JPS61236981A - Four-way reversing valve for reversible refrigerating cycle - Google Patents

Four-way reversing valve for reversible refrigerating cycle

Info

Publication number
JPS61236981A
JPS61236981A JP60076629A JP7662985A JPS61236981A JP S61236981 A JPS61236981 A JP S61236981A JP 60076629 A JP60076629 A JP 60076629A JP 7662985 A JP7662985 A JP 7662985A JP S61236981 A JPS61236981 A JP S61236981A
Authority
JP
Japan
Prior art keywords
pressure
valve
chamber
piston
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60076629A
Other languages
Japanese (ja)
Other versions
JPH0559309B2 (en
Inventor
Masakazu Isobe
磯部 正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP60076629A priority Critical patent/JPS61236981A/en
Priority to US06/794,851 priority patent/US4644760A/en
Publication of JPS61236981A publication Critical patent/JPS61236981A/en
Publication of JPH0559309B2 publication Critical patent/JPH0559309B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fluid-Driven Valves (AREA)

Abstract

PURPOSE:To provide a four-way reversing valve for reversible refrigerating cycle which may be quickly switched from a heating operation to a cooling operation, by providing an auxiliary return spring operable in the heating operation only. CONSTITUTION:When a solenoid valve 16 is energized and a compressor 4 is started in a cooling operation, a plunger 17 is attracted, and a needle valve 18 opens a pressure relief hole 3a to communicate a pressure converting chamber R2 with a low-pressure suction side of the compressor 4. As a result, the pressure in the pressure converting chamber R2 is reduced, and therefore, there is generated a pressure differential greater than a resilient force of a compression spring 13 between chambers R1 and R2, thereby starting to move a piston 12 and a slide valve 21 toward a plug 3. Accordingly, an auxiliary return spring 12g is compressed to close a pressure balancing hole 12a, then stopping the cooling operation and being switched to a heating operation. In the heating operation, when the compressor 4 is stopped by a thermostat, pressure on the high pressure side and that on the low pressure side are gradually balanced to reach a maximum operational pressure differential. Then, the piston starts to be moved relatively quickly by resilient forces of the compression spring 13 and the auxiliary return spring 12g. Thus, the heating operation is switched to a cooling operation.

Description

【発明の詳細な説明】 〔発明の目的〕 嵐呈上■皿度光! 本発明は冷暖房兼用型空調機において、冷暖房の切°り
換え操作に用いられる四方逆転弁に関するものである。
[Detailed Description of the Invention] [Object of the Invention] Arashi Presentation ■Saradoko! The present invention relates to a four-way reversing valve used for switching between cooling and heating in a dual-purpose air conditioner.

U回特  ゛ 従□来における差圧駆動型の四方逆転弁は、シリンダ状
逆転弁本体内を一対のピストン等により高圧□室と低圧
室と圧力変換室、又は高圧室と2個の圧力変換室め3室
に区分するのがほとんどであり、該圧力変換□室をパイ
ロット三方電磁弁等により切り換え・てピストン乃至は
該ピストンに連結された流路切換量の弁体を移動させる
構成であった。
Part U: Conventional differential pressure-driven four-way reversing valves use a pair of pistons, etc. within the cylindrical reversing valve body to convert between a high pressure chamber, a low pressure chamber, and a pressure conversion chamber, or between a high pressure chamber and two pressure conversion chambers. In most cases, the pressure converting chamber is divided into three chambers, and the pressure converting chamber is switched by a pilot three-way solenoid valve, etc., and a piston or a valve body connected to the piston is moved. Ta.

°シようとする四 占 上記従来技術では、逆転四方弁もパイロ−/ )電磁弁
も構造が複雑であると共に相互の連通用導管の数も多く
て小型化の隘路となっており、また該パイロット電磁弁
の操作による制御は該圧力変換室に対する偵極的な減圧
と積極的な加”圧によるので、微細な電子制御に適して
いない等の欠点があった。
In the above-mentioned conventional technology, both the reversing four-way valve and the pyro-magnetic valve have complex structures and a large number of mutually communicating conduits, which is an obstacle to miniaturization. Control by operating a pilot electromagnetic valve involves scouting for pressure reduction and active pressurization of the pressure conversion chamber, which has disadvantages such as being unsuitable for fine electronic control.

