JPS63227059A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS63227059A
JPS63227059A JP6155487A JP6155487A JPS63227059A JP S63227059 A JPS63227059 A JP S63227059A JP 6155487 A JP6155487 A JP 6155487A JP 6155487 A JP6155487 A JP 6155487A JP S63227059 A JPS63227059 A JP S63227059A
Authority
JP
Japan
Prior art keywords
gate
oxide film
gate oxide
main
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6155487A
Other languages
Japanese (ja)
Other versions
JPH0666326B2 (en
Inventor
Takeya Ezaki
豪彌 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6155487A priority Critical patent/JPH0666326B2/en
Publication of JPS63227059A publication Critical patent/JPS63227059A/en
Publication of JPH0666326B2 publication Critical patent/JPH0666326B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize element characteristics, and to prevent the lowering of breakdown strength by forming a second gate oxide film in thickness the same as or larger than a first gate oxide film, composing the source and drain of two regions having a low concentration and a high concentration and coating the whole surface of a low concentration region with a main gate and a sub-gate. CONSTITUTION:A main gate 4a formed onto one conductivity type semiconductor substrate 1 through a first gate oxide film 3a, sub-gates 4b shaped through second gate oxide films 3b while being brought into contact with both sides of the main gate 4a on the substrate 1, and two conductivity type sources-drains separated by the main and sub-gates 4a, 4b and formed to the surface of the substrate 1 are shaped. The second gate oxide films 3b are formed in thickness the same as or larger than the first gate oxide film 3a, the sources-drains consist of two regions having a low concentration and a high concentration, and the whole surfaces of the low concentration regions are coated with the main gate 4a and the sub-gates 4b. The effect of the outside is interrupted because the upper sections of n<-> layers 5, 5' are coated with the gates, and the breakdown strength of the gates is not lowered because the thickness of the gate oxide films at the end sections of the gates is not reduced.

Description

【発明の詳細な説明】 本発明は半導体装置およびその製造方法に関し、特に超
LSIの構成要素であるMOSFET(電界効果トラン
ジスタ)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device and a method for manufacturing the same, and in particular to a MOSFET (field effect transistor) that is a component of a very large scale integrated circuit.

従来の技術 高集積化の実現のため素子が縮小されているため、素子
内の電界強度が高くなり耐圧が低下している。これを改
善するため、ソース−ドレインを低・高濃度の2領域で
構成するLDD (LightlyDoped Dra
iu )構造が提案され開発されている。ゲートを形成
したのち、低濃度領域(n−)を形成するためのPイオ
ンを1×10 α 注入し、ゲート両端面にS i02
から成る側壁を気相成長十垂直ドライエッチで自己整合
的に形成し、そのSt○2側壁をマスクとして高濃度(
n+)ソース・ドレインを4×10 cm のAs注入
で形成し、大体側壁の巾だけずれたn−・n+構造が形
成されている。
Conventional technology As elements are reduced in size to achieve higher integration, the electric field strength within the element increases and the withstand voltage decreases. In order to improve this, LDD (Lightly Doped Dra
iu ) structure has been proposed and developed. After forming the gate, 1×10 α of P ions were implanted to form a low concentration region (n-), and Si02 was added to both end faces of the gate.
A sidewall consisting of St○2 is formed in a self-aligned manner by vapor phase growth and vertical dry etching, and a high concentration (
n+) sources and drains are formed by implanting 4×10 cm of As, and an n−/n+ structure is formed that is shifted by approximately the width of the sidewall.

発明が解決しようとする問題点 n−の表面の大部分は絶縁膜である側壁に覆われていて
ゲートの影響力が及ばない。従ってn−の表面は外界の
影響を受けやすく素子特性が不安定である。
Problems to be Solved by the Invention Most of the surface of n- is covered by the sidewalls, which are insulating films, and is not influenced by the gate. Therefore, the n- surface is easily influenced by the outside world and the device characteristics are unstable.

