JPH116573A - Four way valve suppressing switching shock - Google Patents

Four way valve suppressing switching shock

Info

Publication number
JPH116573A
JPH116573A JP9176515A JP17651597A JPH116573A JP H116573 A JPH116573 A JP H116573A JP 9176515 A JP9176515 A JP 9176515A JP 17651597 A JP17651597 A JP 17651597A JP H116573 A JPH116573 A JP H116573A
Authority
JP
Japan
Prior art keywords
pressure
switching
valve
switching path
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9176515A
Other languages
Japanese (ja)
Inventor
Isamu Toyama
勇 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji International Corp
Original Assignee
Fuji International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji International Corp filed Critical Fuji International Corp
Priority to JP9176515A priority Critical patent/JPH116573A/en
Publication of JPH116573A publication Critical patent/JPH116573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Valves (AREA)
  • Multiple-Way Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a pressure difference at the inside in a short time and smoothly perform a switch when the operation of a heating and cooling device is switched and improve durability of the device itself. SOLUTION: In a device in which two ducts of a first switching path R1 and a second switching path R2 of a valve element 20 are made to be selectively switched by performing a fixed angle reciprocating rotation for a casing 10 or the valve element 20, a pressure buffer valve 30 is incorporated into the lower part of a first switching path port 21 so as to have an opening tendency except at the time of receiving pressure. When the ducts are switched, the pressure buffer valve 30 is moved upward, the first switching path port 21 is communicated with residual space at the inside of the casing 10 via a buffer valve receiving part 27 receiving a pressure adjusting hole 31 formed at the pressure buffer valve 30 and the pressure buffer valve 30 and a communicating hole 28 formed at the tip part of the buffer valve receiving part 27 and a pressure difference at the inside of the casing 10 is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷暖房機等に組み込
まれ、高低圧冷媒の流路を切り換える装置に関するもの
であり、特に暖房から冷房あるいは冷房から暖房に切り
換える際にその切り換えが円滑に行え、装置自体の耐久
性を高めることができる新規な切換衝撃を抑制した四方
弁に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device incorporated in an air conditioner or the like for switching the flow path of high and low pressure refrigerants. In particular, when switching from heating to cooling or from cooling to heating, the switching can be performed smoothly. The present invention relates to a novel four-way valve capable of improving the durability of the device itself and suppressing a switching impact.

【0002】[0002]

【発明の背景】冷暖房装置は、室内機と室外機の間を循
環する冷媒(室内熱交換器〜コンプレッサ〜室外熱交換
器の間で高低圧気体であり、室外熱交換器〜毛細管〜室
内熱交換器の間で液体である)に熱を運搬させて、室内
の熱を室外に放出、または室外の熱を室内に取り込んで
室温を調節している。そして冷房と暖房との切り換え
は、冷媒の循環方向を反対に切り換えることにより行わ
れる。ところで冷媒を逆循環させるには、実際にはコン
プレッサを逆回転させて冷媒を逆循環させることはでき
ないため、四方弁と呼ばれる切換弁が必要とされる。こ
のものはその作動性の改良等を図るべく、種々の開発が
行われている。その傾向は特開昭61−6468号に見
られるように弁体をスライドさせて切り換えるものから
ケーシング内を弁体を回動させて流路を切り換えるもの
に変わりつつある。
BACKGROUND OF THE INVENTION A cooling / heating device is a refrigerant circulating between an indoor unit and an outdoor unit (a high and low pressure gas between an indoor heat exchanger, a compressor, and an outdoor heat exchanger, and an outdoor heat exchanger, a capillary tube, and an indoor heat exchanger). The liquid is transferred between the exchangers) to release the indoor heat to the outside or to take the outdoor heat into the room to control the room temperature. Switching between cooling and heating is performed by switching the circulation direction of the refrigerant in the opposite direction. By the way, in order to reversely circulate the refrigerant, it is actually impossible to reversely circulate the refrigerant by rotating the compressor in the reverse direction. Therefore, a switching valve called a four-way valve is required. This product has been variously developed in order to improve its operability. The tendency is changing from switching the valve body by sliding the valve element to switching the flow path by rotating the valve element in the casing as seen in Japanese Patent Application Laid-Open No. 61-6468.

【0003】ところで四方弁は通常、冷媒を圧縮するコ
ンプレッサの吐出口及び吸入口と接続されるため、圧縮
され、高圧高温となった冷媒が流れる部分と、熱交換を
終了し低圧低温となった冷媒が流れる部分とでは圧力及
び温度において内部差を生じた状態となっている。この
ような状況で暖房から冷房あるいは冷房から暖房に切り
換えることは四方弁自体に急激な圧力変化、温度変化を
もたらし、装置全体に衝撃を与える結果となる。このよ
うな衝撃を回避する観点からは、弁の切り換えが瞬時に
行われない従来型のスライドタイプの切換弁が好ましい
ものであったものの、このような従来型は一方では弁と
してのシール性能を充分に上げ得ない点や、切換速度が
遅いという欠点は免れ得なかった。逆に言えば、切換速
度が遅い点やシール性能が充分でないという不都合を甘
受してまでも切り換え時の衝撃回避を優先させて従来型
が用いられてきていたのである。しかしながらこのよう
な四方弁の性能向上が求められてくると切換速度を速く
正確にしながらも切り換え時の衝撃を抑制するという、
いわば二律背反的な要求をも満たす必要が生じてきてい
る。
Since the four-way valve is normally connected to a discharge port and a suction port of a compressor for compressing the refrigerant, a portion where the compressed, high-pressure, high-temperature refrigerant flows, and heat exchange is terminated, and the low-pressure, low-temperature, low-pressure valve is obtained. There is an internal difference in pressure and temperature between the portion where the refrigerant flows and the portion where the refrigerant flows. Switching from heating to cooling or from cooling to heating in such a situation results in a sudden change in pressure and temperature in the four-way valve itself, resulting in an impact on the entire apparatus. From the viewpoint of avoiding such an impact, a conventional slide type switching valve in which the valve is not instantaneously switched is preferable, but such a conventional type has sufficient sealing performance as a valve on the other hand. However, the drawbacks of being unable to increase the speed and the slow switching speed were inevitable. Conversely, the conventional type has been used with priority given to avoiding an impact at the time of switching even if the disadvantage that the switching speed is slow or the sealing performance is not sufficient is accepted. However, when the performance of such a four-way valve is required to be improved, the switching speed is made faster and more accurate, while suppressing the impact at the time of switching.
In other words, there is a need to satisfy the trade-offs.

