JPS61237366A - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell

Info

Publication number
JPS61237366A
JPS61237366A JP60077656A JP7765685A JPS61237366A JP S61237366 A JPS61237366 A JP S61237366A JP 60077656 A JP60077656 A JP 60077656A JP 7765685 A JP7765685 A JP 7765685A JP S61237366 A JPS61237366 A JP S61237366A
Authority
JP
Japan
Prior art keywords
mno2
particles
positive electrode
alkali metal
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60077656A
Other languages
Japanese (ja)
Inventor
Toru Matsui
徹 松井
Junichi Yamaura
純一 山浦
Yoshinori Toyoguchi
豊口 吉徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60077656A priority Critical patent/JPS61237366A/en
Publication of JPS61237366A publication Critical patent/JPS61237366A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a highly reliable manganese dioxide nonaqueous electrode secondary cell having low cycle deterioration even upon repetition of charge/ discharge cycle by employing positive electrode active substance where an oxide to be shown by general formula xM2O5.yMO3 (where, M=aV+bMo+cW, a+b+c=1) is adhered onto MnO2 particle surface with M-Mn atomic ratio within 0.02-0.2. CONSTITUTION:gamma type MnO2 30.00g and V2O5 1.569g (V/Mn=0.05) are contained together with water 15cc into a container then mixed sufficiently to produce paste which is preliminary dried under the temperature of 80 deg.C then further dried under the temperature of 250 deg.C. Consequently, V2O5 will adhere uniformly onto the surface of MnO2 particles especially to the recess of MnO2. When charging/discharging such a cell with constant current of 2mA under the voltage within 2.0-3.8V, the cycle deterioration will be 3-10 times when compared with a cell simply employing a compound.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池、特にその正極の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, particularly to improvements in its positive electrode.

従来の技術 現在まで、Li、Na等のアルカリ金属を負極活物質材
料として用い、γ−ブチロラクトン、テトラヒドロフラ
ン、プロピレンカーボネート、ジメLiBF4.LにJ
! 等を溶解した、いわゆる非水電解質を用いる二次電
池の開発が進められている。
Prior Art Until now, alkali metals such as Li and Na have been used as negative electrode active materials, and γ-butyrolactone, tetrahydrofuran, propylene carbonate, dimerium LiBF4. L to J
! The development of secondary batteries using so-called non-aqueous electrolytes is progressing.

しかし、この種の二次電池はまだ実用化されていない。However, this type of secondary battery has not yet been put into practical use.

その理由は、充放電回数の寿命が短く、また、充放電に
際しての充放電効率が低いためであり、この性能劣化の
原因は、主に正極及び負極活物質の充放電における化学
的又は物理的可逆性の低下である。
The reason for this is that the life of the number of charge/discharge cycles is short and the efficiency of charge/discharge during charging/discharging is low. This is a decrease in reversibility.

非水電解質二次電池の正極活物質については、これまで
、T i 、 V 、 Cr 、Mo 等の層状構造も
しくはトンネル構造を有する酸化物及びカルコゲン化合
物が知られている。これらの構造を有する化合物では、
電池の充放電によりLi+等のアルカリ金属イオンが、
化合物の層もしくはトンネル内へ出入りする。このため
、化合物自体の結晶構造は単に膨張、収縮するのみで、
構造が著しく破壊されることがないので、二次電池用正
極活物質に適する。
As positive electrode active materials for non-aqueous electrolyte secondary batteries, oxides and chalcogen compounds having a layered structure or tunnel structure, such as Ti, V, Cr, Mo, etc., have been known so far. In compounds with these structures,
Alkali metal ions such as Li+ are released by charging and discharging the battery.
Move in and out of compound layers or tunnels. For this reason, the crystal structure of the compound itself simply expands and contracts;
Since the structure is not significantly destroyed, it is suitable as a positive electrode active material for secondary batteries.

ところで、M n O2は高い電圧、大きい放電容量、
として、非水電解質−次電池に適用され、小型電子機器
用電源をはじめとし広く利用されて込る。
By the way, M n O2 has high voltage, large discharge capacity,
It is applied to non-aqueous electrolyte secondary batteries and is widely used in power supplies for small electronic devices.

