JPS6123842A - Fuel injection device for engine - Google Patents

Fuel injection device for engine

Info

Publication number
JPS6123842A
JPS6123842A JP14495384A JP14495384A JPS6123842A JP S6123842 A JPS6123842 A JP S6123842A JP 14495384 A JP14495384 A JP 14495384A JP 14495384 A JP14495384 A JP 14495384A JP S6123842 A JPS6123842 A JP S6123842A
Authority
JP
Japan
Prior art keywords
detection signal
amount
engine
acceleration
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14495384A
Other languages
Japanese (ja)
Inventor
Susumu Ida
伊田 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP14495384A priority Critical patent/JPS6123842A/en
Publication of JPS6123842A publication Critical patent/JPS6123842A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve a response and an accelerating feeling either, by performing engine control in discriminating an accelerating increment at actual running from that at idle running. CONSTITUTION:At a microcomputer 9, an engine speed is found by a detection signal out of a crank angle sensor 5, while a throttle opening and a throttle variation both are found by a detection signal out of a throttle sensor 4, and an air quantity is found by a detection signal out of an air flow meter 2 and that water temperature is found by a detection signal out of a water temperature sensor 3, respectively. On top of that, whether or not an engine is in time of actual running or at idle running is judged by a neutral switch 6, and when a fuel injection quantity is controlled with detection signals out of these sensors, such different accelerating compensation that an accelerating increment and an interstitial injection quantity are altered is carried out.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 本発明は、自動車用エンジンの燃料噴射装置に関する。 【従来の技術】 EGIシステムでは、燃料噴射弁(インジェクタ)の噴
射量は各種センサ、スイッチ等からのエンジン運転状態
入力信号によって決定され、基本噴射mとしては、エア
70−メータで検出された吸入空気量とイグニツシミン
コイルの1次信号から検出された回転数信号とによって
決定される。 エア70−メータの検出にはスロットルバルブの瞬時開
く加速時や空吹し時)に遅れを生じ、エンジンに実際に
入った空気量とエア70−メータの検出空気量に差が生
じて空燃比(A’/F)が薄くくリーン化)なってしま
う。そのため、加速フィーリングが悪化し、特にシング
ル・ポイント・インジェクション(SPI)では、イン
ジェクタで噴射した燃料がエンジンに吸入されるまでの
遅れ分も加算されて空燃比が一層リーン化される。 そこで従来から、スロットルセンサによりスロットルッ
チ開度およびクラッチ変化量を検出し、この検出信号に
よって上述の遅れ分に相当する係数を基本噴射量に乗じ
て空燃比のリーン化を防ぐ加速増fIl補正を行なって
いる。またエンジン回転数の立上りを良くするために、
スロットルが開いた時に通常の噴射−タイミングと無関
係に一定量噴射を行なう割込み噴射を行なっている。 こうした加速増量補正および割込み噴射は1.加速(ま
たは空炊し)前のスロットル開度、スロツl〜ル変化量
、エンジン水温、加速前のエンジン回転数、加速前の空
気量に応じた係数を使って補正および噴射量が決定され
、この係数は、予め実験データ等から決められてコント
ロールユニットにデータとして記憶されている。例えば
特開昭55−46060号公報には、加速時の流入空気
量の変化を検出してこの変化量に対応した燃料をインジ
ェクタに供給するものが開示されている。また特開昭5
5−153830号公報には、流入空気量の最大値信号
によって噴射量を決定するものが開示されている。
INDUSTRIAL APPLICATION FIELD 1 The present invention relates to a fuel injection device for an automobile engine. [Prior Art] In an EGI system, the injection amount of a fuel injection valve (injector) is determined by engine operating status input signals from various sensors, switches, etc., and the basic injection m is the intake amount detected by an air 70-meter. It is determined by the amount of air and the rotational speed signal detected from the primary signal of the ignition coil. There is a delay in the detection of the air 70-meter (when the throttle valve is opened instantaneously during acceleration or when the engine is racing), and there is a difference between the amount of air that actually enters the engine and the amount of air detected by the air 70-meter, resulting in a change in the air-fuel ratio. (A'/F) becomes thin and lean). As a result, the acceleration feeling worsens, and especially in single point injection (SPI), the air-fuel ratio becomes even leaner due to the addition of the delay until the fuel injected by the injector is taken into the engine. Therefore, conventionally, a throttle sensor detects the throttle latch opening and clutch change amount, and based on this detection signal, the basic injection amount is multiplied by a coefficient corresponding to the above-mentioned delay to perform acceleration increase fl correction to prevent the air-fuel ratio from becoming lean. I am doing it. In addition, to improve the startup of engine speed,
Interrupt injection is performed in which a fixed amount of fuel is injected when the throttle is opened, regardless of the normal injection timing. These acceleration increase corrections and interrupt injections are carried out in 1. The correction and injection amount are determined using coefficients according to the throttle opening before acceleration (or dry cooking), throttle change amount, engine water temperature, engine speed before acceleration, and air amount before acceleration. This coefficient is determined in advance from experimental data and the like and is stored as data in the control unit. For example, Japanese Unexamined Patent Publication No. 55-46060 discloses a system that detects a change in the amount of incoming air during acceleration and supplies fuel corresponding to this amount of change to an injector. Also, JP-A-5
Japanese Patent Application No. 5-153830 discloses an apparatus in which the injection amount is determined based on a maximum value signal of the amount of incoming air.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