【0004】[0004]

【開発を試みた技術的課題】本発明はこのような背景を
認識してなされたものであり、例えば暖房から冷房ある
いは冷房から暖房へと運転を切り換える際、比較的短時
間で内部の圧力差を減少させ円滑に切り換えが行えると
ともに、装置自体の耐久性も向上させる新規な切換衝撃
を抑制した四方弁の開発を試みたものである。
[Technical Problems Attempted to Be Developed] The present invention has been made in view of such a background. For example, when switching operation from heating to cooling or from cooling to heating, the internal pressure difference is relatively short. The present invention has attempted to develop a new four-way valve that suppresses switching impact and reduces the switching impact, and can improve the durability of the device itself.

【0005】[0005]

【課題を解決するための手段】すなわち請求項1記載の
切換衝撃を抑制した四方弁は、外壁に第一接続口、第二
接続口、第三接続口及び第四接続口を有したケーシング
と、このケーシング内の前記第一接続口を通る軸線上に
回動自在に設けられ、第一切換路口から第二切換路口へ
と連通する第一切換路、及び第一切換路口から第三切換
路口へと連通する第二切換路を有した弁体とを具えて成
り、前記第一接続口と第一切換路口とは常時連通され、
一方前記第二接続口と第二切換路口と、第三接続口と第
三切換路口とは弁体を一定角度往復回動させることによ
り択一的に連通させ、互いに圧力差を有する第一切換路
と第二切換路との二つの流路を選択的に切り換えるよう
にした装置において、前記装置内には流路内の高圧状態
を漸減させる圧力緩衝機構が組み込まれていることを特
徴として成るものである。この発明によれば、冷暖房装
置を例えば暖房から冷房あるいは冷房から暖房に切り換
える際、圧力緩衝機構により四方弁内部の圧力差を比較
的短時間で減少させ、円滑な切り換えが行える。また急
激な圧力変化や温度変化を伴うことがないため、四方弁
自体の耐久性も向上させることができる。
According to a first aspect of the present invention, there is provided a four-way valve in which switching impact is suppressed, comprising a casing having a first connection port, a second connection port, a third connection port, and a fourth connection port on an outer wall. A first switching path rotatably provided on an axis passing through the first connection port in the casing and communicating from the first switching path to the second switching path; and a first switching path from the first switching path to the third switching path. And a valve body having a second switching path that communicates with the first connection port and the first switching path port are always in communication,
On the other hand, the second connection port and the second switching path port, and the third connection port and the third switching path port are selectively communicated by reciprocally rotating the valve body by a predetermined angle, and the first switching mode having a pressure difference therebetween. In a device for selectively switching between two flow paths, a path and a second switching path, a pressure buffer mechanism for gradually reducing a high pressure state in the flow path is incorporated in the apparatus. Things. According to this invention, when switching the cooling / heating device from, for example, heating to cooling or from cooling to heating, the pressure difference in the four-way valve can be reduced in a relatively short time by the pressure buffer mechanism, and smooth switching can be performed. Further, since there is no sudden change in pressure or temperature, the durability of the four-way valve itself can be improved.

【0006】また請求項2記載の切換衝撃を抑制した四
方弁は、前記請求項1記載の要件に加え、前記圧力緩衝
機構は、前記第一切換路口の下方に、圧力緩衝弁が突出
自在に組み込まれ、流路を切り換える際に、その前の段
階で圧力緩衝弁を上方に移動させ、第一切換路口が圧力
緩衝弁に形成された圧力調整孔及び圧力緩衝弁を受け入
れる緩衝弁受入部及び緩衝弁受入部の先端部に形成され
た連通孔を介してケーシング内部の残余スペースと連通
し、ケーシング内部の圧力差を減少するように構成され
ていることを特徴として成るものである。この発明によ
れば、運転を切り換える際、四方弁内部に生ずる圧力差
を短時間で減少する構造を可能とする。
According to a second aspect of the present invention, in addition to the requirement of the first aspect, the four-way valve in which the switching impact is suppressed is provided such that the pressure buffering mechanism allows the pressure buffering valve to protrude below the first switching path opening. Incorporated, when switching the flow path, the pressure buffer valve is moved upward in the previous stage, and the first switching path port receives a pressure adjustment hole formed in the pressure buffer valve and a buffer valve receiving portion that receives the pressure buffer valve, and It is characterized in that it is configured to communicate with the remaining space inside the casing through a communication hole formed at the distal end of the buffer valve receiving portion, so as to reduce the pressure difference inside the casing. ADVANTAGE OF THE INVENTION According to this invention, when switching operation | movement, it enables the structure which reduces the pressure difference which arises inside a four-way valve in a short time.

【0007】更にまた請求項3記載の切換衝撃を抑制し
た四方弁は、前記請求項1または2記載の要件に加え、
前記圧力緩衝弁は、受圧時以外は開放傾向を有するよう
に支持されることを特徴として成るものである。この発
明によれば、冷暖房装置の運転時たる受圧時には圧力緩
衝弁は下方に位置し、ケーシング内部と連通した連通孔
を塞ぐことにより、高圧ガス冷媒の漏出を防いでおり、
受圧時以外すなわち運転停止時には圧力緩衝弁は上方に
移動することにより塞いでいた連通孔を開口させ、四方
弁内部の圧力差を短時間で減少させる構造を可能とす
る。
According to a third aspect of the present invention, there is provided a four-way valve in which the switching impact is suppressed, in addition to the requirement of the first or second aspect.
The pressure buffer valve is characterized in that it is supported so as to have an open tendency except when receiving pressure. According to the present invention, the pressure buffer valve is located at the time of receiving pressure as an operation of the cooling and heating device, and by closing the communication hole communicating with the inside of the casing, leakage of the high-pressure gas refrigerant is prevented,
Except during pressure reception, that is, when the operation is stopped, the pressure buffer valve moves upward to open the closed communication hole, thereby enabling a structure in which the pressure difference inside the four-way valve is reduced in a short time.