また、ゲート酸化膜は高集積化に伴なって薄くなってお
り、ゲートの形成時に、ゲート/酸化膜の選択エッチ比
が有限のため、薄いゲート酸化膜がゲート周辺ではさら
に薄くなり、後に気相成長膜で側壁を形成するもののそ
の膜質は熱酸化膜より劣るので耐圧低下が問題である。
In addition, gate oxide films are becoming thinner with higher integration, and because the selective etch ratio of gate/oxide film is finite when forming gates, the thin gate oxide film becomes even thinner around the gate, and later becomes thinner. Although the sidewalls are formed using a phase-grown film, the quality of the film is inferior to that of a thermal oxide film, so a reduction in breakdown voltage is a problem.

本発明はこの様な従来例の問題点を解決するためになさ
れたものである。
The present invention has been made to solve the problems of the conventional example.

問題点を解決するための手段 すなわち、本発明の半導体装置は、1導電型半導体基板
上に第1ゲート酸化膜を介して設けられた主ゲート、上
記基板上に第2ゲート酸化膜を介しかつ上記主ゲート両
側に接して設けられた副ゲート、上記主及び副ゲートに
より隔てられ上記基板表面に設けられた2導電型のソー
ス・ドレインを備え、上記第2ゲート酸化膜が第1ゲー
ト酸化膜と同等以上の厚みでしかも上記ソース・ドレイ
ンが低・高濃度の2領域から成っていて、上記低濃度領
域表面が主ゲートと副ゲートによりすべて覆われている
構造を有するものである。
Means for Solving the Problems In other words, the semiconductor device of the present invention has a main gate provided on a single conductivity type semiconductor substrate via a first gate oxide film, a main gate provided on the substrate via a second gate oxide film, and A sub-gate provided in contact with both sides of the main gate, a dual conductivity type source/drain separated by the main and sub-gates and provided on the surface of the substrate, wherein the second gate oxide film is a first gate oxide film. It has a structure in which the source and drain are made up of two regions, a low concentration region and a high concentration region, and the surface of the low concentration region is completely covered by the main gate and the sub-gate.

そして、本発明の方法は、1導電型半導体基板上に第1
ゲート酸化膜を介して主ゲートを形成する工程、上記主
ゲート側壁を酸化防止被膜で覆う工程、熱酸化により上
記主ゲート直下以外の領域に上記第1ゲート酸化膜と同
等以上の厚みの第2ゲート酸化膜を形成する工程、上記
酸化防止被膜を除去し低濃度ソース・ドレインを上記主
ゲートをマスクとしてイオン注入で形成する工程、上記
主ゲート両側に接した導電性材料から成る側壁を形成す
る工程、上記導電性材料から成る側壁をマスクとして高
濃度ソース・ドレインをイオン注入で形成する工程とを
含んで成るものである。
Then, in the method of the present invention, a first
a step of forming a main gate via a gate oxide film, a step of covering the side walls of the main gate with an anti-oxidation film, and a step of forming a second gate oxide film having a thickness equal to or greater than the first gate oxide film in a region other than directly under the main gate by thermal oxidation. a step of forming a gate oxide film, a step of removing the anti-oxidation film and forming a low concentration source/drain by ion implantation using the main gate as a mask, and forming side walls made of a conductive material in contact with both sides of the main gate. The method includes a step of forming highly doped sources and drains by ion implantation using the sidewalls made of the conductive material as a mask.

本発明を用いることにより、たとえばn一層の表面をも
ゲート電極で覆う。その際、n一層上のゲート酸化膜は
チャネル部のそれと同等以上の厚みとする。この構造を
実現するため、主ゲート形成後、主ゲート側面を酸化防
膜で覆って主ゲート部以外の酸化膜を厚くしてのち、主
ゲート両側面に接し、電気的にも接続された副ゲートを
形成する。
By using the present invention, for example, even the surface of an n layer can be covered with a gate electrode. At this time, the thickness of the gate oxide film on the nth layer is equal to or greater than that of the channel portion. In order to realize this structure, after forming the main gate, the side surfaces of the main gate are covered with an oxidation barrier film to thicken the oxide film in areas other than the main gate, and then a sub-oxide film is formed that is in contact with both sides of the main gate and is electrically connected. Form a gate.