Mn O2は、ルチル型の結晶構造であシ、上述のトン
ネル構造を有する0電池の放電にともない・Li”等の
アルカリ金属イオンがこのトンネル内に侵入、移動し、
いわゆる挿入反応が起きる。この放電過程では、Mn 
O2の作品構造は膨張するが、結晶構造そのものの破壊
はない。したがって、放電過程でM n OR内に侵入
したアルカリ金属イオンは、Mno2トンネル中を容易
に移動できる状態にある。
MnO2 has a rutile-type crystal structure, and as the above-mentioned tunnel-structured battery discharges, alkali metal ions such as ``Li'' invade and move into this tunnel.
A so-called insertion reaction occurs. In this discharge process, Mn
Although the structure of O2's work expands, the crystal structure itself is not destroyed. Therefore, the alkali metal ions that entered the M n OR during the discharge process are in a state where they can easily move through the Mno2 tunnel.

にもかかわらず、充電によシ、アルカリ金属イオンをM
 n OR内からとシ出すことが困難である。したがっ
て、M n O2を二次電池に用いた場合、充放電サイ
クルによる充放電容量の劣化が著しく、寿命が短いため
、M nO2は二次電池用正極活物質には不向きである
と言われている。
Despite this, it is not possible to charge the alkali metal ions.
n Difficult to extract from within OR. Therefore, when MnO2 is used in secondary batteries, it is said that MnO2 is not suitable as a positive electrode active material for secondary batteries because the charge/discharge capacity deteriorates significantly during charge/discharge cycles and the lifespan is short. There is.

従来よシ、Mn O2を正極活物質に用いる一次電池に
おいて、この種の電池の性能を向上させる手段としては
、Mn O2と他の各種酸化物等との混合物もしくは化
合物を正極活物質として用いる方法が提案されている。
Conventionally, in primary batteries that use MnO2 as a positive electrode active material, a method for improving the performance of this type of battery is to use a mixture or compound of MnO2 and various other oxides as the positive electrode active material. is proposed.

たとえば、MnO2と■2O5との混合物(特開昭54
 60422 ) 、MnO2とWO3もしくはMo 
Osとの化合物(同55−−j2675.同56−57
260)がある。
For example, a mixture of MnO2 and
60422), MnO2 and WO3 or Mo
Compounds with Os (same 55--j2675.same 56-57
260).

発明が解決しようとする問題点 しかし、このような構成では、二次電池として充放電サ
イクルを試みても、充放電寿命を伸ばすことができなか
った。これは下記の理由による。
Problems to be Solved by the Invention However, with such a configuration, even if charging and discharging cycles were attempted as a secondary battery, the charging and discharging life could not be extended. This is due to the following reasons.

つまシ、充放電サイクル劣化の原因を考察した結果、こ
れは主に、放電にともなうMn 02粒子自体の電子伝
導性の低下であシ、副原因として、充電の際のM n 
02粒子の収縮によるM n 02粒子とカーボンブラ
ック等の導電剤粒子の分離による集電不良であることが
わかった。
As a result of considering the cause of charge/discharge cycle deterioration, we found that this is mainly due to a decrease in the electronic conductivity of the Mn02 particles themselves due to discharge, and as a secondary cause, the Mn02 particles during charging.
It was found that the current collection failure was due to separation of the M n 02 particles and conductive agent particles such as carbon black due to shrinkage of the 02 particles.

