JPS61234041A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS61234041A
JPS61234041A JP60075887A JP7588785A JPS61234041A JP S61234041 A JPS61234041 A JP S61234041A JP 60075887 A JP60075887 A JP 60075887A JP 7588785 A JP7588785 A JP 7588785A JP S61234041 A JPS61234041 A JP S61234041A
Authority
JP
Japan
Prior art keywords
film
substrate
semiconductor
polycrystalline silicon
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60075887A
Other languages
Japanese (ja)
Inventor
Yoshitaka Sasaki
芳高 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP60075887A priority Critical patent/JPS61234041A/en
Publication of JPS61234041A publication Critical patent/JPS61234041A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/34Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being on the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface

Abstract

PURPOSE:To reduce the ohmically contacting resistance by forming a semiconductor film on the back surface of a semiconductor substrate as one electrode film of a semiconductor device. CONSTITUTION:After a P<+> type semiconductor layer 3 is formed from the surface after an n-type epitaxially grown layer 2 is formed on an n<+> type semiconductor substrate 1a, a gate oxide film 5a is formed. After a polycrystalline silicon film 6a is then accumulated, a P-type semiconductor layer 5 is formed in a self-aligning manner, n<+> type semiconductor layer forming portion of a source region is then selectively opened, an n<+> type semiconductor layer 8 of a source region and an oxide film 5b1 are then formed, and a PSG film 5c is then accumulated thereon. Thereafter, after various heat treatments are executed, the substrate 1a is, for example, lap polished from the back surface, an undoped polycrystalline silicon layer 6b is accumulated, a high density phosphorus is diffused in the polycrystalline silicon, higher density phosphorus that the substrate is diffused in the substrate in this case, thereby forming an n<++> type semiconductor layer 1b. Subsequently, an electrode leading port is formed, and metal electrodes 9a, 9b are formed.

Description

【発明の詳細な説明】 [発明の技術分野1 本発明は、半導体基板の裏向を一電極として用いる大電
力用半導体装置において、裏面電極のオーミックコンタ
クトを良好とする半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention 1] The present invention relates to a semiconductor device for high power use in which the back side of a semiconductor substrate is used as one electrode, and which has good ohmic contact with a back electrode.

[発明の技術的背景とその問題点] 従来のパワーHas FEr(絶縁ゲート型電解効果ト
ランジスタ)は、その代表的なものにDSA  (Di
r−rusition 5elf−^11gn1ent
)Has FETがあり、高濃度基板、例えば0.01
〜0.03Ωαの上にエピタキシャル領域を形成したシ
リコンウェハーを用い、エピタキシャル領域に2重拡散
によりチャネルを形成するものでゲート絶縁膜上に存在
する格子あるいはストライプ形状のゲート多結晶シリコ
ン電極に囲まれた同一の拡散窓によりチャネル領域形成
の不純物拡散と、ソース領域形成の不純物拡散を行い、
ソース・ゲート電極を形成し、舶2高濃度基板をドレイ
ン電極として用いている。
[Technical background of the invention and its problems] A typical example of the conventional power HasFEr (insulated gate field effect transistor) is the DSA (Di
r-rusition 5elf-^11gn1ent
)Has FET, high concentration substrate, e.g. 0.01
Using a silicon wafer with an epitaxial region formed on ~0.03Ωα, a channel is formed in the epitaxial region by double diffusion, and the gate is surrounded by a lattice or stripe-shaped gate polycrystalline silicon electrode existing on the gate insulating film. The impurity diffusion for forming the channel region and the impurity diffusion for forming the source region are performed using the same diffusion window.
Source and gate electrodes are formed, and the second high concentration substrate is used as a drain electrode.

しかしながら、通常数オーム程度のオン抵抗素子は、基
板部f!!0.01〜0.03Ωαでもオーミック抵抗
成分の影響は少ない。
However, the on-resistance element, which is normally on the order of several ohms, is limited to the substrate portion f! ! Even at 0.01 to 0.03 Ωα, the influence of the ohmic resistance component is small.

しかし、数100ミリオーム以下の低オン抵抗素子や、
素子の限界付近の大電流領域で用いられる曝 場合、オーミックコンタクト抵抗成分の寄与は極めて大
きな障害となる。
However, low on-resistance elements of several hundred milliohms or less,
When exposure is used in a large current region near the limit of the device, the contribution of the ohmic contact resistance component becomes an extremely large obstacle.