従来の基本噴射量の加速補正では、空炊し時の急激な吸
入空気量の変化と負荷のかかる実走行での加速時のゆっ
くりとした吸入空気量の変化において、適切な噴射量制
御ができない。即ち、負荷のかかっている走行中のよう
にエンジン回転が急に変化しない場合は、実際の空気量
とエアフローメータで計算された空気量との遅れは小さ
くなり、加速増量補正係数および割込み噴射量は小さく
しでも良いが、負荷の無い空炊しではエンジン回転が急
に変化してしまうため、エアフローメータの計量遅れも
大きくなって加速増量補正係数および割込み噴射量も大
きくしなければならないが、それらを区別した制御はき
わめて困難である。 また、空炊し時はレスポンスを良くするために割込みを
大きくし、走行中は排気ガス規制から加速増量および割
込みを小さくしたほうが良いが、これらを区別した制御
も大変困難である。
Conventional acceleration correction of the basic injection amount does not allow appropriate injection amount control in the case of sudden changes in intake air amount during dry cooking and slow changes in intake air amount during acceleration during actual driving under load. . In other words, if the engine speed does not suddenly change, such as when driving under load, the delay between the actual air amount and the air amount calculated by the air flow meter will be small, and the acceleration increase correction coefficient and interrupt injection amount will be smaller. can be made smaller, but in dry cooking with no load, the engine speed changes suddenly, so the metering delay of the airflow meter increases, and the acceleration increase correction coefficient and interrupt injection amount must also be increased. It is extremely difficult to control them separately. In addition, it is better to increase the interrupt to improve response during dry cooking, and to decrease the acceleration increase and interrupt while driving due to exhaust gas regulations, but it is very difficult to control these separately.

【問題を解決するための手段と作用】[Means and actions to solve the problem]

本発明は、エアフローメータ、スロットルセンサ、水温
センサ、エンジン回転数センサ等がら得る各種エンジン
運転状態検出信号により噴射」の制御を行なうために、
クラッチスイッチまたは、ニュートラルスイッチからの
検出信号とスロットルセンサの検出信号によって加速が
空炊しがを判別し、この判別に応じて適切な加速増量補
正係数    ′および割込み噴射mを決定することを
特徴とする。
The present invention provides injection control using various engine operating state detection signals obtained from an air flow meter, throttle sensor, water temperature sensor, engine rotation speed sensor, etc.
The present invention is characterized in that it determines whether the acceleration is idle or not based on the detection signal from the clutch switch or the neutral switch and the detection signal from the throttle sensor, and determines an appropriate acceleration increase correction coefficient ' and interrupt injection m in accordance with this determination. do.