■2o61Moo3.Wo3はそれ自体、絶縁体である
が、LL+等のアルカリ金属イオンが侵入すると高電子
伝導性を有することが知られている。しかし、上記の引
用例はいずれもMn 022粒子自の電子伝導性を高め
ることができない。っまシ、第1の引用例(%開昭54
−60422)では、庵ち粒子と72O6粒子が接触し
ておらず、LA+等かv2°6内に侵入し・72O5粒
子が高電子伝導性を有したとしても、それは、カーボン
ブラック等の導電剤と同様に正極板内の集電性を高めて
いるにすぎない。充電によシ、Mn O2よシ、I、i
+等のアルカリ金属イオンが放出され、Mn 02粒子
が収縮すると・Mn 02粒子と72O6粒子(同様に
カーボンブラック等の導電剤粒子も)が分離し、集電効
果が減少する。他の引用例では、WO3もしくはM o
 O3がMn O2複数酸化物を形成しておシ、もとの
WO3もしくはM o Os  の構造を有していない
ため、Li+等のアルカリ金属イオンが侵入してきても
、高い電子伝導性は発揮しえない。したがって、充放電
サイクルの寿命を伸ばすことができない。
■2o61Moo3. Although Wo3 itself is an insulator, it is known to have high electronic conductivity when alkali metal ions such as LL+ enter. However, none of the above cited examples can increase the electronic conductivity of Mn 022 particles themselves. Well, the first quotation example (% Kaisho 54
-60422), the Iichi particles and 72O6 particles are not in contact, and particles such as LA+ invade v2°6.Even if the 72O5 particles have high electronic conductivity, it is due to conductive agents such as carbon black. Similarly, it merely increases the current collection within the positive electrode plate. For charging, Mn O2, I, i
When alkali metal ions such as + are released and the Mn 02 particles contract, the Mn 02 particles and the 72O6 particles (as well as conductive agent particles such as carbon black) separate, and the current collecting effect decreases. Other cited examples include WO3 or M o
Since O3 forms MnO2 multiple oxides and does not have the original WO3 or MoOs structure, high electronic conductivity is not exhibited even if alkali metal ions such as Li+ invade. No. Therefore, the life of the charge/discharge cycle cannot be extended.

本発明は、このような従来の欠点を除去するものであシ
、簡単な構成で、Mn O2の電子伝導性を高めるとと
もに、充放電のサイクルをぐシ返しても、導電剤粒子と
の分離の小さい正極活物質を作製することにより、充放
電挙動にすぐれた信頼性の高い非水電解質二次電池を提
供することを目的とする〇 問題点を解決するための手段 本発明の非水電解質二次電池は、正極活物質が一般式z
M2O6”yMo3 (ただl、M=aV+bMo+:
W+c+b+c=1)で表わされる酸化物をMnO2粒
子表面にM/Mn 原子比が0.02〜0.2  の範
囲で付着したものを用いることを特徴とする。
The present invention aims to eliminate such conventional drawbacks, and has a simple structure that increases the electronic conductivity of MnO2 and prevents separation from conductive agent particles even after repeated charge/discharge cycles. An object of the present invention is to provide a highly reliable non-aqueous electrolyte secondary battery with excellent charging and discharging behavior by producing a positive electrode active material with a small In secondary batteries, the positive electrode active material has the general formula z
M2O6”yMo3 (just l, M=aV+bMo+:
It is characterized by using an oxide represented by W+c+b+c=1) attached to the surface of MnO2 particles with an M/Mn atomic ratio in the range of 0.02 to 0.2.

上記χM2O3・7MO3の意味するところは、v2o
59Mo2o5.W2O,1Moo3.WO3,および
、これら酸化物よシ合成されうる金属酸化数6〜eの酸
化物、複酸化物の一種もしくはこれらの混合物(固溶体
も含む)である。これらはいずれもLi”等のアルカリ
金属イオンを含むことによシ、含有前にくらべ著しい電
子伝導性を持つようになると共に、高いアルカリ金属イ
オン導伝性をも有している。
The meaning of χM2O3・7MO3 above is v2o
59Mo2o5. W2O,1Moo3. WO3, and an oxide with a metal oxidation number of 6 to e, a type of double oxide, or a mixture thereof (including a solid solution) that can be synthesized from these oxides. By containing alkali metal ions such as Li'', all of these have remarkable electronic conductivity compared to before containing them, and also have high alkali metal ion conductivity.

M nO2粒子表面への上記酸化物の付着は、これらを
水等で湿式混合し、M o Oaは240℃まで、他の
■2O6.Wo3等の酸化物では250℃までの温度で
乾燥して得られる。しかし、これを超える乾燥温度では
Mnとの複酸化物が生成する○したがって、これ以上の
温度で得た酸化物を放電しても表面、酸化物による高電
子伝導性の発現はみられないので、−次電池には使用で
きても二次電池としては不適である。
The above-mentioned oxides are attached to the surface of the M nO2 particles by wet mixing them with water, etc., and the M o Oa is heated to 240°C, and the other ■2O6. Oxides such as Wo3 can be obtained by drying at temperatures up to 250°C. However, if the drying temperature exceeds this temperature, a double oxide with Mn will be formed. Therefore, even if the oxide obtained at a temperature higher than this temperature is discharged, high electron conductivity due to the oxide will not be observed on the surface. Although it can be used for secondary batteries, it is not suitable for secondary batteries.