一方、このオーミックコンタクト抵抗成分は、高融点金
属膜をバリヤメタルとして用いているショットキーバリ
ヤ型ダイオードのカソード領域のオーミックコンタクト
にも影響は大きい。つまりオーミックコンタクト抵抗の
大きさがそのままショットキーバリヤ型ダイオードの順
方向特性(V F)に悲影響を及ぼす。
On the other hand, this ohmic contact resistance component also has a large effect on the ohmic contact in the cathode region of a Schottky barrier diode that uses a high melting point metal film as a barrier metal. In other words, the magnitude of the ohmic contact resistance directly affects the forward characteristics (VF) of the Schottky barrier diode.

そこで、従来においては改良された¥導体装置に特開昭
59−84474 r電力用縦型電解効果トランジスタ
」がある。
Therefore, in the past, an improved conductor device is disclosed in Japanese Patent Application Laid-Open No. 59-84474, ``Vertical Field Effect Transistor for Power Use''.

この半導体装置は、上記欠点を補うため、予め基板の裏
面に基板よりもへm度の不純物を深く拡散じた後、主面
に形成されたエピタキシャル領域にHOS FETのソ
ース・ゲート領域を形成している。
In order to compensate for the above-mentioned drawbacks, this semiconductor device is designed by first diffusing impurities deeper than the substrate into the back surface of the substrate, and then forming the source/gate regions of the HOS FET in the epitaxial region formed on the main surface. ing.

この方法によると、ドレイン電極のオーミックコンタク
ト抵抗は低減化されるが、その反面高濃度基板(〜10
1910l9中にさらにこれ以上の高濃度(1020〜
1021α4)不純物拡散を行うため、不純物拡散の進
行が遅く、そのため高温で長時間のプロセスが必要であ
る。これは、強いては高濃度基板からエピタキシャル領
域へ高濃度不純物拡散が進行し、エピタキシャル領域の
条件が変わり素子の特性をそこねてしまう。
According to this method, the ohmic contact resistance of the drain electrode is reduced, but on the other hand, the high concentration substrate (~10
Even higher concentrations (1020~
1021α4) Since impurity diffusion is performed, the progress of impurity diffusion is slow, and therefore a long process at high temperature is required. This is because the high-concentration impurity diffusion progresses from the high-concentration substrate to the epitaxial region, changing the conditions of the epitaxial region and impairing the characteristics of the device.

次にエピタキシャル領域形成前に基板裏面側に高濃度不
純物拡散を施す方法では、従来の高濃度基板の厚み〜3
00μmよりも薄い基板を用いなければならない。周知
のごとく、大電力素子は動作時に熱を発生するため基板
は薄い方が放熱特性は優れていると言われている。その
関係上、比較的薄い基板にエピタキシャル成長を施すに
はかなりむずかしい技術を必要とする。
Next, in the method of performing high concentration impurity diffusion on the back side of the substrate before forming the epitaxial region, the thickness of the conventional high concentration substrate is ~3.
A substrate thinner than 00 μm must be used. As is well known, high-power devices generate heat during operation, so it is said that thinner substrates have better heat dissipation characteristics. For this reason, considerably difficult techniques are required to perform epitaxial growth on a relatively thin substrate.

まず基板が薄いため、ウェハーの先端が冷却、加熱に敏
感で、ウェハーのそり等によって、ウェハー周辺部にス
リップと称される結晶欠陥が発生しやすくなり、このス
リップは成長させるエピタキシャル層が厚いほど著しく
発生し、そのため特別の工夫が必要となりコスト高につ
ながる。
First, because the substrate is thin, the tip of the wafer is sensitive to cooling and heating, and crystal defects called slips are more likely to occur around the wafer due to warping of the wafer. This occurs significantly, requiring special measures and leading to higher costs.

[発明の目的] 本発明は、上述した欠点を取り除き、低いオーミックコ
ンタクト抵抗を有する半導体装置及びその製造方法を提
供することにある。
[Object of the Invention] An object of the present invention is to eliminate the above-mentioned drawbacks and provide a semiconductor device having low ohmic contact resistance and a method for manufacturing the same.