【0008】[0008]

【発明の実施の形態】以下本発明を図示の実施の形態に
基づき説明する。切換衝撃を抑制した四方弁1は図1、
2に示すようにケーシング10と、この中を駆動素子6
によって一定角度往復回動する弁体20と、弁体20内
に設けられる圧力緩衝弁30とを主要部材として成る。
因みに図1では暖房運転を行っている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the illustrated embodiments. The four-way valve 1 in which the switching impact is suppressed is shown in FIG.
2, a casing 10 and a driving element 6 therein.
The main body includes a valve body 20 that reciprocates by a predetermined angle and a pressure buffer valve 30 provided in the valve body 20.
In FIG. 1, the heating operation is performed.

【0009】まず四方弁1の説明に先立ち、冷暖房装置
の全体構成について説明すると、図1に示すようにコン
プレッサ2の吐出口及び吸入口から第一配管H1及び第
四配管H4が四方弁1へ接続されている。また四方弁1
からは、室内熱交換器3及び室外熱交換器5へ第二配管
H2及び第三配管H3が接続されている。室内熱交換器
3と室外熱交換器5とは、冷媒の減圧を行う毛細管4を
間に挟んで配管がなされて接続される。暖房運転時には
冷媒は図1、4に示すようにコンプレッサ2、四方弁
1、室内熱交換器3、毛細管4、室外熱交換器5、四方
弁1、そして再びコンプレッサ2へと戻って循環してい
る。また冷房運転時には図5に示すように冷媒はコンプ
レッサ2、四方弁1、室外熱交換器5、毛細管4、室内
熱交換器3、四方弁1、そして再びコンプレッサ2へと
戻って循環している。
Prior to the description of the four-way valve 1, the overall configuration of the cooling and heating device will be described. As shown in FIG. 1, the first pipe H1 and the fourth pipe H4 are connected from the discharge port and the suction port of the compressor 2 to the four-way valve 1. It is connected. Also four-way valve 1
From, the second pipe H2 and the third pipe H3 are connected to the indoor heat exchanger 3 and the outdoor heat exchanger 5. The indoor heat exchanger 3 and the outdoor heat exchanger 5 are connected by piping with a capillary tube 4 for decompressing the refrigerant interposed therebetween. During the heating operation, the refrigerant circulates back to the compressor 2, the four-way valve 1, the indoor heat exchanger 3, the capillary tube 4, the outdoor heat exchanger 5, the four-way valve 1, and the compressor 2 again as shown in FIGS. I have. During the cooling operation, as shown in FIG. 5, the refrigerant is circulated back to the compressor 2, the four-way valve 1, the outdoor heat exchanger 5, the capillary tube 4, the indoor heat exchanger 3, the four-way valve 1, and the compressor 2 again. .

【0010】以下四方弁1の各構成部について説明す
る。まずケーシング10について説明する。ケーシング
10は図1、2に示すように円筒管の上下を蓋体で閉鎖
したような形態を取り、内部は気密性が保たれている。
そして図3(b)(c)に示すように、上面中心には第
一接続口11が開口され、ここにコンプレッサ2の吐出
口と接続される第一配管H1が接続される。また下面の
三カ所に第二接続口12、第三接続口13及び第四接続
口14が開口されている。なお第四接続口14はケーシ
ング10の下面のほか、上面や側壁に設けてもよい。ま
た図4、5に示すように第二接続口12と室内熱交換器
3とは第二配管H2により接続され、第三接続口13と
室外熱交換器5とは第三配管H3により接続され、第四
接続口14とコンプレッサ2の吸入口とが第四配管H4
により接続されている。更にケーシング10の下面中心
には図3(b)(c)に示されるように下軸受15が設
けられている。なおこのようにケーシング10は、冷媒
を圧縮するコンプレッサ2の吐出口及び吸入口と接続さ
れることに起因して運転中内部での圧力差が生じること
となる。
Hereinafter, each component of the four-way valve 1 will be described. First, the casing 10 will be described. As shown in FIGS. 1 and 2, the casing 10 has a form in which the upper and lower ends of a cylindrical tube are closed with lids, and the inside is kept airtight.
As shown in FIGS. 3B and 3C, a first connection port 11 is opened at the center of the upper surface, and a first pipe H1 connected to a discharge port of the compressor 2 is connected to the first connection port. A second connection port 12, a third connection port 13, and a fourth connection port 14 are opened at three places on the lower surface. The fourth connection port 14 may be provided on the upper surface or the side wall in addition to the lower surface of the casing 10. 4 and 5, the second connection port 12 and the indoor heat exchanger 3 are connected by a second pipe H2, and the third connection port 13 and the outdoor heat exchanger 5 are connected by a third pipe H3. , The fourth connection port 14 and the suction port of the compressor 2 are connected to a fourth pipe H4.
Connected by Further, a lower bearing 15 is provided at the center of the lower surface of the casing 10 as shown in FIGS. As described above, the casing 10 is connected to the discharge port and the suction port of the compressor 2 that compresses the refrigerant, so that a pressure difference occurs inside the casing 10 during operation.