作  用 との技術的手段による作用は次のようになる。For production The effect of technical means is as follows.

本発明の正極活物質を用いると、電池組み立て直後の放
電過程において、Mn 02粒子表面にあるV2O6等
の酸化物へLL+等のアルカリ金属イオンが侵入し、高
電子伝導性を有するようになる。また、これらの表面酸
化物は1層状あるいはトンネル型構造を有しているため
、高いイオン伝導性があシ、M n O2粒子表面への
アルカリ金属イオンの拡散を助ける。充電過程では、放
電過程とは逆に、アルカリ金属イオンがM n O2よ
り放出される。この充電過程では、Mn 02粒子表面
に付着している酸化物からもアルカリ金属イオンが放出
されるが、すべてのアルカリ金属イオンが放出されえず
・表面酸化物の金属原子M1個当たp 0.2〜0.5
 個のアルカリ金属イオンが表面酸化物中に残るため、
依然として表面酸化物は高電子伝導性を有している。さ
らにこの結果、表面酸化物はアルカリ金属4オンを含ん
だままであるため、充電過程でも収縮が小さく、したが
って、導電剤であるカーボン粒子との分離が小さくなり
、集電不良という問題はなくなる。
When the positive electrode active material of the present invention is used, during the discharging process immediately after battery assembly, alkali metal ions such as LL+ penetrate into oxides such as V2O6 on the surface of Mn02 particles, resulting in high electronic conductivity. Furthermore, since these surface oxides have a single-layer or tunnel-type structure, they have high ionic conductivity and help alkali metal ions diffuse to the surface of the MnO2 particles. During the charging process, alkali metal ions are released from MnO2, contrary to the discharging process. In this charging process, alkali metal ions are also released from the oxides attached to the surface of the Mn02 particles, but not all alkali metal ions can be released.・P0 per metal atom M of the surface oxide .2-0.5
Since alkali metal ions remain in the surface oxide,
The surface oxide still has high electronic conductivity. Furthermore, as a result, the surface oxide continues to contain the alkali metal 4-on, so it shrinks little during the charging process, and therefore, separation from the carbon particles, which are the conductive agent, becomes small, eliminating the problem of poor current collection.

また、M n O2と表面酸化物は、脱水縮合反応によ
シ、境界付近は化学的な力で強固に結合していると考え
られ、これは、単にMn O2粉末と、V2O6等の粉
末が物理的に接着している混合物とは異なる。よって充
放電を〈シ返してもMn O2と表面酸化物の分離は小
さく、活物質粒子の高電子伝導性を保つことができ、充
放電挙動にすぐれた正極活物質が得られる。
In addition, it is thought that MnO2 and surface oxides are strongly bonded by chemical force near the boundary due to dehydration condensation reaction, and this is simply due to the fact that MnO2 powder and powders such as V2O6 This is different from a physically bonded mixture. Therefore, even if charging and discharging are repeated, the separation between MnO2 and the surface oxide is small, the high electronic conductivity of the active material particles can be maintained, and a positive electrode active material with excellent charging and discharging behavior can be obtained.

以上の作用は、表面酸化物中の金属原子数がMn原子数
に対して0.02以上で得られる。しかし、なシ、Mn
 02粒子への高電子伝導性の付与はむすかしぐ、充放
電サイクル寿命は低下するので、好ましくない。
The above effects can be obtained when the number of metal atoms in the surface oxide is 0.02 or more relative to the number of Mn atoms. However, Mn
It is difficult to impart high electronic conductivity to the 02 particles, and the charge/discharge cycle life decreases, which is not preferable.

実施例 以下、本発明の実施例を示す。Example Examples of the present invention will be shown below.

V2O5等の酸化物のMn 02粒子表面への付着は次
の様に行った。−例としてV2O,について示すが他の
酸化物も同様である。
The attachment of oxides such as V2O5 to the surface of Mn02 particles was carried out as follows. -V2O is shown as an example, but the same applies to other oxides.

Mn O2にはγ型を用いた。β型及びrWとβ型の中
間体であるγ/β型でも同様であるが、電池性能として
はγ型がすぐれていた。
γ-type MnO2 was used. The same holds true for the β type and the γ/β type, which is an intermediate between rW and the β type, but the γ type was superior in terms of battery performance.