[発明の概要] 本発明は、−IF導電型有する崖導体基板の裏面に半導
体膜のうち特に基板よりも高濃度の不純物をドーピング
した多結晶シリコン等を具備し、該多結晶シリコンと金
属電極膜との低オーミツクコンタクト抵抗を可能とした
半導体装置であり、また本発明は、一導電型の半導体基
板上に半導体層を形成し、該半導体層の主面に1又は2
以上の半導体領域とその電極膜を形成し、裏面に半導体
膜を形成し、該半導体膜が前記半導体¥Aツの一電極膜
としてなる半導体装置とその製造方法である。
[Summary of the Invention] The present invention comprises, on the back surface of a cliff conductor substrate having a -IF conductivity type, polycrystalline silicon or the like doped with an impurity at a higher concentration than the substrate in a semiconductor film, and the polycrystalline silicon and a metal electrode. It is a semiconductor device that enables low ohmic contact resistance with a film, and the present invention also provides a semiconductor device in which a semiconductor layer is formed on a semiconductor substrate of one conductivity type, and one or two layers are formed on the main surface of the semiconductor layer.
The present invention provides a semiconductor device in which the above-described semiconductor region and its electrode film are formed, a semiconductor film is formed on the back surface, and the semiconductor film serves as one electrode film of the semiconductor A, and a manufacturing method thereof.

[発明の実施例] 以F本発明の一実施例を説明する。[Embodiments of the invention] An embodiment of the present invention will be described below.

この一実施例は口SA 803 FETについて説明す
る。
This example describes an SA 803 FET.

第1図(a)に平面図、第1図(b)にA−Aの断面図
を示す。
FIG. 1(a) shows a plan view, and FIG. 1(b) shows a sectional view taken along line A-A.

次に第2図(a)乃至(f)を用いて本発明のDSA 
HOSの製造工程を説明する。n+型半導体基板1a上
にn型エピタキシャル成長E42を例えば比抵抗10〜
25Ωα、厚み30〜60μm形成後、表面からP4″
型イ導体層3を形成する。
Next, using FIGS. 2(a) to (f), the DSA of the present invention
The manufacturing process of HOS will be explained. N-type epitaxial growth E42 is grown on the n+-type semiconductor substrate 1a, for example, with a specific resistance of 10 to
After forming 25Ωα, thickness 30-60μm, P4″ from the surface
A type A conductor layer 3 is formed.

その後、ゲート酸化膜5aを約1000^形成した様子
を第2図(a)に示す。
Thereafter, a gate oxide film 5a having a thickness of about 1000^ is formed, as shown in FIG. 2(a).

次に多結晶シリコン膜6aを例えば6000 A堆積後
選択的にバターニングし、この多結晶シリコンパターン
をマスクしてイオン注入を施し、チャンネル領域のP型
半導体層4を自己整合的に形成する。この様子を第2図
(b)に示す。
Next, the polycrystalline silicon film 6a is selectively patterned after being deposited at, for example, 6000 A, and ions are implanted with this polycrystalline silicon pattern as a mask to form the P-type semiconductor layer 4 in the channel region in a self-aligned manner. This situation is shown in FIG. 2(b).

続いてフォトエツチング技術にてフォトレジストアを用
いて、ソース領域のn6型半導体層形成予定部を選択的
に開口した様子を第2図(C)に示す。
Subsequently, a portion of the source region where the N6 type semiconductor layer is to be formed is selectively opened using a photoresist using a photoetching technique, as shown in FIG. 2C.

次にソース領域のn+型型半体体層8酸化膜5b1を形
成しく第2図(d)に図示)、その上にCvD法ニテ形
成シtcPsGW15 Gヲ約80001!1m積した
様子を第2図(e)に示す。
Next, an n+ type half-layer 8 oxide film 5b1 of the source region is formed (as shown in FIG. 2(d)), and a CvD film is formed thereon with a thickness of about 80,001!1m. Shown in Figure (e).

しかる優、各種熱処理を施した11 n ”型ず導体基
板1aを例えば裏面からラッピング研磨し、トータルウ
ェハ一層を約200μm程度にする。
However, the 11 n'' type conductive substrate 1a, which has been subjected to various heat treatments, is polished by lapping, for example, from the back side, so that the total thickness of each wafer layer is about 200 μm.

次に、ラッピング研磨で粗面化した状態でアンドープ多
結晶シリコンl!16bを約1μmv1度堆積した様子
を第2図(e)にポす。
Next, the undoped polycrystalline silicon l! is roughened by lapping and polished. FIG. 2(e) shows a state in which 16b was deposited once in a volume of about 1 μm.