【0011】次に前記ケーシング10内に設けられる弁
体20について説明する。弁体20は図2、3(a)に
示すように左右側面が円弧状の略直方体形状であり、上
面から下面に連通する二つの流路が設けられている。図
3(b)に示されるように弁体20の上面中心には第一
切換路口21が開口し、下面の左右位置には、第二切換
路口22及び第三切換路口23が開口している。前記第
一切換路口21から第二切換路口22へと連通する流路
を第一切換路R1とし、第一切換路口21から第三切換
路口23へと連通する流路を第二切換路R2としてい
る。前記第一切換路口21内には前記第一配管H1が挿
入されている。一方、弁体20の下面中心には回動軸部
26が設けられ、前記ケーシング10の下軸受15に回
動自在に嵌挿されており、この回動軸部26と前記第一
配管H1とにより弁体20はケーシング10内にて一定
角度回動自在に保持される。なお第一切換路口21、第
二切換路口22及び第三切換路口23には、Oリング2
4を介して表面にフッ素樹脂のコーティングがなされた
もの、もしくはフッ素樹脂で形成された円筒形のシーリ
ング25を外端を突出した状態で内嵌めしている。これ
によりケーシング10の内壁面にシーリング25がOリ
ング24によって弾性的に押し当てられ、第一切換路R
1と第二切換路R2の端部開口から高低圧気体(冷媒)
が漏出しないように図られている。また弁体20におけ
る回動軸部26と第一切換路口21との間に後述する圧
力緩衝機構を設けるものであって、弁体20には後述す
る圧力緩衝弁30を受け入れる緩衝弁受入部27が形成
される。この緩衝弁受入部27の先端部は運転時圧力緩
衝弁30との密着性を保つため、一例としてテーパ状に
形成された当たり面27aとする。更に先端部の途中か
らはケーシング10内の残余スペースに連通する連通孔
28が形成されている。
Next, the valve body 20 provided in the casing 10 will be described. As shown in FIGS. 2 and 3A, the valve body 20 has a substantially rectangular parallelepiped shape with right and left side arcs, and is provided with two flow paths communicating from the upper surface to the lower surface. As shown in FIG. 3B, a first switching passage 21 is opened at the center of the upper surface of the valve body 20, and a second switching passage 22 and a third switching passage 23 are opened at left and right positions on the lower surface. . A flow path communicating from the first switching path 21 to the second switching path 22 is referred to as a first switching path R1, and a flow path communicating from the first switching path 21 to the third switching path 23 is referred to as a second switching path R2. I have. The first pipe H <b> 1 is inserted into the first switching port 21. On the other hand, a rotating shaft 26 is provided at the center of the lower surface of the valve body 20 and is rotatably fitted to the lower bearing 15 of the casing 10. The rotating shaft 26 and the first pipe H <b> 1 Thereby, the valve body 20 is held in the casing 10 so as to be rotatable by a predetermined angle. The first switching port 21, the second switching port 22, and the third switching port 23 have an O-ring 2
A cylindrical seal 25 made of fluororesin or coated with a fluororesin on the surface through 4 is fitted inside with a protruding outer end. As a result, the sealing 25 is elastically pressed against the inner wall surface of the casing 10 by the O-ring 24, and the first switching path R
High and low pressure gas (refrigerant) from the end opening of the first and second switching path R2
Is designed to prevent leakage. Further, a pressure buffer mechanism described later is provided between the rotation shaft portion 26 of the valve body 20 and the first switching path port 21, and the valve body 20 has a buffer valve receiving portion 27 for receiving a pressure buffer valve 30 described later. Is formed. The tip of the buffer valve receiving portion 27 is, for example, a tapered contact surface 27a in order to maintain close contact with the pressure buffer valve 30 during operation. Further, a communication hole 28 communicating with the remaining space in the casing 10 is formed from the middle of the distal end portion.

【0012】次に圧力緩衝機構の一部を構成している圧
力緩衝弁30について説明する。このものは図2、図3
(a)に示すように弁体20の第一切換路口21の下方
に設けられるものであり、スプリング32により緩衝弁
受入部27内を突出自在に支持されている。そして圧力
緩衝弁30はテーパ状の先端部30aを有し、受圧時下
方に位置した状態において緩衝弁受入部27のテーパ状
に形成された当たり面27aと密着し、連通孔28を塞
ぐように構成される。また圧力緩衝弁30にはほぼ中心
軸に沿って圧力調整孔31が形成されているため、第一
切換路口21は緩衝弁受入部27と連通しており、更に
圧力調整孔31の一部は途中で側方に分岐しスプリング
32側にも連通している。そのため圧力緩衝弁30が上
方に位置した状態では、第一切換路口21は圧力調整孔
31、緩衝弁受入部27、連通孔28等を介してケーシ
ング10内の残余スペースに連通することとなり、圧力
緩衝弁30は開放傾向を有することになる。なおスプリ
ング32の代わりにバネ座金、Oリング等を使用する形
態もとり得る。
Next, the pressure buffer valve 30 which constitutes a part of the pressure buffer mechanism will be described. This is shown in FIGS. 2 and 3
As shown in (a), it is provided below the first switching port 21 of the valve body 20 and is supported by a spring 32 so as to be able to protrude inside the buffer valve receiving portion 27. The pressure buffer valve 30 has a tapered tip portion 30a, and in a state where the pressure buffer valve 30 is located below at the time of receiving pressure, the pressure buffer valve 30 is in close contact with the tapered contact surface 27a of the buffer valve receiving portion 27 so as to close the communication hole 28. Be composed. Also, since the pressure buffer valve 30 has the pressure adjusting hole 31 formed substantially along the central axis, the first switching path port 21 communicates with the buffer valve receiving portion 27, and a part of the pressure adjusting hole 31 is formed. It branches sideways on the way and communicates with the spring 32 side. Therefore, when the pressure buffer valve 30 is positioned upward, the first switching passage 21 communicates with the remaining space in the casing 10 through the pressure adjusting hole 31, the buffer valve receiving portion 27, the communication hole 28, and the like. The buffer valve 30 will have an open tendency. Note that a spring washer, an O-ring, or the like may be used instead of the spring 32.