こノγ型MnO3o、oorとV2O,1,569F(
77Mn=0.05)を水15QQとともに容器に入れ
、ペースト状になるまで充分混合した。このペースト状
液体を80’Cで予備乾燥し、さらに250℃で乾燥し
た。分析により、V2O6がMn 02粒子表面、特に
Mn O2の凹部に一様に付着しているのが見られた。
This γ-type MnO3o, oor and V2O, 1,569F (
77Mn=0.05) was placed in a container along with 15QQ of water and thoroughly mixed until it became a paste. This pasty liquid was pre-dried at 80'C and further dried at 250C. The analysis showed that V2O6 was uniformly attached to the MnO2 particle surface, especially in the recesses of MnO2.

試験はすべて扁平型電池で行った。All tests were conducted using flat batteries.

正極活物質、カーボンブラック、及び四弗化工′チレン
樹脂を重量比で100対6対100割合で混合した。混
合物2O09をチタンのエキスバンドメタル集電体をス
ポット溶接した電池ケース内に成形し圧着した。極板の
直径は17.5 mmである。
The positive electrode active material, carbon black, and tetrafluoroethylene resin were mixed in a weight ratio of 100:6:100. The mixture 2O09 was molded and crimped into a battery case to which a titanium expanded metal current collector was spot welded. The diameter of the plate is 17.5 mm.

負極には、厚さ0.38 ttrmの金属リチウムを用
い、ニッケルのエキスバンドメタル集電体をスポット−
溶接した封口板に加圧圧着した。
For the negative electrode, metallic lithium with a thickness of 0.38 ttrm was used, and a nickel extended metal current collector was spotted.
It was pressure-bonded to the welded sealing plate.

電解液には、プロピレンカーボネートとジメトキシエタ
ンを等体積の割合で混合したものに、1モル/1の割合
でLにj!04を溶解したものを用い、また、セパレー
タにはポリプロピレン不織布を用いた。
The electrolyte is a mixture of propylene carbonate and dimethoxyethane in equal volumes, and is added to L at a ratio of 1 mole/1. 04 was used, and a polypropylene nonwoven fabric was used as a separator.

このように構成した電池において、2mAの定電流で2
.0〜3.8vの範囲で充放電を行った。
In a battery configured in this way, at a constant current of 2 mA, 2
.. Charging and discharging were performed in the range of 0 to 3.8v.

次表は、本発明の実施例及び比較例である正極活物質に
ついて充放電を行い、第2サイクルでの放電容量、第1
0サイクルでの放電容量、及びサイクル劣化量を記載し
たものである。ここで、サイクル劣化量は次式により求
めた。
The following table shows the discharge capacity in the second cycle, the first
The discharge capacity at 0 cycle and the amount of cycle deterioration are described. Here, the amount of cycle deterioration was determined by the following formula.

サイン7111i=(第10力仔〃の放電容量−第2サ
イク1し勺試料1〜12ば、Mn○2粒子表面に各酸化
物を付着させたものであり、試料13はMnO2粉末と
v2O5粉末の単なる混合物である。試料9,1゜は、
それぞれ、■OとMoO3との混合物(モル比2対1)
、MoOとWO2との混合物(1対1)をM n 02
粒子表面に付着させたものであり、試料11.12は、
それぞれの式で示される複酸化物を付着させたものであ
る。
Sign 7111i = (Discharge capacity of 10th cycle - 2nd cycle 1) Samples 1 to 12 have various oxides attached to the surface of Mn○2 particles, and sample 13 has MnO2 powder and V2O5 powder. Sample 9.1° is simply a mixture of
A mixture of ■O and MoO3 (molar ratio 2:1), respectively.
, a mixture of MoO and WO2 (1:1) as M n 02
It was attached to the particle surface, and sample 11.12 was
The composite oxides represented by the respective formulas are attached.

試料2〜4および6〜12と試料13を比較すると、M
 n 02粒子表面へ酸化物を付着させたものの方が、
単なる混合物よシも、サイクル劣化量において約3倍か
ら10倍すぐれていることがわかる。
Comparing Samples 2-4 and 6-12 with Sample 13, M
The one with oxide attached to the n02 particle surface is more
It can be seen that the simple mixture is about 3 to 10 times superior in terms of cycle deterioration.