次に1000℃中でPoCj!3から1311度リンを
前記多結晶シリコンに拡散し、この際n++半導体基板
中にも該基板より高濃度のリンが拡散され、n″型型半
体体層1b形成される。尚、このT程は、ゲッタリング
役割を兼ねる。
Next, PoCj at 1000℃! Phosphorus is diffused into the polycrystalline silicon from 3 to 1311 degrees, and at this time, phosphorus with a higher concentration than that of the substrate is diffused into the n++ semiconductor substrate, forming an n'' type half body layer 1b. Cheng also serves as a gettering role.

しかる後、電極取り出し開口部を形成し、金属電極9a
、9bを形成することによってソース・ドレイン間耐圧
V、200〜600■程度のDSADAS HO3が完成する。この様子を第2図(f)に示す。
After that, an electrode extraction opening is formed and the metal electrode 9a is
, 9b, a DSADAS HO3 having a source-drain breakdown voltage of about 200 to 600 Å is completed. This situation is shown in FIG. 2(f).

次に他の実施例としてショットキーバリヤ型ダイオード
について、第3図により説明する。
Next, a Schottky barrier diode as another embodiment will be explained with reference to FIG.

まず、n++半導体基板1aの主面に形成したn型エビ
キシャル層2に約800OAの酸化M15bを形成した
様子を第3図(a)に示す。続いて基板1aの裏面をア
ルミナ粉等の研磨材によってラッピング研磨し、このF
A磨面を粗面化しウェハー全体の厚みを約200μm程
度にした様子を第3図(b)に示す。
First, FIG. 3(a) shows how oxidized M15b of about 800 OA is formed on the n-type epitaxial layer 2 formed on the main surface of the n++ semiconductor substrate 1a. Subsequently, the back surface of the substrate 1a is polished by lapping with an abrasive material such as alumina powder, and this F
FIG. 3(b) shows how the A-polished surface is roughened so that the total thickness of the wafer is about 200 μm.

次に粗面化したn++半導体基板1aに該基板よりも高
濃度のn”型不純物ドープのn″型型詰結晶シリコン6
b堆積した様子を第3図(C)に示す。続いて熱処理を
施した後に、リン拡散、CVD法によるPSGIl*あ
るいはリンインプラ等を酸化膜に行い、該酸化膜5bと
その上に形成された高濃度リンを含んだ酸化m<図示せ
ず)のエツチングレートの差を利用してフォトエツチン
グ技術によって選択的に酸化膜5bのテーパー1ツチン
グを行った様子を第3図(d)に示す。
Next, the roughened n++ semiconductor substrate 1a is coated with an n'' type packed crystalline silicon 6 doped with an n'' type impurity at a higher concentration than the substrate.
FIG. 3(C) shows the state in which the b deposits were deposited. Subsequently, after heat treatment, the oxide film is subjected to phosphorus diffusion, PSGIl* by CVD method, or phosphorus implantation, etc., to form the oxide film 5b and the oxide m<not shown containing high concentration phosphorus formed thereon. FIG. 3(d) shows how the oxide film 5b is selectively tapered by a photoetching technique using the difference in etching rate.

しかる後、この上にモリブデン9Cを4000へ。After that, add molybdenum 9C to 4000 on top of this.

アルミ金属1119aを約8μmv1a蒸着によって形
成し、かつ、熱処理を例えば400℃、N2雰囲気にて
20分程麿行いバリヤハイドを形成後、ざらに粗面化し
たシリコンウェハーの裏面に例えばTi−Pt−AUを
そtLぞれSOO^、 10GOA 、 2000八等
又はCr−N1−ALJをそれぞれ5GOA + 10
00A+ 2000A @蒸着形成することにょっ又カ
ソード電極の低オーミツクコンタクト抵抗化を可能とし
たショットキーバリヤ型ダイオードを形成できる。この
様子を第3図(e)に示す。
Aluminum metal 1119a is formed by vapor deposition of about 8 μm v1a, and heat treatment is performed for about 20 minutes at, for example, 400° C. in a N2 atmosphere to form a barrier hide. SOO^, 10GOA, 20008 etc. or Cr-N1-ALJ respectively 5GOA + 10
00A+ 2000A@ By vapor deposition, it is possible to form a Schottky barrier type diode which makes it possible to reduce the ohmic contact resistance of the cathode electrode. This situation is shown in FIG. 3(e).