【0013】次に駆動素子6について説明する。駆動素
子6は一例として永久磁石6Aと電磁石6Bとから成る
ものであって、実質的にはモータを構成する。具体的に
は図2、図3(a)に示すようにケーシング10の内面
に、永久磁石6AがS極とN極との極性を異ならせて貼
着されている。また電磁石6Bは弁体20の両側面に設
けられ、断面が傘状のコアにコイル6Baが縦に巻回さ
れて成る。それぞれの電磁石6Bのコイル6Baには給
電端子7により給電がなされる。なお弁体20と電磁石
6Bのコイル6Baの巻かれる芯とは一体で形成しても
よいし、別体で形成し、後に組み付けるようにしてもよ
い。 駆動素子6は以上のような構成を成し、コイル6
Baに電流を流すことにより弁体20を回動させる。な
お回動方向は電流の流す方向によって切り換えられる。
また第二切換路口22と第二配管H2とが連結される一
定角度と、第三切換路口23と第三配管H3とが連結さ
れる一定角度とに、弁体20の回動を止めるストッパが
ケーシング10内に設けられている。
Next, the driving element 6 will be described. The driving element 6 includes, for example, a permanent magnet 6A and an electromagnet 6B, and substantially constitutes a motor. Specifically, as shown in FIGS. 2 and 3A, a permanent magnet 6 </ b> A is adhered to the inner surface of the casing 10 with the S and N poles having different polarities. The electromagnets 6B are provided on both side surfaces of the valve body 20, and the coil 6Ba is vertically wound around an umbrella-shaped core. Power is supplied to the coil 6Ba of each electromagnet 6B by the power supply terminal 7. Note that the valve body 20 and the core around which the coil 6Ba of the electromagnet 6B is wound may be formed integrally, or may be formed separately and assembled later. The driving element 6 has the above configuration, and the coil 6
The valve element 20 is rotated by passing a current through Ba. The direction of rotation is switched depending on the direction of current flow.
Further, a stopper for stopping the rotation of the valve body 20 is provided at a fixed angle at which the second switching port 22 is connected to the second pipe H2 and at a certain angle at which the third switching port 23 is connected to the third pipe H3. It is provided in the casing 10.

【0014】次にこの装置の作動状態について説明す
る。なお説明にあたっては暖房運転を行っている状態を
最初の状態とし、一旦運転を停止して冷房・除湿運転に
切り換えた状態を最終の状態として説明する。 (1)暖房運転 暖房運転を行う際には、図4に示すように弁体20の第
二切換路口22を第二配管H2に接続し、第三切換路口
23を第三配管H3に接続しない状態とする。この場合
にはコンプレッサ2からの高圧ガス冷媒は、コンプレッ
サ2、第一配管H1、第一切換路R1、第二配管H2、
室内熱交換器3、毛細管4、室外熱交換器5、第三配管
H3、ケーシング10内、第四接続口14、第四配管H
4、コンプレッサ2...の順で循環する。その際、図
6(a)に示すように圧力緩衝弁30はコンプレッサ2
により供給される高圧ガス冷媒により受圧され、下方に
位置した状態となり、圧力緩衝弁30を支持するスプリ
ング32も圧縮された状態となる。なお現実には高圧ガ
ス冷媒は圧力調整孔31を通って緩衝弁受入部27の先
端の空間部あるいはスプリング32周辺にも入り込み、
押圧方向とは反対側の方向へも作用する。しかしながら
上方から作用する高圧ガス冷媒の流れによる動圧が大き
いため、圧力緩衝弁30はこのように押圧方向たる下方
に移動するのである。またこの受圧時には圧力緩衝弁3
0のテーパ状の先端部30aは緩衝弁受入部27のテー
パ状に形成された当たり面27aと密着して連通孔28
を塞いでいるため、高圧ガス冷媒は連通孔28に流れる
ことはできない。そして第一切換路R1等はコンプレッ
サ2の吐出口と接続されているため高圧となるが、ケー
シング10内部はコンプレッサ2の吸入口と接続される
ため、低圧となっている。なおこの実施の形態では圧力
緩衝弁30は高圧ガス冷媒により直接受圧されている
が、例えば圧力緩衝弁30の上端にベローズ(ダイアフ
ラム)等の中間部材を設け、間接的に圧力緩衝弁30が
受圧される形態もとり得る。
Next, the operation state of this device will be described. In the description, a state in which the heating operation is being performed will be described as an initial state, and a state in which the operation is temporarily stopped and switched to the cooling / dehumidification operation will be described as a final state. (1) Heating Operation When performing the heating operation, as shown in FIG. 4, the second switching port 22 of the valve body 20 is connected to the second pipe H2, and the third switching port 23 is not connected to the third pipe H3. State. In this case, the high-pressure gas refrigerant from the compressor 2 is supplied to the compressor 2, the first pipe H1, the first switching path R1, the second pipe H2,
Indoor heat exchanger 3, capillary tube 4, outdoor heat exchanger 5, third pipe H3, inside casing 10, fourth connection port 14, fourth pipe H
4. Compressor . . Circulate in the order of At this time, as shown in FIG.
The pressure is received by the high-pressure gas refrigerant supplied by the above, and the state is located below, and the spring 32 supporting the pressure buffer valve 30 is also in the compressed state. In reality, the high-pressure gas refrigerant enters the space at the end of the buffer valve receiving portion 27 or around the spring 32 through the pressure adjusting hole 31,
It also acts in the direction opposite to the pressing direction. However, since the dynamic pressure due to the flow of the high-pressure gas refrigerant acting from above is large, the pressure buffer valve 30 moves downward in the pressing direction. When receiving the pressure, the pressure buffer valve 3
The tapered front end portion 30a of the zero is in close contact with the tapered contact surface 27a of the buffer valve receiving portion 27 and the communication hole 28 is formed.
, The high-pressure gas refrigerant cannot flow through the communication hole 28. The first switching path R1 and the like have a high pressure because they are connected to the discharge port of the compressor 2, but have a low pressure because the inside of the casing 10 is connected to the suction port of the compressor 2. In this embodiment, the pressure buffer valve 30 is directly received pressure by the high-pressure gas refrigerant. However, for example, an intermediate member such as a bellows (diaphragm) is provided at the upper end of the pressure buffer valve 30, and the pressure buffer valve 30 receives the pressure indirectly. It can take a form.