作  用 本発明によれば、たとえばn一層上がゲートに覆われて
いるので、外界の影響がそれでしゃ断される。ゲート端
部でのゲート酸化膜厚の減少がないのでゲートの耐圧低
下はない。
Function According to the present invention, for example, since the upper layer n is covered with a gate, the influence of the outside world is blocked thereby. Since there is no reduction in the gate oxide film thickness at the edge of the gate, there is no reduction in the breakdown voltage of the gate.

実施例 本発明の半導体装置の実施例としてLDDMOSトラン
ジスタ構造を第1図に示す。P型10Ω、cIrL(1
00)面のシリコン半導体基板1に分離用の、辱い酸化
膜(1μm)2が選択的に形成され、厚さ80mmの第
1のゲート酸化膜3aを介してポリシリコン(厚さ0.
3μm)の主ゲー)4aおよびその両側面に接続しかつ
基板1上に第2のゲート酸化膜(厚さ100人)sbを
介して同じくポリシリコンの副ゲート4aが形成されて
ゲート4を成している。主ゲート4aをマスクとしたヱ
“注入によるn一層6,5′および副ゲート4bをマス
クとしたAs  注入によるn 層6,6′が低・高濃
度のソース・ドレインを成しており、n一層6,6′は
第2ゲート酸化膜3bを介して副ゲー)4bに覆われて
いる。ゲートが低い電圧でドレインが高い電圧のとき、
n一層表面はゲートに覆われているので南空乏化される
。その分n一層5,5′内にはドレイン電圧の増大に伴
ない空乏層が拡がりn7− P基板間接合での電界強度
が低下する。従って、従来例の絶縁膜側壁と同等の電界
強度で十分なら、n″″層をより濃くする事が出来る。
Embodiment FIG. 1 shows an LDDMOS transistor structure as an embodiment of the semiconductor device of the present invention. P type 10Ω, cIrL(1
An isolation oxide film (1 μm) 2 is selectively formed on a silicon semiconductor substrate 1 having a surface (0.00 mm), and polysilicon (0.
A sub-gate 4a, also made of polysilicon, is formed on the substrate 1 via a second gate oxide film (thickness 100 nm) sb, which is connected to the main gate 4a (3 μm) and both sides thereof, and forms the gate 4. are doing. The N layer 6, 5' formed by implantation using the main gate 4a as a mask and the N layer 6, 6' formed by As injection using the sub gate 4b as a mask form a source/drain with a low/high concentration, and The first layer 6, 6' is covered with the sub-gate 4b via the second gate oxide film 3b.When the gate voltage is low and the drain voltage is high,
Since the surface of the n layer is covered with a gate, it is depleted in the south. Accordingly, a depletion layer expands in the n-layers 5, 5' as the drain voltage increases, and the electric field strength at the n7-P substrate junction decreases. Therefore, if the electric field strength equivalent to that of the conventional insulating film sidewall is sufficient, the n'''' layer can be made denser.

n一層は寄生抵抗を有しているので、本発明ではその寄
生抵抗が小さくできる。
Since the n-layer has parasitic resistance, the parasitic resistance can be reduced in the present invention.

次に本発明の製造工程の一例について第2図に沿って述
べる。
Next, an example of the manufacturing process of the present invention will be described with reference to FIG.

(5)基板1上に選択的に分離用酸化膜2を約1μm厚
に選択酸化法で成長せしめてのち、露出した基板1表面
に熱酸化で第1のゲート酸化膜3aを約8nm厚に成長
せしめ引続きポリシリコン4aを気相成長法で厚さ0.
3μmになるよう堆積せしめてパターンを形成する。こ
のとき、露出したゲート酸化膜3a’はドライエツチン
グで一部除去され薄くなる。
(5) After selectively growing an isolation oxide film 2 on the substrate 1 to a thickness of about 1 μm using a selective oxidation method, a first gate oxide film 3a is grown on the exposed surface of the substrate 1 to a thickness of about 8 nm by thermal oxidation. Subsequently, polysilicon 4a is grown to a thickness of 0.05 cm using a vapor phase growth method.
A pattern is formed by depositing it to a thickness of 3 μm. At this time, the exposed gate oxide film 3a' is partially removed by dry etching and becomes thin.