本発明は上記した点に着目゛し、逆転弁本体内をピスト
ンにより高圧室と圧力変換室の二車に区分すると共に該
圧力変換室を開閉弁により開閉して差圧又はばねにより
該ピストン乃至は流路切換弁を移動させる構成を採用し
、もって構造の簡略化と小型化を達成し、該開閉弁によ
る該圧力変換★の制御を該圧力変換室から圧縮機の吸入
側に対する一定方向の冷媒流に対する開閉操作とするこ
ぶにより電子方式による微細な制御を可能とし、更には
ばねによるピストン乃至は流路切換弁の移動による暖房
運転から冷房運転への切り換えを迅速化したものである
The present invention focuses on the above-mentioned points, and divides the inside of the reversing valve body into two parts, a high pressure chamber and a pressure conversion chamber, by a piston, and opens and closes the pressure conversion chamber by an on-off valve, and uses differential pressure or a spring to separate the piston or the pressure conversion chamber. adopts a configuration in which the flow path switching valve is moved, thereby achieving a simpler and more compact structure, and controlling the pressure conversion★ by the on-off valve from the pressure conversion chamber to the suction side of the compressor. The knobs that open and close the refrigerant flow enable fine control by electronic system, and furthermore, the switching from heating operation to cooling operation can be speeded up by moving the piston or flow path switching valve using a spring.

〔発明の構成〕[Structure of the invention]

。 占を °するための 上記目的を達成するため、本発明においては、シリンダ
状の逆転弁本体内をピストンにより高圧室と圧力変換室
に区画し、高圧室に圧縮機の吐出管に対する接続口と、
圧縮機の吸入管に対する接続口及び該接続口を挾んで2
個の熱交換器用導管に対する接続口とを設け、吸入管に
対する接続口から2個の熱交換器用導管に対する接続口
にかけて一連の切換用弁シートを設け、該切換用弁シー
トに摺接するスライドバルブを該ピストンに連結し、該
ピストンに高圧室と圧力変換室を連通させ□る均圧孔を
形成する履共に該均圧孔に暖房運転時に烏いて高圧室か
4圧力変換室への流れを遮断する弁体を設け、該ピスト
ンを高圧室方向に常時付勢するばねと暖房運転時におい
てのみ該ピストンを高圧室方向に付勢する補助ばねを設
け、圧力変換室に圧縮機の吸入側に連通ずる圧力逃し孔
を設けると共に該圧力逃し孔に開閉弁を設け、該圧力逃
し孔の径を該均圧孔の径より大きく形成して成る構成を
採用した。
. In order to achieve the above-mentioned object of controlling the air pressure, the present invention divides the inside of the cylindrical reversing valve body into a high pressure chamber and a pressure conversion chamber by means of a piston, and the high pressure chamber is provided with a connection port for the discharge pipe of the compressor and a pressure conversion chamber. ,
Connecting port to the suction pipe of the compressor and holding the connecting port 2
A series of switching valve seats are provided from the connection ports for the suction pipes to the connection ports for the two heat exchanger pipes, and a slide valve is provided in sliding contact with the switching valve seats. A pressure equalizing hole is connected to the piston and communicates between the high pressure chamber and the pressure conversion chamber in the piston. At the same time, a pressure equalizing hole is formed in the pressure equalizing hole during heating operation to block the flow to the high pressure chamber or the pressure conversion chamber. A spring that always biases the piston toward the high pressure chamber and an auxiliary spring that biases the piston toward the high pressure chamber only during heating operation are provided, and the pressure conversion chamber is connected to the suction side of the compressor. A configuration was adopted in which a communicating pressure relief hole was provided, an on-off valve was provided in the pressure relief hole, and the diameter of the pressure relief hole was made larger than the diameter of the pressure equalization hole.