尚、本発明による第1実施例のDAS HO3FETに
使用したシリコンウェハーは、n++半導体基板にn型
エピタキシャル層を成長させたnオンn+ウェハーを用
いたが、これに限定せず例えばn型半導体基板にn++
不純物拡散を膿した拡散つIバーを用いてもよい。よっ
て拡散ウェハーは通常200〜250μmと比較的薄い
ため。本発明による実施例はn++半導体層〈又は基板
〉の裏面をラッピングする必要がなくそのまま多結晶シ
リコンを堆積するか、さもなくば例えばアルミナ粉を高
速でスプレーするサンドブラストにて裏面を粗面化した
後、多結晶シリコンを堆積してもよい。また、多結晶シ
リコンは堆積の際に−・緒にn”型不純物をドープして
も良いし、アンドープ多結晶シリコンにイオン注入や、
CVD法によるPSGIIからの拡散等各種の方法を用
いてもよい。
Although the silicon wafer used in the DAS HO3FET of the first embodiment of the present invention is an n-on n+ wafer in which an n-type epitaxial layer is grown on an n++ semiconductor substrate, the present invention is not limited to this. ni n++
A diffusion tube that prevents impurity diffusion may also be used. Therefore, the diffusion wafer is usually relatively thin at 200 to 250 μm. Embodiments according to the present invention do not require lapping the back side of the n++ semiconductor layer (or substrate), and can either directly deposit polycrystalline silicon or roughen the back side by sandblasting, for example by spraying alumina powder at high speed. Afterwards, polycrystalline silicon may be deposited. Additionally, polycrystalline silicon may be doped with n'' type impurities during deposition, or undoped polycrystalline silicon may be ion-implanted,
Various methods may be used, such as diffusion from PSGII using the CVD method.

また、n++半導体基板中にn”望多結晶シリコン層か
ら高濃度n”型不純物を拡散してもよいし、あるいは予
めn++型不純物をn++半導体基板に浅く拡散した後
にn0型多結晶シリコンを堆積してもよい。また、第2
実施例のごとく、n+型型半導体根板1a中n0型不純
物拡散層を形成しなくてもかまわない。さらにまた第1
実施例。
Alternatively, high concentration n'' type impurities may be diffused into the n++ semiconductor substrate from an n'' polycrystalline silicon layer, or n0 type polycrystalline silicon is deposited after shallowly diffusing n++ type impurities into the n++ semiconductor substrate in advance. You may. Also, the second
As in the embodiment, it is not necessary to form the n0 type impurity diffusion layer in the n+ type semiconductor base plate 1a. Furthermore, the first
Example.

第2実施例においてP型頭域とn型領域は逆でも良い。In the second embodiment, the P-type head region and the N-type region may be reversed.

また、半導体膜のうち時に多結晶シリコンを用いたが、
これに限定せず例えば非晶質シリコンや、高融点金属シ
リサイド等でも良い。
In addition, although polycrystalline silicon is sometimes used in semiconductor films,
The material is not limited to this, and may be, for example, amorphous silicon, high melting point metal silicide, or the like.

[発明の効果] 以上のごとく、本発明によると極めて狭いヂャネル領域
を形成後、基板裏面に該基板よりも高濃度なn″型型半
体体層半導体膜を形成できる。しかも基板裏面に形成さ
れている半導体膜で、特に・ 多結晶シリコン族は単結
晶シリコンと比−較して数倍から数十倍の拡散スピード
を持っており、かつ多結晶であるため結晶間に多量の3
81度不純物をドープすることが可能である。これは、
n+型学生導体基板りも高濃度の不純物ドープが可能な
ことを示している。したがって狭いブヤネル領域や浅い
ソース領域を形成した後にも基板よりも高濃度な半導体
層や、半導体膜が低温、短時間で形成可能でありn++
半導体基板からn型エピタキシャル領域への高ma不純
物(As、Sb)の拡散の進行が起らず素子特性にも何
ら問題がない。
[Effects of the Invention] As described above, according to the present invention, after forming an extremely narrow channel region, an n'' type half-layer semiconductor film having a higher concentration than that of the substrate can be formed on the back surface of the substrate. Polycrystalline silicon family semiconductor films, in particular, have a diffusion speed that is several to several tens of times faster than single-crystal silicon, and because they are polycrystalline, there is a large amount of
It is possible to dope with 81 degree impurities. this is,
The n+ type student conductor substrate also shows that it is possible to dope the impurity at a high concentration. Therefore, even after forming a narrow Bouyanel region or a shallow source region, a semiconductor layer or semiconductor film with a higher concentration than the substrate can be formed at low temperature in a short time, and n++
Diffusion of high-ma impurities (As, Sb) from the semiconductor substrate to the n-type epitaxial region does not occur, and there is no problem with device characteristics.