【実 施 例】【Example】

第1図は本発明の一実施例を示す燃料噴射装置の構成図
である。 図においてエンジン1は、シングル・ポイント・インジ
ェクション方式による燃料噴射がなされ、エンジン運転
状態の検出手段としてエア70−メータ2.水温センサ
3.スロットルセンサ4.クランク角センサ5.ニュー
トラルスイッチ6、クラッチセンサ1Gが設けられる。 また空燃比のフィードバック制御として01センサ8が
設けられる。 マイクロコンピュータ9は、これらセンサ、スイン≠か
らの検出信号に従ってエンジン1の運転状態に適切な燃
料噴射量を求め、インジェクタ10の開時間制御を行な
う。またアイドル回転制御バルブ11.EGRバルブ7
、フューエルポンプ12の制御を行なう。なお図中符号
13はフューエルタンク、14はプレッシャレギュレー
タ、15はエアクリーナである。 マイクロコンピュータ9では、クランク角センサ5の検
出信号によってエンジン回転数を求め、スロットルセン
サ4の検出信号によってスロットル開度およびスロット
ル変化量を求め、エアフローメータ2の検出信号によっ
て空気量を求め、水温センサ3の検出信号によって水温
を求める。このほかに、ニュートラルスイッチ6によっ
て走行中か、あるいは空炊しかを判定し、上記センサの
検出信号により噴射量制御する場合に加速増量J5よび
割込み噴射量を変えるという異なる加速補正を行なう。 この補正を第2図のフローチャートに従って説明する。 ニュートラルスイッチ6の検出信号を取込んだ(ステッ
プ81)マイクロコンピュータ9は、該検出信号から走
行中か、否かを判定しておく(ステップ82)。走行中
であれば、エアフローメータ2.センナ3〜5の検出信
号から加速前のスロットル開度、ス1コツドル変化量、
エンジン水温。 加速前のエンジン回転数、加速前の空気量の各データを
得(ステップS3)、これらデータに対して走行中での
加速増量補正係数および割込み噴射量を加速補正工のテ
ーブルデータから求め(ステップS4)、この係数を基
本噴射量に乗じて加速増m値を求め(ステップS5)、
さらに割込み噴射量を求め(ステップS6)、求めた加
速増量値および割込み噴射量に従ってインジェクタ10
の噴射量を制御する。 一方、空炊しと判定(ステップ82)するときにはマイ
クロコンピュータ9は、ステップS3と同様にエアフロ
ーメータ2.各センサ3〜5からの検出信号(ステップ
88)に対して空炊しての加速補正■のテーブルデータ
から、加速増量補正係数および割込み噴射係数を求め(
ステップ39)、この係数を使ってステップ85〜ステ
ツプS7により加速増量値および、割込み噴射間を求め
、インジェクタの噴[tを制御する。 ここで、加速補正1と加速補正■は異なる係数を持ち、
加速補正■は加速増量補正および割込み噴射量を小さく
し、エンジン回転数が急激に変化しない走行中での空燃
比のリーン化を防止する。 これに対して、加速補正■は加速増量補正および、割み
噴射量を大きくし、エンジン回転数が急激に変化する空
炊しでの空燃比のリーン化を防止する。 なお走行中か否かの判定は、クラッチを持つ自動車では
クラッチの開閉を検出するクラッチスイッチを使うこと
で実現される。 【発明の効果] 本発明によれば、走行中での加速増mまたは割込み噴射
mと、空炊しての加速増量または割込み噴射量−と、を
区別した制御をするため、空炊し時に増量を多くしてレ
スポンスを向上し、しかも走行時に増量を少なくして加
速フィーリングを向上する効果がある。また、空炊しと
、走行時とを区別した補正を行なうため、空炊しによる
増量、走行時による増量を適切にして有害排気ガス排出
■を低減した制御になる。
FIG. 1 is a configuration diagram of a fuel injection device showing one embodiment of the present invention. In the figure, an engine 1 injects fuel using a single point injection method, and an air meter 70-meter 2. Water temperature sensor 3. Throttle sensor 4. Crank angle sensor 5. A neutral switch 6 and a clutch sensor 1G are provided. Additionally, an 01 sensor 8 is provided for feedback control of the air-fuel ratio. The microcomputer 9 determines a fuel injection amount appropriate for the operating condition of the engine 1 according to the detection signals from these sensors and the SWIN≠, and controls the opening time of the injector 10. Also, the idle rotation control valve 11. EGR valve 7
, controls the fuel pump 12. In the figure, reference numeral 13 is a fuel tank, 14 is a pressure regulator, and 15 is an air cleaner. The microcomputer 9 determines the engine speed based on the detection signal of the crank angle sensor 5, the throttle opening and throttle change amount based on the detection signal of the throttle sensor 4, the air amount based on the detection signal of the air flow meter 2, and the water temperature sensor. The water temperature is determined based on the detection signal in step 3. In addition, a different acceleration correction is performed in which the neutral switch 6 determines whether the vehicle is running or if the vehicle is idle-cooked, and the acceleration increase amount J5 and the interrupt injection amount are changed when the injection amount is controlled based on the detection signal of the sensor. This correction will be explained according to the flowchart in FIG. The microcomputer 9 receives the detection signal from the neutral switch 6 (step 81) and determines whether or not the vehicle is running based on the detection signal (step 82). If you are driving, check the air flow meter 2. From the detection signals of sensors 3 to 5, the throttle opening before acceleration, the amount of change in the throttle angle,