夾施■ 以下本発明の一実施例について図面と共に説明する。図
面において、1はシリンダ状の逆転弁本体であり、両端
部に栓体2,3が溶接・して固着されている。栓体2に
は圧縮機4の吐出管5が連結され、逆転弁本体1には軸
方向におし)で圧縮機4の吸入管6を挾んで2本の導管
7,114連結される。導管7,8は凝縮器又は蒸発器
として逆転的に使用される2個の熱交換器9,10に連
結される。吸入管6と導管7,8の内端は逆転弁本体1
内に固着される切換用の弁シート11の3個の通孔11
asllbtllcに接続され、弁シート11の内側に
は一連の平滑面lidが形成される。
Embodiment 1 An embodiment of the present invention will be described below with reference to the drawings. In the drawings, reference numeral 1 denotes a cylindrical reversing valve body, and plugs 2 and 3 are welded and fixed to both ends. A discharge pipe 5 of the compressor 4 is connected to the plug body 2, and two conduits 7, 114 are connected to the reversing valve body 1 with the suction pipe 6 of the compressor 4 sandwiched between them in the axial direction. The conduits 7, 8 are connected to two heat exchangers 9, 10 which are used reciprocally as condensers or evaporators. The inner ends of the suction pipe 6 and conduits 7 and 8 are connected to the reversing valve body 1.
Three through holes 11 of the switching valve seat 11 fixed inside.
asllbtllc, and a series of smooth surfaces lid are formed inside the valve seat 11.

逆転弁本体1内において、弁シート11と栓体3間にお
いてピストン12枠(摺動自在に設けられ、逆転弁本体
1内を高圧室R1と圧力変換室R2に区画する。ピスト
ン12と栓体3間には圧縮ばね13が設けられ、ピスト
ン12は高圧室R,力方向常時付勢されている。ピスト
ン12には高圧室R4と圧力変換室R2を常、時連通さ
せる均圧孔12aが形成され、栓体3には該均圧孔12
aよりも径の大きい圧力逃し孔3aが形成されると共に
該圧力逃し孔、3 aには吸入管6に至る導管14が連
結される。均圧孔12aの圧力変換室側の端部に弁シー
)12bと弁室12cが設けられ、弁室12c内におい
てボール状の弁体12dがシけら 、れる・    ・ 弁室12cの外壁12eにはリング状の衝合子12fが
摺動自在に構台され、該衝合4子12fは−同じく外H
jl12eに捲装された復帰用補助圧縮ばね12gによ
り栓体3方向に突出するように付勢されるもので、該衝
合子12. fの開口12f、によりボール状の弁体1
2dが一部突出した状態で支持されている。
Inside the reversing valve body 1, a piston 12 frame (slidably provided between the valve seat 11 and the plug body 3 divides the inside of the reversing valve body 1 into a high pressure chamber R1 and a pressure conversion chamber R2. The piston 12 and the plug body A compression spring 13 is provided between the piston 12 and the high pressure chamber R, and the piston 12 is always biased in the force direction. The pressure equalizing hole 12 is formed in the plug body 3.
A pressure relief hole 3a having a larger diameter than the pressure relief hole 3a is formed, and a conduit 14 leading to the suction pipe 6 is connected to the pressure relief hole 3a. A valve seat 12b and a valve chamber 12c are provided at the end of the pressure conversion chamber side of the pressure equalization hole 12a, and a ball-shaped valve body 12d is disposed within the valve chamber 12c. A ring-shaped abutment 12f is slidably mounted on a pedestal, and the four abutments 12f are also located outside H.
jl12e is biased to protrude in the direction of the stopper 3 by a return auxiliary compression spring 12g wound around the abutment 12. The ball-shaped valve body 1 is opened by the opening 12f of f.
2d is supported in a partially protruding state.

栓体3にプライン4.ヤ管15を介して電磁開閉弁16
が5付設され、そのプランジャ17の先端に設し才たボ
ール弁18が圧力逃し孔3aの途中に設けた弁シー)3
bに接離して該圧力逃し孔3aを開閉する。即〉、圧力
逃し孔3aは栓体3の外周部分、において圧力変換室R
2から弁室3Cに達する通孔3 a4 と、弁室3Cか
ら栓体3の中心部分を通る通孔3azからの放射方向の
通孔3a、から成り、該通孔3a、の弁室3c側端部に
弁シート3bが設けられ、通孔3a、に前記導管14が
接続される。プランジャ17と吸引鉄心19間には圧縮
ばね20が設けられてボール弁18は弁シー)3bに当
接する方向に付勢される。
Pline 4 on the plug body 3. Electromagnetic on-off valve 16 via Yapipe 15
5 is attached, and a ball valve 18 provided at the tip of the plunger 17 is provided in the middle of the pressure relief hole 3a) 3
b to open and close the pressure relief hole 3a. Immediately, the pressure relief hole 3a is connected to the pressure conversion chamber R at the outer peripheral portion of the plug body 3.
The valve chamber 3c side of the through hole 3a is composed of a through hole 3a4 reaching the valve chamber 3C from the valve chamber 3C, and a radial through hole 3a from the through hole 3az passing through the center part of the plug body 3 from the valve chamber 3C. A valve seat 3b is provided at the end, and the conduit 14 is connected to the through hole 3a. A compression spring 20 is provided between the plunger 17 and the suction core 19, and the ball valve 18 is biased in the direction of contacting the valve seat 3b.