次にn++半導体基板の裏面に00型不純物拡散を行う
ため、前記n4″型半導体基板の1面にも0.3〜1.
0μm程良のn+4型不純物拡散相が形成される。従来
方法では裏面の粗面化によって除去されてしまうが、本
発明では、二つのn”拡散層をn0多結晶シリコン膜が
被っているためオーミックコンタクト抵抗の低い素子が
可能である。
Next, in order to perform 00 type impurity diffusion on the back surface of the n++ semiconductor substrate, 0.3 to 1.0.
An n+4 type impurity diffused phase with a thickness of approximately 0 μm is formed. In the conventional method, the n0 polycrystalline silicon film is removed by roughening the back surface, but in the present invention, since the two n'' diffusion layers are covered with the n0 polycrystalline silicon film, an element with low ohmic contact resistance can be achieved.

しかも、堆積時に00型不純物をドーピングして成る多
結晶シリコン膜を用いることによって該多結晶シリコン
族の特徴として堆積膜が厚いほど、あるいは11度はど
グレンサイズの大きな多結晶シリコン膜が可能で表面の
凹凸の激しい膜が形成できる。
Furthermore, by using a polycrystalline silicon film doped with 00-type impurities during deposition, a polycrystalline silicon film with a thicker deposited film or a larger 11° grain size can be produced. A film with a highly uneven surface can be formed.

これはチップの組立ての際、メタル電極との接触面積を
大きくし、ウェハーチップ裏面の金j!tl!1とのI
i説を防止するのに役立つ。したがって新たに粗面化す
る必要がない。
This increases the contact area with the metal electrode during chip assembly, allowing the gold on the backside of the wafer chip to become larger! tl! I with 1
Helps prevent i-theory. Therefore, there is no need to newly roughen the surface.

周知のごとく、極薄いゲート酸化膜を有するHQS型半
導体装置の場合、ラッピングやサンドブラスト等の裏面
を粗面化する工程によって高圧の静電気が発生し、ゲー
トの絶縁破壊を起してしまう。
As is well known, in the case of an HQS type semiconductor device having an extremely thin gate oxide film, high-voltage static electricity is generated during a back surface roughening process such as lapping or sandblasting, which causes dielectric breakdown of the gate.

本発明によると、多結晶シリコン族の形成方法の工夫に
よってこの裏面の粗面化を無くすことが可能で上述した
問題を防ぐこともできる。
According to the present invention, by devising a method for forming polycrystalline silicon, it is possible to eliminate this roughening of the back surface, and the above-mentioned problems can also be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1%4’本発明によるO8A M2S FETの平面
図とは他の実施例としてショットキーバリヤ型ダイオー
ドの各工程での断面図を示す。 1a・・・n+望半導体u板、 1b・・・n”型半導体層、 2・・・n型半導体層、3・・・P+型半導体層、4・
・・P型半導体層(チャネル領域)、5a・・・ゲート
酸化膜、5b・・・酸化膜、5 c−CV D ml化
膜、 6a・・・ゲート多結晶シリコン膜、 6b・・・n0型多結晶シリコン膜、 7・・・フォトレジスト、 8・・・n′型型半体体層ソース領tiり、9a・・・
AI電電極、9b・・・裏面金属電極膜、9C・・・バ
リヤメタル(モリブデン)。 代理人 弁理士 三  澤  正  義第2図 第2図 (f) b 第3図 6b b
1% 4' The plan view of the O8A M2S FET according to the present invention is a cross-sectional view of a Schottky barrier diode at various steps as another embodiment. 1a...n+ desired semiconductor u-plate, 1b...n'' type semiconductor layer, 2...n type semiconductor layer, 3...P+ type semiconductor layer, 4...
...P-type semiconductor layer (channel region), 5a...gate oxide film, 5b...oxide film, 5c-CVD ml film, 6a...gate polycrystalline silicon film, 6b...n0 type polycrystalline silicon film, 7... photoresist, 8... n' type half layer source region, 9a...
AI electrode, 9b... Back metal electrode film, 9C... Barrier metal (molybdenum). Agent Patent Attorney Masayoshi Misawa Figure 2 Figure 2 (f) b Figure 3 6b b

Claims (4)