また、試料1〜5を見ると、付着酸化物量が0.02よ
り少ない場合、および0.2を超える場合にはサイクル
劣化量の低減はない。なお、表には記載していないが、
他の酸化物でも同様な傾向が得られた。
Moreover, looking at Samples 1 to 5, when the amount of attached oxide is less than 0.02 and when it exceeds 0.2, there is no reduction in the amount of cycle deterioration. Although not listed in the table,
Similar trends were obtained for other oxides.

発明の効果 以上のように、本発明によれば、簡単な構成で充放電の
サイクルをくり返してもサイクル劣化の少ない、信頼性
の高い二酸化マンガン非水電解質二次電池が得られる。
Effects of the Invention As described above, according to the present invention, a highly reliable manganese dioxide nonaqueous electrolyte secondary battery with a simple configuration and little cycle deterioration even after repeated charge/discharge cycles can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 正極と、アルカリ金属イオン導伝性の非水電解質と、ア
ルカリ金属を活物質とする負極を構成要素とし、前記正
極の活物質が、一般式xM_2O_5・yMO_3(た
だしM=aV+bMo+cW、a+b+c=1)で表わ
される酸化物をMnO_2粒子表面にM/Mn原子比で
0.02〜0.2の範囲で付着させたものである非水電
解質二次電池。
The components include a positive electrode, an alkali metal ion conductive non-aqueous electrolyte, and a negative electrode containing an alkali metal as an active material, and the active material of the positive electrode has the general formula xM_2O_5・yMO_3 (where M=aV+bMo+cW, a+b+c=1) A non-aqueous electrolyte secondary battery in which an oxide represented by is attached to the surface of MnO_2 particles at an M/Mn atomic ratio of 0.02 to 0.2.
JP60077656A 1985-04-12 1985-04-12 Nonaqueous electrolyte secondary cell Pending JPS61237366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60077656A JPS61237366A (en) 1985-04-12 1985-04-12 Nonaqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60077656A JPS61237366A (en) 1985-04-12 1985-04-12 Nonaqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JPS61237366A true JPS61237366A (en) 1986-10-22

Family

ID=13639923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60077656A Pending JPS61237366A (en) 1985-04-12 1985-04-12 Nonaqueous electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JPS61237366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0789410A1 (en) * 1996-02-02 1997-08-13 Matsushita Electric Industrial Co., Ltd. Batteries and a manufacturing method of postitive active material for the batteries

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661771A (en) * 1979-10-23 1981-05-27 Nec Corp Battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661771A (en) * 1979-10-23 1981-05-27 Nec Corp Battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0789410A1 (en) * 1996-02-02 1997-08-13 Matsushita Electric Industrial Co., Ltd. Batteries and a manufacturing method of postitive active material for the batteries
US5744266A (en) * 1996-02-02 1998-04-28 Matsushita Electric Industrial Co., Ltd. Batteries and a method of manufacturing positive active material for the batteries
US5928714A (en) * 1996-02-02 1999-07-27 Matsushita Electric Industrial Co., Ltd. Method of manufacturing positive active material for batteries

Similar Documents

Publication Publication Date Title
EP0810681B1 (en) Nonaqueous electrolyte secondary battery
JPH0745304A (en) Organic electrolyte secondary battery
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
JP2871077B2 (en) Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery
JPS61237366A (en) Nonaqueous electrolyte secondary cell
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JPH04237970A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JPH0329135B2 (en)
JPH0359963A (en) Lithium secondary battery
JPH0355770A (en) Lithium secondary battery
JPH0558224B2 (en)
JPH02239572A (en) Polyaniline battery
JPH0475267A (en) Nonaqueous secondary battery
JPH01260767A (en) Secondary battery
JPS60218766A (en) Nonaqueous electrolyte secondary battery
JPH02220357A (en) Nonaqueous secondary battery
JPH04169077A (en) Nonaqueous electrolyte secondary battery
JP3362198B2 (en) Non-aqueous electrolyte secondary battery
JPS61239562A (en) Nonaqueous electrolyte secondary battery
JPH05283104A (en) Organic electrolyte secondary battery
JP2801684B2 (en) Non-aqueous electrolyte secondary battery
JPS58206063A (en) Battery