弁シート11上には連通用内腔21aを有するスライド
バルブ21が設けられ、該スライドバルブ21は連結杆
22によりピストン12に連結される。スライドバルブ
21は移動によりその内腔21aを介して弁シート11
における吸入管6に対する通孔11aをその両側の熱交
換器用導管7.8に対する通孔11bsllcに対して
択一的に連通させる。
A slide valve 21 having a communication bore 21a is provided on the valve seat 11, and the slide valve 21 is connected to the piston 12 by a connecting rod 22. The slide valve 21 moves to the valve seat 11 through its inner cavity 21a.
The through hole 11a for the suction pipe 6 is alternatively communicated with the through hole 11bsllc for the heat exchanger conduit 7.8 on both sides thereof.

上記構成において、第1図は冷房運転状態を示す、即ち
、電磁開閉弁16は無通電状態にあってプランジ中17
がばね20により押されてボール弁18が圧力逃し孔3
aを閉じるので、均圧孔12aにより高圧室R,と圧力
変換室R3は同圧力となり、従ってピストン12はばね
13により弁シ”−)11に当接する迄押し動かされ、
スライドバルブ21は通孔11aを通孔11cに対して
連通させるので、冷媒は圧縮機4−吐出管5−alt管
7−室外熱交換器9−絞り手段23−室内熱交換器10
−導管8→吸入管6−圧縮機4の経路で循環する。
In the above configuration, FIG. 1 shows the cooling operation state, that is, the electromagnetic on-off valve 16 is in a non-energized state and the plunger 17 is in a plunging state.
is pushed by the spring 20 and the ball valve 18 closes to the pressure relief hole 3.
a is closed, the high pressure chamber R and the pressure conversion chamber R3 have the same pressure due to the pressure equalization hole 12a, and therefore the piston 12 is pushed by the spring 13 until it comes into contact with the valve seat 11.
Since the slide valve 21 allows the through hole 11a to communicate with the through hole 11c, the refrigerant flows through the compressor 4 - the discharge pipe 5 - the alt pipe 7 - the outdoor heat exchanger 9 - the throttle means 23 - the indoor heat exchanger 10
It circulates along the route of - conduit 8 -> suction pipe 6 - compressor 4.

次に電磁開閉弁16に通電すると共に圧縮機4を起動す
ると、プランジャ17が吸引されてニードル弁体18が
圧力逃し孔3aを開き、圧力変換室R2内を圧縮機4の
吸入側の低圧に連通させる。
Next, when the electromagnetic on-off valve 16 is energized and the compressor 4 is started, the plunger 17 is attracted, the needle valve body 18 opens the pressure relief hole 3a, and the inside of the pressure conversion chamber R2 is changed to the low pressure on the suction side of the compressor 4. communicate.

これにより、圧力変換室R2においては冷媒が圧力逃し
孔3aより吸入側へ逃げると同時に高圧室R+より均圧
孔12aを介して冷媒が供給され、この際において圧力
逃し孔3aの径が均圧孔12aの径よりも大であって冷
媒の供給量よりも排出量が大きいので圧力変換室R2は
低圧となり、室R1,R1間には圧縮ばね13の弾力に
打ち勝つ差圧が発生し、第2図に示される如くにピスト
ン12乃至スライドバルブ21は栓体3方向に移動を開
始する。
As a result, in the pressure conversion chamber R2, the refrigerant escapes from the pressure relief hole 3a to the suction side, and at the same time, the refrigerant is supplied from the high pressure chamber R+ through the pressure equalization hole 12a, and at this time, the diameter of the pressure relief hole 3a becomes equal to the pressure. Since the diameter of the hole 12a is larger and the amount of refrigerant discharged is larger than the amount of refrigerant supplied, the pressure conversion chamber R2 becomes low pressure, and a pressure difference that overcomes the elasticity of the compression spring 13 is generated between the chambers R1 and R1. As shown in FIG. 2, the piston 12 to the slide valve 21 start moving in the direction of the stopper 3.