【特許請求の範囲】[Claims] (1)一導電型の半導体基板上に半導体層を有し、該半
導体層の主面に1又は2以上の半導体領域と、その電極
膜を有し、裏面に単数の電極膜を有する半導体装置にお
いて、前記半導体基板の裏面に半導体膜を有し該半導体
膜が前記半導体装置の一電極膜として具備することを特
徴とする半導体装置。
(1) A semiconductor device that has a semiconductor layer on a semiconductor substrate of one conductivity type, has one or more semiconductor regions and an electrode film thereof on the main surface of the semiconductor layer, and has a single electrode film on the back surface. 2. A semiconductor device according to claim 1, wherein a semiconductor film is provided on the back surface of the semiconductor substrate, and the semiconductor film is provided as one electrode film of the semiconductor device.
(2)前記半導体膜は、不純物がドーピングされた多結
晶シリコン膜から成る特許請求の範囲第1項記載の半導
体装置。
(2) The semiconductor device according to claim 1, wherein the semiconductor film is a polycrystalline silicon film doped with impurities.
(3)一導電型の半導体基板上に半導体層を形成する工
程、該半導体前の主面に1又は2以上の半導体領域及び
その電極膜を形成する工程、前記半導体基板の裏面に半
導体膜を形成し、この半導体膜を半導体装置の一電極膜
とする工程を含むことを特徴とする半導体装置の製造方
法。
(3) A step of forming a semiconductor layer on a semiconductor substrate of one conductivity type, a step of forming one or more semiconductor regions and their electrode films on the main surface in front of the semiconductor, and a step of forming a semiconductor layer on the back surface of the semiconductor substrate. 1. A method for manufacturing a semiconductor device, comprising the steps of forming a semiconductor film and using the semiconductor film as one electrode film of the semiconductor device.
(4)前記半導体膜を通して半導体基板中へ不純物拡散
を施すことを特徴とする特許請求の範囲第3項記載の半
導体装置の製造方法。
(4) A method for manufacturing a semiconductor device according to claim 3, characterized in that impurities are diffused into the semiconductor substrate through the semiconductor film.
JP60075887A 1985-04-09 1985-04-09 Semiconductor device and manufacture thereof Pending JPS61234041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60075887A JPS61234041A (en) 1985-04-09 1985-04-09 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60075887A JPS61234041A (en) 1985-04-09 1985-04-09 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61234041A true JPS61234041A (en) 1986-10-18