【0015】(2)暖房運転停止 暖房運転が停止されると、高圧ガス冷媒もコンプレッサ
2から供給されなくなり、押圧力が解除され圧力緩衝弁
30は図6(b)に示すようにスプリング32の弾性に
より上方に突出した状態となる。この状態になると圧力
緩衝弁30のテーパ状の先端部30aも緩衝弁受入部2
7のテーパ状に形成された当たり面27aと密着せず、
連通孔28を開口させることとなり、圧力緩衝弁30は
受圧時以外開放傾向を有するのである。そして高圧とな
っていた第一切換路口21は圧力調整孔31、緩衝弁受
入部27、連通孔28を介してケーシング10内の残余
スペースと連通することになり、ケーシング10内の圧
力差は徐々に減少していく。因みにケーシング10内の
圧力差を減少するまでに1分程度の時間を要し、この
後、例えば冷房運転等を行う際にはタイマ等を使い切換
運転を行うことが可能である。
(2) Stopping the heating operation When the heating operation is stopped, the high-pressure gas refrigerant is no longer supplied from the compressor 2, the pressing force is released, and the pressure buffer valve 30 is turned off by the spring 32 as shown in FIG. It is in a state of projecting upward due to elasticity. In this state, the tapered tip portion 30a of the pressure buffer valve 30 is also connected to the buffer valve receiving portion 2.
7 does not adhere to the tapered contact surface 27a,
The communication hole 28 is opened, and the pressure buffer valve 30 has a tendency to open except when receiving pressure. Then, the first switching passage port 21 which has been at a high pressure communicates with the remaining space in the casing 10 through the pressure adjusting hole 31, the buffer valve receiving portion 27, and the communication hole 28, and the pressure difference in the casing 10 gradually decreases. To decrease. Incidentally, it takes about one minute to reduce the pressure difference in the casing 10, and thereafter, for example, when performing a cooling operation or the like, the switching operation can be performed using a timer or the like.

【0016】(3)冷房・除湿運転 冷房・除湿運転に切り換えるには図5に示すように弁体
20を回動させ、第三切換路口23を第三配管H3に接
続し、第二切換路口22を第二配管H2に接続しない状
態とする。なおこの切り換えは、ケーシング10内の圧
力差が減少した状態で行われるため四方弁1本体にかか
る負荷も少なく、弁体20の回動も円滑に行える。そし
て冷房・除湿運転の場合にはコンプレッサ2からの高圧
ガス冷媒はコンプレッサ2、第一配管H1、第二切換路
R2、第三配管H3、室外熱交換器5、毛細管4、室内
熱交換器3、第二配管H2、ケーシング10内、第四接
続口14、第四配管H4、コンプレッサ2....の順
で循環する。その際弁体20内の圧力緩衝弁30の状態
は暖房運転時と同様であるため、ここでは省略する。
(3) Cooling / Dehumidifying Operation To switch to the cooling / dehumidifying operation, the valve body 20 is rotated as shown in FIG. 5, the third switching port 23 is connected to the third pipe H3, and the second switching port is connected. 22 is not connected to the second pipe H2. Since this switching is performed in a state where the pressure difference in the casing 10 is reduced, the load applied to the main body of the four-way valve 1 is small, and the rotation of the valve body 20 can be performed smoothly. In the case of the cooling / dehumidifying operation, the high-pressure gas refrigerant from the compressor 2 is supplied to the compressor 2, the first pipe H1, the second switching path R2, the third pipe H3, the outdoor heat exchanger 5, the capillary tube 4, and the indoor heat exchanger 3. , The second pipe H2, the inside of the casing 10, the fourth connection port 14, the fourth pipe H4, the compressor 2. . . . Circulate in the order of At this time, the state of the pressure buffer valve 30 in the valve body 20 is the same as that in the heating operation, and thus the description is omitted here.

【0017】なお本発明において高圧ガス冷媒の漏出を
防ぐことは前提条件であり、またより高い熱交換効率を
得るためにも必要不可欠である。そのため第一切換路口
21、第二切換路口22及び第三切換路口23には種々
のシール構造がとり得る。例えばこの実施の形態では図
7(a)に示すようにOリングRの弾性を利用してシー
リングEをケーシング10の内壁面に圧接するOリング
適用構造がとられている。またこの他にも図7(b)
(c)(d)(e)に示すようにOリングRの代わりに
スプリングSを用いてこの弾性を利用したスプリング適
用構造や、図7(f)に示すようにOリングRとスプリ
ングSとを両方適用した併用構造もとり得る。更に図8
(a)(b)に示すように各切換路口の内壁にリップ部
Bを有した管状部材を嵌め込み、このリップ部Bに高圧
ガス冷媒による内圧を受けさせることによりシーリング
Eを圧接するリップ適用構造や、図8(c)(d)に示
すようにスリーブSL等を多重に組み込んだスリーブ適
用構造等もとり得る。
In the present invention, prevention of leakage of the high-pressure gas refrigerant is a prerequisite, and is indispensable for obtaining higher heat exchange efficiency. Therefore, the first switching port 21, the second switching port 22, and the third switching port 23 can have various sealing structures. For example, in this embodiment, as shown in FIG. 7A, an O-ring application structure is employed in which the sealing E is pressed against the inner wall surface of the casing 10 by utilizing the elasticity of the O-ring R. In addition, FIG.
(C) As shown in (d) and (e), a spring application structure utilizing this elasticity using a spring S instead of the O-ring R, or an O-ring R and a spring S as shown in FIG. Can be used in combination. Further FIG.
(A) As shown in (b), a lip-applying structure in which a tubular member having a lip portion B is fitted into the inner wall of each switching passage, and the sealing E is pressed against the lip portion B by receiving the internal pressure of the high-pressure gas refrigerant. Alternatively, as shown in FIGS. 8 (c) and 8 (d), a sleeve application structure in which the sleeve SL and the like are incorporated in a multiplex manner may be employed.