上記移動により、ピストン12が栓体3に接近すると、
弁体12d乃至衝合子12fが栓体3に当接し、復帰用
補助ばね12gを圧縮すると共に′弁体12dが弁シー
ト12bに当接して均圧孔12aを閉止した状態で停止
す!、この状態に蓄いて、スライドバルブ21は通孔1
1aを通孔11bに対して連通させるので、冷媒は圧縮
機4−4出管5−導管8−室外熱交換器1〇二絞り手段
2 :4−の経路で循環して暖房運転となる。
When the piston 12 approaches the stopper 3 due to the above movement,
The valve body 12d to the abutment 12f come into contact with the stopper 3, compressing the return auxiliary spring 12g, and stop with the valve body 12d coming into contact with the valve seat 12b and closing the pressure equalizing hole 12a! , in this state, the slide valve 21 opens through hole 1.
Since the through hole 1a is communicated with the through hole 11b, the refrigerant is circulated through the route of the compressor 4, the outlet pipe 5, the conduit 8, the outdoor heat exchanger 10, the throttle means 2, and 4, resulting in heating operation.

暖房運転時において、サーモスタットにより圧縮機4が
停止すると、高圧−と低圧側は徐=にバランスして行き
、最高作動圧力差になるとピストンは1縮ばね13と補
助圧縮ばね12gの弾撥力により比較的迅速に移動を開
始する。
During heating operation, when the compressor 4 is stopped by the thermostat, the high pressure and low pressure sides gradually become balanced, and when the maximum operating pressure difference is reached, the piston is moved by the elastic force of the first compression spring 13 and the auxiliary compression spring 12g. Start moving relatively quickly.

このように暖房運転時において、冷房状態に迅速に切り
換えた後、除霜開始信号により除霜運転を行なう。
In this way, during the heating operation, after quickly switching to the cooling state, the defrosting operation is performed in response to the defrosting start signal.

第4図の実施例においては、栓体3においてピストン1
2の均圧孔12aに対向するニードル状の弁体12d′
が設けられ、前記したと同様にピストン12が栓体3に
接近した際において、該ニードル状の弁体12d′が弁
シート12bに当接して閉止する。また0、前記衝合子
12fに代えて栓体3に対し補助ばね12gを圧縮する
突子12f′が設けられている。
In the embodiment shown in FIG. 4, the piston 1 is
A needle-shaped valve body 12d' facing the pressure equalizing hole 12a of No. 2
is provided, and when the piston 12 approaches the stopper 3, the needle-shaped valve element 12d' comes into contact with the valve seat 12b and closes. Further, in place of the abutment 12f, a protrusion 12f' that compresses the auxiliary spring 12g against the plug body 3 is provided.

〔発明の効果〕〔Effect of the invention〕

本発明は上記した如くに、シリンダ状の逆転弁本尿内を
ピストンにより高圧室と圧力変換室に区画し、・高圧室
に圧縮機の吐出管に対する接続口と、圧縮機の吸入管に
対す゛る接続口及び該接続口を挾んで2゛□個の一熱交
換器用導管に対する接続口とを設け、吸入管に対する接
続口から2個の熱交換器用導管に対する接続口にかけて
一連の切換用弁シートを設け、該切換用弁シートに摺接
するスライドバルブを該ピストンに連結し、該ピストン
に高圧室と圧力変換室を連通させる均圧孔を形成すると
共に該均圧孔に暖房運転時において高圧室から圧力変換
室への流れを遮断する弁体を設け、該ピストンを高圧室
方向に常時付勢するばねと暖房運転時においてのみ該ピ
ストンを高圧室方向に付勢する補助ばねを設け、圧力変
換室に圧縮機の吸入側に連通ずる圧力逃し孔を設けると
共に該圧力逃し孔に開閉弁を設け、該圧力逃し孔の径を
該均圧孔の径より大きく形成して成るものであるから、
構造を大巾に簡略化して作動を安定させると共に小型化
を達成でき、また電子方式により微細な制御を行なうこ
とができる。
As described above, the present invention divides the interior of a cylindrical reversing valve into a high pressure chamber and a pressure conversion chamber by means of a piston, and the high pressure chamber has a connection port for the discharge pipe of the compressor and a connection port for the suction pipe of the compressor. A series of switching valve seats are provided from the connection port for the suction pipe to the connection ports for the two heat exchanger conduits. A slide valve that is in sliding contact with the switching valve seat is connected to the piston, and a pressure equalization hole is formed in the piston to communicate the high pressure chamber and the pressure conversion chamber. A valve body is provided to shut off the flow from the air to the pressure conversion chamber, and a spring that constantly biases the piston toward the high pressure chamber and an auxiliary spring that biases the piston toward the high pressure chamber only during heating operation are provided. A pressure relief hole communicating with the suction side of the compressor is provided in the chamber, an on-off valve is provided in the pressure relief hole, and the diameter of the pressure relief hole is formed to be larger than the diameter of the pressure equalization hole.
The structure can be greatly simplified, operation can be stabilized, miniaturization can be achieved, and fine control can be performed by electronic means.