Engine water temperature. Each data of the engine speed before acceleration and the amount of air before acceleration is obtained (step S3), and based on these data, the acceleration increase correction coefficient and interrupt injection amount during driving are determined from the table data of the acceleration correction machine (step S3). S4), multiply this coefficient by the basic injection amount to obtain the acceleration increase m value (step S5),
Further, the interrupt injection amount is determined (step S6), and the injector 10 is
control the injection amount. On the other hand, when determining dry cooking (step 82), the microcomputer 9 controls the air flow meter 2. The acceleration increase correction coefficient and the interrupt injection coefficient are calculated from the table data of the acceleration correction (■) in dry cooking for the detection signals from each sensor 3 to 5 (step 88).
Step 39) Using this coefficient, the acceleration increase value and the interruption injection interval are determined in steps 85 to S7 to control the injection [t] of the injector. Here, acceleration correction 1 and acceleration correction ■ have different coefficients,
Acceleration correction (■) reduces the acceleration increase correction and interrupt injection amount to prevent the air-fuel ratio from becoming lean during driving when the engine speed does not change rapidly. On the other hand, the acceleration correction (3) increases the acceleration amount correction and the split injection amount to prevent the air-fuel ratio from becoming lean during dry cooking where the engine speed changes rapidly. Note that determining whether the vehicle is running or not is achieved by using a clutch switch that detects the opening and closing of the clutch in cars that have a clutch. [Effects of the Invention] According to the present invention, since the acceleration increase m or interrupt injection amount m during driving is controlled in a manner that distinguishes between the acceleration increase m or interrupt injection amount m during running and the acceleration increase m or interrupt injection amount m during dry cooking, the It has the effect of increasing the amount to improve response, and reducing the amount of increase during driving to improve acceleration feeling. In addition, since the correction is carried out by distinguishing between dry cooking and driving, the control reduces harmful exhaust gas emissions (1) by appropriately increasing the amount due to dry heating and driving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は第1
図におシブるマイクロコンピュータの加速補正フローチ
ャートである。 1・・・エンジン、2・:・エア70−メータ、3・・
・水濡センサ、4・・・スロットルセンサ、5・・・ク
ランク角センサ、6・・・ニュートラルスイッヂ、7・
・・EGRバルブ、8・・・o2センサ、′9・・・マ
イクロコンピュータ、10・・・インジェクタ、11・
・・アイドル回転数制御パルプ、12・・・フューエル
ポンプ、13・・・フューエルタンク、14・・・プレ
ッシセレギュレータ、15・・・エアクリーナ。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
It is an acceleration correction flowchart of the microcomputer shown in the figure. 1... Engine, 2... Air 70-meter, 3...
・Water wetness sensor, 4... Throttle sensor, 5... Crank angle sensor, 6... Neutral switch, 7.
... EGR valve, 8... O2 sensor, '9... Microcomputer, 10... Injector, 11.
... Idle speed control pulp, 12... Fuel pump, 13... Fuel tank, 14... Pressure regulator, 15... Air cleaner.