(B)  ゲート4aの側壁をシリコン窒化膜の様な酸
化防止膜7で覆い、ポリシリコン4aの端部での酸化膜
の膨張を抑えつつ薄くなった酸化膜3a’を熱酸化で1
0nm厚まで厚くして第2ゲート酸化膜3bを成長せし
める。
(B) The side wall of the gate 4a is covered with an oxidation prevention film 7 such as a silicon nitride film, and the thinned oxide film 3a' is thermally oxidized while suppressing the expansion of the oxide film at the edge of the polysilicon 4a.
The second gate oxide film 3b is grown to a thickness of 0 nm.

q ゲート4aをマスクとして、rをI X 10” 
era−2注入してn一層5,6′を形成する。注入前
に酸化防止膜7を除去しておく。これは、n一層6,6
′がゲー)4aと必らず重なり部分を持つようにするた
めである。
q Using gate 4a as a mask, r is I x 10”
Era-2 is implanted to form n-layers 5 and 6'. The anti-oxidation film 7 is removed before implantation. This is n one layer 6,6
This is to ensure that '' always has an overlapping portion with game)4a.

p) ポリシリコンを堆積し、ドライエッチすることで
ゲート4aの両側面に於て接したポリシリコンの副ゲー
ト4bが形成される。これをマスクとしてAs+を4×
10151−2注入してn+層6.6′が形成される。
p) Polysilicon is deposited and dry etched to form polysilicon sub-gates 4b that are in contact with both sides of the gate 4a. Use this as a mask and add 4x As+
10151-2 implantation to form n+ layer 6.6'.

n一層6,6′とn+層6.e′は接続されていてソー
ス・ドレインを成している。
n layer 6, 6' and n+ layer 6. e' is connected and forms a source and drain.

発明の効果 本発明によれば、 (1)n一層上がすべてゲートで覆われているので外界
の影響を受けず特性が安定している。
Effects of the Invention According to the present invention, (1) Since the entire upper layer is covered with gates, the characteristics are stable without being influenced by the outside world.

(2)  ゲート・ドレイン間電圧が直接印加される部
分のゲート酸化膜が薄くならないので耐圧低下がない。
(2) Since the gate oxide film in the area where the gate-drain voltage is directly applied does not become thin, there is no drop in breakdown voltage.

(3)  ゲート・ドレイン間電圧でn一層表面が空乏
化され易いのでドレイン・ソース耐圧は高い。
(3) The drain-source breakdown voltage is high because the n-layer surface is easily depleted by the gate-drain voltage.

あるいは、耐圧を従来通り保てば、その分n一層を高濃
度に出来るので寄生抵抗が低く、ドレイン電流が高い。
Alternatively, if the breakdown voltage is maintained as before, the n layer can be made to have a higher concentration, resulting in lower parasitic resistance and higher drain current.

(4)副ゲート直下のゲート酸化膜を成長せしめる際、
主ゲート側面を酸化防止膜で覆うので、主ゲート直下の
ゲート酸化膜厚は影響を受けず、チャネルの電気特性は
維持されている。
(4) When growing the gate oxide film directly under the sub-gate,
Since the side surface of the main gate is covered with an oxidation prevention film, the thickness of the gate oxide film directly under the main gate is not affected, and the electrical characteristics of the channel are maintained.

等の効果がもたらされ、ますます微細化が進むMOSF
ETの特性を向上させるものである。
MOSFs are becoming increasingly finer due to the effects of
This improves the characteristics of ET.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のMOS トランジスタの断面
図、第2図(8)〜qは本実施例のMOS トランジス
タの製造方法を示す工程断面図である。 1・・・・・・シリコン半導体基板、2・・・・・・酸
化物、3・・・・・・ゲート酸化膜、4・・・・・・ゲ
ート、4a・・・・・・主ゲート1.ab・・・・・・
副ゲート、6,6′・・・・・・n一層、6゜6′・・
・・・・n+層、7・・・・・・酸化防止膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名−′
1″”        CN    −c″J    
   囚 −ε
FIG. 1 is a sectional view of a MOS transistor according to an embodiment of the present invention, and FIGS. 2(8) to 2(q) are process sectional views showing a method of manufacturing the MOS transistor of this embodiment. DESCRIPTION OF SYMBOLS 1... Silicon semiconductor substrate, 2... Oxide, 3... Gate oxide film, 4... Gate, 4a... Main gate 1. ab・・・・・・
Sub-gate, 6, 6'...n single layer, 6゜6'...
...N+ layer, 7...Anti-oxidation film. Name of agent: Patent attorney Toshio Nakao and 1 other person-'
1″” CN-c″J
Prisoner-ε