特に本発明においては、暖房運転時においてのみ作動す
る復帰用補助ばねを設けているので、暖房運転から冷房
運転への切り換えを迅速化し得ると共に冷房運転から暖
房運転への切り換えも迅速化し得ることができ、冷房運
転から暖房運転へ移行した際において直ちに弁体により
均圧孔を閉止するので、冷媒の漏れを最小限に止めるこ
とができる。
In particular, in the present invention, since an auxiliary return spring is provided that operates only during heating operation, it is possible to speed up the switching from heating operation to cooling operation, and also to speed up the switching from cooling operation to heating operation. Since the pressure equalizing hole is immediately closed by the valve body when the cooling operation shifts to the heating operation, leakage of refrigerant can be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例について冷房運転状態を示す
断面図、第2図は同上の冷房運転から暖房運転への移行
途中における作動状態図、第3図は同上における暖房運
転状態を示す断面図、第4図は弁体の他の実施例の詳細
図である。 1・・・逆転弁本体、R+・・・高圧室、R2・・・圧
力変換室、4・・・圧縮機、5・・・吐出管、6・・・
吸入管、9.10・・・熱交換器、11・・・切換用の
弁シート、12・・・ピストン、12 a−・・均圧孔
、3a・・・圧力逃し孔、12d・・・弁体、12g・
・・補助ばね、13・・・圧縮ばね、18・”開閉弁。
Fig. 1 is a sectional view showing the cooling operation state of an embodiment of the present invention, Fig. 2 is an operation state diagram during the transition from cooling operation to heating operation in the same example, and Fig. 3 shows the heating operation state in the same example. The sectional view, FIG. 4, is a detailed view of another embodiment of the valve body. 1...Reversing valve body, R+...High pressure chamber, R2...Pressure conversion chamber, 4...Compressor, 5...Discharge pipe, 6...
Suction pipe, 9.10...Heat exchanger, 11...Switching valve seat, 12...Piston, 12a...Pressure equalization hole, 3a...Pressure relief hole, 12d... Valve body, 12g・
...Auxiliary spring, 13...Compression spring, 18.''Opening/closing valve.

Claims (1)