Family

ID=13589254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60075887A Pending JPS61234041A (en) 1985-04-09 1985-04-09 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61234041A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243168A (en) * 1985-08-21 1987-02-25 Rohm Co Ltd Individual semiconductor device
JPS63187624A (en) * 1987-01-30 1988-08-03 Tadahiro Omi Semiconductor device
JPS63211635A (en) * 1987-02-26 1988-09-02 Nec Corp Semiconductor device
JPH01256129A (en) * 1988-04-06 1989-10-12 Sumitomo Electric Ind Ltd Manufacture of semiconductor device
JPH03236225A (en) * 1990-02-14 1991-10-22 Nippondenso Co Ltd Manufacture of semiconductor device
EP0971418A3 (en) * 1998-06-30 2001-11-07 Harris Corporation Semiconductor device having reduced effective substrate resistivity and associated methods
JP2002313795A (en) * 2001-04-18 2002-10-25 Shin Etsu Handotai Co Ltd Silicon single crystal wafer with high-melting-point metallic film and its manufacturing method, and method for impurity gettering in silicon single crystal
JP2003282589A (en) * 2002-03-26 2003-10-03 Denso Corp Method for manufacturing semiconductor device
US7145254B2 (en) 2001-07-26 2006-12-05 Denso Corporation Transfer-molded power device and method for manufacturing transfer-molded power device
JP2007019412A (en) * 2005-07-11 2007-01-25 Denso Corp Semiconductor device and its manufacturing method
JP2009522802A (en) * 2006-01-09 2009-06-11 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミティド Transistor structure and manufacturing method thereof
JP2017139292A (en) * 2016-02-02 2017-08-10 富士電機株式会社 Semiconductor device and manufacturing method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323569A (en) * 1976-08-18 1978-03-04 Toshiba Corp Semiconductor device
JPS6169122A (en) * 1984-09-12 1986-04-09 Nec Kansai Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323569A (en) * 1976-08-18 1978-03-04 Toshiba Corp Semiconductor device
JPS6169122A (en) * 1984-09-12 1986-04-09 Nec Kansai Ltd Manufacture of semiconductor device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243168A (en) * 1985-08-21 1987-02-25 Rohm Co Ltd Individual semiconductor device
JPS63187624A (en) * 1987-01-30 1988-08-03 Tadahiro Omi Semiconductor device
JPS63211635A (en) * 1987-02-26 1988-09-02 Nec Corp Semiconductor device
JPH01256129A (en) * 1988-04-06 1989-10-12 Sumitomo Electric Ind Ltd Manufacture of semiconductor device
US6498366B1 (en) 1990-02-14 2002-12-24 Denso Corporation Semiconductor device that exhibits decreased contact resistance between substrate and drain electrode
US6949434B2 (en) 1990-02-14 2005-09-27 Denso Corporation Method of manufacturing a vertical semiconductor device
US5689130A (en) * 1990-02-14 1997-11-18 Nippondenso Co., Ltd. Vertical semiconductor device with ground surface providing a reduced ON resistance
US5994187A (en) * 1990-02-14 1999-11-30 Nippondenso Co., Ltd. Method of manufacturing a vertical semiconductor device
US5663096A (en) * 1990-02-14 1997-09-02 Nippondenso Co., Ltd. Method of manufacturing a vertical semiconductor device with ground surface providing a reduced ON resistance
JPH03236225A (en) * 1990-02-14 1991-10-22 Nippondenso Co Ltd Manufacture of semiconductor device
US7064033B2 (en) 1990-02-14 2006-06-20 Denso Corporation Semiconductor device and method of manufacturing same
US6649478B2 (en) 1990-02-14 2003-11-18 Denso Corporation Semiconductor device and method of manufacturing same
US6903417B2 (en) 1990-02-14 2005-06-07 Denso Corporation Power semiconductor device
EP0971418A3 (en) * 1998-06-30 2001-11-07 Harris Corporation Semiconductor device having reduced effective substrate resistivity and associated methods
JP2002313795A (en) * 2001-04-18 2002-10-25 Shin Etsu Handotai Co Ltd Silicon single crystal wafer with high-melting-point metallic film and its manufacturing method, and method for impurity gettering in silicon single crystal
US7145254B2 (en) 2001-07-26 2006-12-05 Denso Corporation Transfer-molded power device and method for manufacturing transfer-molded power device
DE10234155B4 (en) * 2001-07-26 2009-03-05 Denso Corp., Kariya-shi Press-molded power component
JP2003282589A (en) * 2002-03-26 2003-10-03 Denso Corp Method for manufacturing semiconductor device
JP2007019412A (en) * 2005-07-11 2007-01-25 Denso Corp Semiconductor device and its manufacturing method
JP2009522802A (en) * 2006-01-09 2009-06-11 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミティド Transistor structure and manufacturing method thereof
JP2017139292A (en) * 2016-02-02 2017-08-10 富士電機株式会社 Semiconductor device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JPH0523055B2 (en)
JPS59167066A (en) Vertical type metal oxide semiconductor field effect transistor
JPS61234041A (en) Semiconductor device and manufacture thereof
JP2826982B2 (en) Crystallization method and method of manufacturing thin film transistor using the same
JP3587867B2 (en) Thin film transistor and method of manufacturing the same
US4523368A (en) Semiconductor devices and manufacturing methods
JPH0235462B2 (en)
JPS6136975A (en) Semiconductor device
GB2074374A (en) Method of making field effect transistors
JP3186298B2 (en) Method for manufacturing MOS type semiconductor device
JPS5856467A (en) Manufacture of semiconductor device
JPH0543291B2 (en)
JPS62154784A (en) Semiconductor device
JPS5868979A (en) Semiconductor device
JPS63227059A (en) Semiconductor device and manufacture thereof
JPH0249012B2 (en) HANDOTAISOCHINOSEIZOHOHO
JPH06275830A (en) Accumulation-type polycrystalline silicon thin-film transistor
JP2635086B2 (en) Method for manufacturing semiconductor device
JP2004022555A (en) Insulated-gate field-effect transistor and manufacturing method thereof
KR100555454B1 (en) Manufacturing Method of SOI Transistor
JP2835398B2 (en) Manufacturing method of field effect transistor
KR0170513B1 (en) Mos transistor and its fabrication
JPS61248472A (en) Mos semiconductor device
JPS6122872B2 (en)
JPS61289667A (en) Semiconductor device and manufacture thereof