Claims (1)

【特許請求の範囲】[Claims] エンジンの運転状態検出信号によって燃料噴射弁からの
噴射量を制御する燃料噴射装置であって、クラッチスイ
ッチまたはニュートラルスイッチの検出信号とスロット
ルセンサの検出信号によって加速または空吹しかを判別
し、走行中には前記噴射量の加速増量補正および割込み
噴射量を小さくし、空吹しには該加速増量補正および割
込み噴射量を大きくする制御手段を備えたことを特徴と
するエンジンの燃料噴射装置。
A fuel injection device that controls the amount of injection from a fuel injection valve based on an engine operating state detection signal, and determines whether it is accelerating or idling based on a detection signal from a clutch switch or neutral switch and a detection signal from a throttle sensor. A fuel injection device for an engine, comprising control means for reducing the acceleration increase correction of the injection amount and the interrupt injection amount, and for increasing the acceleration increase correction and the interruption injection amount in case of a dry blow.
JP14495384A 1984-07-11 1984-07-11 Fuel injection device for engine Pending JPS6123842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14495384A JPS6123842A (en) 1984-07-11 1984-07-11 Fuel injection device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14495384A JPS6123842A (en) 1984-07-11 1984-07-11 Fuel injection device for engine

Publications (1)

Publication Number Publication Date
JPS6123842A true JPS6123842A (en) 1986-02-01

Family

ID=15374031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14495384A Pending JPS6123842A (en) 1984-07-11 1984-07-11 Fuel injection device for engine

Country Status (1)

Country Link
JP (1) JPS6123842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341629A (en) * 1986-08-06 1988-02-22 Japan Electronic Control Syst Co Ltd Electronic control fuel injection system for internal combustion engine
JPS6341786A (en) * 1986-08-07 1988-02-23 日本鋼管株式会社 Hot isotropic compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341629A (en) * 1986-08-06 1988-02-22 Japan Electronic Control Syst Co Ltd Electronic control fuel injection system for internal combustion engine
JPS6341786A (en) * 1986-08-07 1988-02-23 日本鋼管株式会社 Hot isotropic compressor

Similar Documents

Publication Publication Date Title
US4440136A (en) Electronically controlled fuel metering system for an internal combustion engine
US4628883A (en) Air-fuel ratio control system
JPH057548B2 (en)
US4480621A (en) Control apparatus for a fuel metering system in an internal combustion engine
JPH0674761B2 (en) Fuel injection control method
JPS6123842A (en) Fuel injection device for engine
JPH02271042A (en) Accelerating fuel controller of engine
US4565174A (en) Fuel injection control apparatus
JPH04166637A (en) Air-fuel ratio controller of engine
JPH06173739A (en) Control system for measuring fuel of internal combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
US4819605A (en) Fuel injection control system for an automotive engine
JPS58133435A (en) Electronically controlled fuel injection method of internal-combustion engine
JP2976563B2 (en) Air-fuel ratio control device for internal combustion engine
JPS61232340A (en) Air-fuel ratio controller for engine
US4612889A (en) Idle control method for an internal combustion engine
JPH057546B2 (en)
JPH05222997A (en) Idle engine speed control device for engine
JPS62342B2 (en)
JPH0325622B2 (en)
JPH04342857A (en) Electronic control device of internal combustion engine
JPS6394039A (en) Method of controlling fuel for internal combustion engine and device therefor
JPH0475382B2 (en)
JP2811702B2 (en) Engine intake system
JPH03199653A (en) Atmospheric pressure detection for internal combustion engine