【特許請求の範囲】[Claims] シリンダ状の逆転弁本体内をピストンにより高圧室と圧
力変換室に区画し、高圧室に圧縮機の吐出管に対する接
続口と、圧縮機の吸入管に対する接続口及び該接続口を
挾んで2個の熱交換器用導管に対する接続口とを設け、
吸入管に対する接続口から2個の熱交換器用導管に対す
る接続口にかけて一連の切換用弁シートを設け、該切換
用弁シートに摺接するスライドバルブを該ピストンに連
結し、該ピストンに高圧室と圧力変換室を連通させる均
圧孔を形成すると共に該均圧孔に暖房運転時において高
圧室から圧力変換室への流れを遮断する弁体を設け、該
ピストンを高圧室方向に常時付勢するばねと暖房運転時
においてのみ該ピストンを高圧室方向に付勢する補助ば
ねを設け、圧力変換室に圧縮機の吸入側に連通する圧力
逃し孔を設けると共に該圧力逃し孔に開閉弁を設け、該
圧力逃し孔の径を該均圧孔の径より大きく形成して成る
ことを特徴とする可逆冷凍サイクル用四方逆転弁。
The cylindrical reversing valve body is divided into a high pressure chamber and a pressure conversion chamber by a piston, and the high pressure chamber has a connection port for the discharge pipe of the compressor, a connection port for the suction pipe of the compressor, and two ports sandwiching the connection port. and a connection port for the heat exchanger conduit,
A series of switching valve seats is provided from the connection port for the suction pipe to the connection port for the two heat exchanger conduits, and a slide valve in sliding contact with the switching valve seat is connected to the piston. A pressure equalization hole is formed that communicates the conversion chamber, and a valve body is provided in the pressure equalization hole to block the flow from the high pressure chamber to the pressure conversion chamber during heating operation, and a spring that constantly biases the piston in the direction of the high pressure chamber. and an auxiliary spring that biases the piston toward the high pressure chamber only during heating operation, a pressure relief hole communicating with the suction side of the compressor is provided in the pressure conversion chamber, and an on-off valve is provided in the pressure relief hole. A four-way reversing valve for a reversible refrigeration cycle, characterized in that the diameter of the pressure relief hole is larger than the diameter of the pressure equalization hole.
JP60076629A 1984-11-05 1985-04-12 Four-way reversing valve for reversible refrigerating cycle Granted JPS61236981A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60076629A JPS61236981A (en) 1985-04-12 1985-04-12 Four-way reversing valve for reversible refrigerating cycle
US06/794,851 US4644760A (en) 1984-11-05 1985-11-04 Reversible four-way valve for reversible refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60076629A JPS61236981A (en) 1985-04-12 1985-04-12 Four-way reversing valve for reversible refrigerating cycle

Publications (2)

Publication Number Publication Date
JPS61236981A true JPS61236981A (en) 1986-10-22
JPH0559309B2 JPH0559309B2 (en) 1993-08-30

Family

ID=13610657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60076629A Granted JPS61236981A (en) 1984-11-05 1985-04-12 Four-way reversing valve for reversible refrigerating cycle

Country Status (1)

Country Link
JP (1) JPS61236981A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259233A (en) * 1991-04-24 1993-11-09 American Air Liquide Counterflow valve
WO2009152402A3 (en) * 2008-06-13 2010-04-08 Carrier Corporation Four-way reversing valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259233A (en) * 1991-04-24 1993-11-09 American Air Liquide Counterflow valve
WO2009152402A3 (en) * 2008-06-13 2010-04-08 Carrier Corporation Four-way reversing valve

Also Published As

Publication number Publication date
JPH0559309B2 (en) 1993-08-30

Similar Documents

Publication Publication Date Title
JPH0744775Y2 (en) Compressor capacity control device
JP6530991B2 (en) Direct acting solenoid valve and four-way switching valve equipped with the same as a pilot valve
US4644760A (en) Reversible four-way valve for reversible refrigerating cycle
JPH08170865A (en) Changeover valve for heat pump air conditioning apparatus
JPS61236981A (en) Four-way reversing valve for reversible refrigerating cycle
JPH01155163A (en) Four-way valve for refrigeration cycle
JPH0547754B2 (en)
JPS61218883A (en) Four way type reversing valve for reversible refrigerating cycle
JPH04116360A (en) Five way reversing valve for reversible refrigeration cycle
JPH0419407Y2 (en)
JPH0250060A (en) Five-way reversible valve
JPH116573A (en) Four way valve suppressing switching shock
JPH0132389B2 (en)
JP3256270B2 (en) Reversible valve
JPS63219973A (en) Three-way solenoid valve
JP2002130870A (en) Double-direction valve
JPH0961017A (en) Two-way constant pressure expansion valve
JPH0718494B2 (en) Four-way valve for refrigeration cycle
JPH0799217B2 (en) Three-way solenoid valve
JP2580210B2 (en) Five-way reversing valve
JPS61153355A (en) Four-way reversing valve for reversible refrigeration cycle
JP2532497B2 (en) Four-way valve for refrigeration cycle
JPH0633921B2 (en) Defrosting method and five-way valve for reversible refrigeration cycle
JP2002372160A (en) Four way selector valve
JPS63140872A (en) Variable-capacity compressor