)

【特許請求の範囲】[Claims] 硬磁性体材料で形成されたリング状磁石の内周面をこの
中に位置決めされかつ着磁すべき極数に等しい数の凸状
ヨークを有する内周面磁化ヨークで着磁し、前記磁石の
軸方向端面をこれに沿って位置決めされかつ前記極数に
等しい数のセグメント状ヨークを有する端面磁化ヨーク
で前記内周面の着磁と同時に着磁することによりリング
状マグネットを得る直流モータ用マグネットの着磁方法
において、前記各凸状ヨークの頂部表面と前記内周面と
の間の空隙T_1を1ないし5mmに設定するとともに
各凸状ヨークのヨーク幅t_1と隣接する凸状ヨーク間
の空隙の幅t_2とをt_1≫t_2となるように設定
し、一方前記磁石の軸方向端面と前記各セグメント状ヨ
ークの軸方向表面との間の空隙T_2を1ないし3mm
に設定するとともに各セグメント状ヨークのヨーク幅t
_3と隣接するセグメント状ヨーク間の空隙の幅t_4
とをt_3≫t_4となるように設定したことを特徴と
する直流モータ用マグネットの着磁方法。
The inner circumferential surface of a ring-shaped magnet made of a hard magnetic material is magnetized by an inner circumferential surface magnetizing yoke positioned therein and having convex yokes of a number equal to the number of poles to be magnetized. A magnet for a DC motor in which a ring-shaped magnet is obtained by simultaneously magnetizing the inner circumferential surface with an end face magnetizing yoke having an axial end face positioned along the end face and having a number of segmented yokes equal to the number of poles. In the magnetization method, the gap T_1 between the top surface of each convex yoke and the inner peripheral surface is set to 1 to 5 mm, and the yoke width t_1 of each convex yoke and the gap between adjacent convex yokes are set to 1 to 5 mm. The width t_2 of the magnet is set so that t_1≫t_2, and the gap T_2 between the axial end face of the magnet and the axial surface of each segmented yoke is set to 1 to 3 mm.
and the yoke width t of each segmented yoke.
Width t_4 of the gap between _3 and the adjacent segmented yoke
A method for magnetizing a DC motor magnet, characterized in that t_3≫t_4.
JP7939385A 1985-04-16 1985-04-16 Magnetizing method for magnet for dc motor Pending JPS61240844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7939385A JPS61240844A (en) 1985-04-16 1985-04-16 Magnetizing method for magnet for dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7939385A JPS61240844A (en) 1985-04-16 1985-04-16 Magnetizing method for magnet for dc motor

Publications (1)

Publication Number Publication Date
JPS61240844A true JPS61240844A (en) 1986-10-27

Family

ID=13688614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7939385A Pending JPS61240844A (en) 1985-04-16 1985-04-16 Magnetizing method for magnet for dc motor

Country Status (1)

Country Link
JP (1) JPS61240844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135353A (en) * 1989-10-13 1991-06-10 Canon Electron Inc 3-phase semiconductor motor
EP0836020A2 (en) * 1996-10-11 1998-04-15 Nsk Ltd Rolling bearing unit with rotating speed sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135353A (en) * 1989-10-13 1991-06-10 Canon Electron Inc 3-phase semiconductor motor
EP0836020A2 (en) * 1996-10-11 1998-04-15 Nsk Ltd Rolling bearing unit with rotating speed sensor
EP0836020A3 (en) * 1996-10-11 1999-03-31 Nsk Ltd Rolling bearing unit with rotating speed sensor

Similar Documents

Publication Publication Date Title
US5164622A (en) High pole density three phase motor
US4217508A (en) DC motor
US5598071A (en) Method for starting and commutating a permanent-magnet direct current motor having a single phase winding
US4949000A (en) D.C. motor
US6717323B1 (en) Rotary electric motor having a plurality of skewed stator poles and/or rotor poles
US4745312A (en) Stepping motor
JPS6235347B2 (en)
JPH05344668A (en) Rotor of synchronous motor
JPS61240844A (en) Magnetizing method for magnet for dc motor
JPH07222385A (en) Reverse salient cylindrical magnet synchronous motor
JPWO2020085092A1 (en) Magnetizing device, magnetizing method, and motor manufacturing method
KR100515989B1 (en) Permanent magnet yoke of rotor for motor and generator
JPS6059954A (en) Toroidal coil type rotary electric machine
JP3635209B2 (en) Actuator
JPS634414B2 (en)
JPS58107058A (en) Plane confronting brushless motor
JP3599547B2 (en) Magnetizing apparatus and magnetizing method
JPH0150183B2 (en)
JP2912412B2 (en) Surface-facing motor
JP2008035636A (en) Magnetizing yoke
JP2875357B2 (en) Magnetizing device
JPS6139841A (en) Dc brushless motor
JPH046169Y2 (en)
JPH0410655Y2 (en)
JPH0723027Y2 (en) Brushless motor