【0018】[0018]

【発明の効果】請求項1または2記載の切換衝撃を抑制
した四方弁によれば、冷暖房装置の運転を切り換える
際、ケーシング10内に生じていた圧力差及び温度差を
短時間で減少させ、円滑に切り換えが行える。また急激
な圧力変化、温度変化を伴うことがないため、ケーシン
グ10、弁体20等の構成部材にかかる負荷を小さくで
き、四方弁1自体の耐久性も向上させることができる。
According to the four-way valve in which the switching impact is suppressed according to claim 1 or 2, when the operation of the air conditioner is switched, the pressure difference and the temperature difference generated in the casing 10 are reduced in a short time, Switching can be performed smoothly. In addition, since there is no sudden change in pressure and temperature, the load on components such as the casing 10 and the valve body 20 can be reduced, and the durability of the four-way valve 1 itself can be improved.

【0019】また請求項3記載の切換衝撃を抑制した四
方弁によれば、冷暖房装置の運転時たる受圧時には圧力
緩衝弁30は下方に位置し、ケーシング10内部と連通
した連通孔28を塞ぎ高圧ガス冷媒の漏出を防ぎ、受圧
時以外すなわち運転停止時には圧力緩衝弁30は上方に
位置し、ケーシング10内部の圧力差を短時間で減少さ
せる構造を可能とする。
Further, according to the four-way valve in which the switching impact is suppressed, the pressure buffer valve 30 is located below when the pressure is received during the operation of the cooling and heating device, and closes the communication hole 28 which communicates with the inside of the casing 10. The leakage of the gas refrigerant is prevented, and the pressure buffer valve 30 is located above when pressure is not being received, that is, when the operation is stopped, thereby enabling a structure in which the pressure difference inside the casing 10 is reduced in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の切換衝撃を抑制した四方弁の使用状態
を示す説明図である。
FIG. 1 is an explanatory diagram showing a use state of a four-way valve in which switching impact is suppressed according to the present invention.

【図2】本発明の切換衝撃を抑制した四方弁を示す斜視
図である。
FIG. 2 is a perspective view showing a four-way valve of the present invention in which switching impact is suppressed.

【図3】同上図3(b)におけるA−A矢印方向から見
た断面図、並びにこの図(a)の断面図におけるB−B
線矢印方向から見た断面図、並びに図(a)の断面図に
おけるC−C線矢印方向から見た断面図である。
FIG. 3 is a cross-sectional view as viewed from the direction of arrows AA in FIG. 3B, and BB in the cross-sectional view of FIG. 3A.
It is sectional drawing seen from the arrow direction of a line, and sectional drawing seen from the CC line arrow direction in the sectional view of figure (a).

【図4】同上暖房運転時の冷媒の流れを示す説明図であ
る。
FIG. 4 is an explanatory diagram showing a flow of a refrigerant during the heating operation according to the first embodiment.

【図5】同上冷房・除湿運転時の冷媒の流れを示す説明
図である。
FIG. 5 is an explanatory diagram showing a flow of a refrigerant at the time of the cooling / dehumidifying operation.

【図6】暖房及び冷房・除湿運転時並びに運転停止時の
圧力緩衝弁の状態を示す断面図である。
FIG. 6 is a cross-sectional view showing a state of a pressure buffer valve during a heating and cooling / dehumidifying operation and when the operation is stopped.

【図7】切換路口の種々のシール構造を示す断面図であ
る。
FIG. 7 is a cross-sectional view showing various seal structures of the switching path.

【図8】切換路口の種々のシール構造を示す断面図であ
る。
FIG. 8 is a cross-sectional view showing various seal structures of a switching passageway.

【符号の説明】[Explanation of symbols]

1 四方弁 2 コンプレッサ 3 室内熱交換器 4 毛細管 5 室外熱交換器 6 駆動素子 6A 永久磁石 6B 電磁石 6Ba コイル 7 給電端子 10 ケーシング 11 第一接続口 12 第二接続口 13 第三接続口 14 第四接続口 15 下軸受 20 弁体 21 第一切換路口 22 第二切換路口 23 第三切換路口 24 Oリング 25 シーリング 26 回動軸部 27 緩衝弁受入部 27a 当たり面 28 連通孔 30 圧力緩衝弁 30a 先端部 31 圧力調整孔 32 スプリング B リップ部 E シーリング H1 第一配管 H2 第二配管 H3 第三配管 H4 第四配管 R Oリング R1 第一切換路 R2 第二切換路 S スプリング SL スリーブ DESCRIPTION OF SYMBOLS 1 Four-way valve 2 Compressor 3 Indoor heat exchanger 4 Capillary tube 5 Outdoor heat exchanger 6 Drive element 6A Permanent magnet 6B Electromagnet 6Ba Coil 7 Power supply terminal 10 Casing 11 First connection port 12 Second connection port 13 Third connection port 14 Fourth Connection port 15 Lower bearing 20 Valve element 21 First switching path 22 Second switching path 23 Third switching path 24 O-ring 25 Sealing 26 Rotating shaft 27 Buffer valve receiving section 27a Contact surface 28 Communication hole 30 Pressure buffer valve 30a Tip Part 31 Pressure adjusting hole 32 Spring B Lip part E Sealing H1 First piping H2 Second piping H3 Third piping H4 Fourth piping RO ring R1 First switching path R2 Second switching path S Spring SL Sleeve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 外壁に第一接続口、第二接続口、第三接
続口及び第四接続口を有したケーシングと、このケーシ
ング内の前記第一接続口を通る軸線上に回動自在に設け
られ、第一切換路口から第二切換路口へと連通する第一
切換路、及び第一切換路口から第三切換路口へと連通す
る第二切換路を有した弁体とを具えて成り、前記第一接
続口と第一切換路口とは常時連通され、一方前記第二接
続口と第二切換路口と、第三接続口と第三切換路口とは
弁体を一定角度往復回動させることにより択一的に連通
させ、互いに圧力差を有する第一切換路と第二切換路と
の二つの流路を選択的に切り換えるようにした装置にお
いて、前記装置内には流路内の高圧状態を漸減させる圧
力緩衝機構が組み込まれていることを特徴とする切換衝
撃を抑制した四方弁。
1. A casing having an outer wall having a first connection port, a second connection port, a third connection port, and a fourth connection port, and rotatably on an axis passing through the first connection port in the casing. A first switching path communicating from the first switching path to the second switching path, and a valve body having a second switching path communicating from the first switching path to the third switching path, The first connection port and the first switching path are always communicated with each other, while the second connection port, the second switching path, and the third connection port and the third switching path are configured to reciprocate the valve body by a certain angle. In the apparatus, wherein the two flow paths of the first switching path and the second switching path having a pressure difference therebetween are selectively switched. Switching shock suppressing four-way valve characterized by incorporating a pressure buffer mechanism for gradually reducing pressure .
【請求項2】 前記圧力緩衝機構は、前記第一切換路口
の下方に、圧力緩衝弁が突出自在に組み込まれ、流路を
切り換える際に、その前の段階で圧力緩衝弁を上方に移
動させ、第一切換路口が圧力緩衝弁に形成された圧力調
整孔及び圧力緩衝弁を受け入れる緩衝弁受入部及び緩衝
弁受入部の先端部に形成された連通孔を介してケーシン
グ内部の残余スペースと連通し、ケーシング内部の圧力
差を減少するように構成されていることを特徴とする請
求項1記載の切換衝撃を抑制した四方弁。
2. The pressure buffer mechanism according to claim 1, wherein a pressure buffer valve is incorporated below the first switching passage so as to protrude freely, and when the flow path is switched, the pressure buffer valve is moved upward in a previous stage. A first switching passage opening communicating with the remaining space inside the casing through a pressure adjusting hole formed in the pressure buffer valve, a buffer valve receiving portion for receiving the pressure buffer valve, and a communication hole formed in a tip end portion of the buffer valve receiving portion. 2. The four-way valve according to claim 1, wherein the pressure difference inside the casing is reduced.
【請求項3】 前記圧力緩衝弁は、受圧時以外は開放傾
向を有するように支持されることを特徴とする請求項1
または2記載の切換衝撃を抑制した四方弁。
3. The pressure buffer valve is supported so as to have an opening tendency except when receiving pressure.
Or a four-way valve in which the switching impact described in 2 is suppressed.
JP9176515A 1997-06-17 1997-06-17 Four way valve suppressing switching shock Pending JPH116573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9176515A JPH116573A (en) 1997-06-17 1997-06-17 Four way valve suppressing switching shock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9176515A JPH116573A (en) 1997-06-17 1997-06-17 Four way valve suppressing switching shock

Publications (1)

Publication Number Publication Date
JPH116573A true JPH116573A (en) 1999-01-12

Family

ID=16014980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9176515A Pending JPH116573A (en) 1997-06-17 1997-06-17 Four way valve suppressing switching shock

Country Status (1)

Country Link
JP (1) JPH116573A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967446A2 (en) * 1998-06-23 1999-12-29 Fuji Injector Corporation Device for changing flow of operating medium in air conditioning system
US6234207B1 (en) 1998-06-23 2001-05-22 Fuji Injector Corporation Device for changing flow of operating medium in air conditioning system
CN103690120A (en) * 2014-01-09 2014-04-02 任强 Side-axis prismatic-tube fluid-controlled spring-lifting hand-press-rotating mop cleaning and spin-drying device
CN111457130A (en) * 2019-01-22 2020-07-28 浙江工业大学 Miniature integrated two-dimensional electromagnetic switch valve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967446A2 (en) * 1998-06-23 1999-12-29 Fuji Injector Corporation Device for changing flow of operating medium in air conditioning system
EP0967446A3 (en) * 1998-06-23 2001-03-21 Fuji Injector Corporation Device for changing flow of operating medium in air conditioning system
US6234207B1 (en) 1998-06-23 2001-05-22 Fuji Injector Corporation Device for changing flow of operating medium in air conditioning system
CN103690120A (en) * 2014-01-09 2014-04-02 任强 Side-axis prismatic-tube fluid-controlled spring-lifting hand-press-rotating mop cleaning and spin-drying device
CN111457130A (en) * 2019-01-22 2020-07-28 浙江工业大学 Miniature integrated two-dimensional electromagnetic switch valve
CN111457130B (en) * 2019-01-22 2024-06-11 浙江工业大学 Miniature integrated two-dimensional electromagnetic switch valve

Similar Documents

Publication Publication Date Title
US7854390B2 (en) Expansion valve, heat pump type refrigeration cycle apparatus, and air handling unit
KR100329930B1 (en) Apparatus for selecting directional refrigerant passage of a cooling and heat pump type air-conditioner
US6230743B1 (en) Channel-switching valve and method of controlling the same, and refrigerating cycle and method of controlling the same
CN106369193B (en) Direct-acting solenoid valve and four-way selector valve provided with same as pilot valve
US20110067772A1 (en) Flow path switching valve
KR100356094B1 (en) A refrigerator
US5547344A (en) Fluid compressor with selector valve
JP2017057977A (en) Direct-acting type solenoid valve and four-way selector valve provided with this solenoid valve as pilot valve
KR980003106A (en) Switching valves, fluid compressors and heat pump refrigeration cycle units
JPH116573A (en) Four way valve suppressing switching shock
JP2001343076A (en) Control valve
JP2001343077A (en) Control valve
JP2761200B2 (en) High / low pressure path reversal switching device for air conditioner
JP3172916B2 (en) Flow switching device for working medium in air conditioner
JPH10300279A (en) Channel-switching device of high/low-pressure gas in heating-cooling combination device
JP3377614B2 (en) Air conditioner
JPS58101287A (en) Scroll type compressor
JPS5842876A (en) Selector valve
JPH09264279A (en) Fluid compressor and heat pump type freezing cycle
JPH07269975A (en) Fluid compressor and air conditioner
JP2005207574A (en) Refrigerant flow control valve and air-conditioner
JP3111351B2 (en) Flow switching device for working medium in air conditioner
JP2004125096A (en) Electrical rotation type channel change valve and freezing cycle device for freezer/refrigerator
JP2001153494A (en) Motor operated selector valve and refrigerating cycle equipment for freezer-refrigerator
JPS61236981A (en) Four-way reversing valve for reversible refrigerating cycle