Claims (2)

【特許請求の範囲】[Claims] (1)1導電型半導体基板上に第1ゲート酸化膜を介し
て設けられた主ゲート、上記基板上に第2ゲート酸化膜
を介しかつ上記主ゲート両側に接して設けられた副ゲー
ト、上記主及び副ゲートにより隔てられ上記基板表面に
設けられた2導電型のソース・ドレインを備え、上記第
2ゲート酸化膜が第1ゲート酸化膜と同等以上の厚みで
しかも上記ソース・ドレインが低・高濃度の2領域から
成り、上記低濃度領域表面が主ゲートと副ゲートにより
すべて覆われている半導体装置。
(1) A main gate provided on a first conductivity type semiconductor substrate via a first gate oxide film; a sub-gate provided on the substrate via a second gate oxide film in contact with both sides of the main gate; The second gate oxide film has a thickness equal to or greater than that of the first gate oxide film, and the source and drain have a low thickness. A semiconductor device consisting of two high concentration regions, the surface of the low concentration region being completely covered by a main gate and a sub gate.
(2)1導電型半導体基板上に第1ゲート酸化膜を介し
て主ゲートを形成する工程、上記主ゲート側壁を酸化防
止被膜で覆う工程、熱酸化により上記主ゲート直下以外
の領域に上記第1ゲート酸化膜と同等以上の厚みの第2
ゲート酸化膜を形成する工程、上記酸化防止被膜を除去
し低濃度ソース・ドレインを上記主ゲートをマスクとし
てイオン注入で形成する工程、上記主ゲート両側に接し
た導電性材料から成る側壁を形成する工程、上記導電性
材料から成る側壁をマスクとして高濃度ソース・ドレイ
ンをイオン注入で形成する工程とを含んで成る半導体装
置の製造方法。
(2) A step of forming a main gate on a first conductivity type semiconductor substrate via a first gate oxide film, a step of covering the side walls of the main gate with an oxidation prevention film, and a step of forming the main gate in a region other than directly under the main gate by thermal oxidation. The second gate oxide film has a thickness equal to or greater than that of the first gate oxide film.
a step of forming a gate oxide film, a step of removing the anti-oxidation film and forming a low concentration source/drain by ion implantation using the main gate as a mask, and forming side walls made of a conductive material in contact with both sides of the main gate. A method of manufacturing a semiconductor device, comprising the steps of: forming a highly doped source/drain by ion implantation using the sidewall made of the conductive material as a mask.
JP6155487A 1987-03-17 1987-03-17 Semiconductor device and manufacturing method thereof Expired - Lifetime JPH0666326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6155487A JPH0666326B2 (en) 1987-03-17 1987-03-17 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6155487A JPH0666326B2 (en) 1987-03-17 1987-03-17 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS63227059A true JPS63227059A (en) 1988-09-21
JPH0666326B2 JPH0666326B2 (en) 1994-08-24

Family

ID=13174445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6155487A Expired - Lifetime JPH0666326B2 (en) 1987-03-17 1987-03-17 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0666326B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139937A (en) * 1988-11-18 1990-05-29 Nec Corp Ldd structure mosfet
US5023679A (en) * 1988-06-30 1991-06-11 Kabushiki Kaisha Toshiba Semiconductor device
JPH03157938A (en) * 1989-11-03 1991-07-05 Philips Gloeilampenfab:Nv Method for manufacturing semiconductor device equipped with mis transistor
US5371391A (en) * 1991-12-20 1994-12-06 Nippon Steel Corporation MOS semiconductor device and method of fabricating the same
KR100317642B1 (en) * 1999-05-27 2001-12-22 구본준, 론 위라하디락사 Method for manufacturing a Thin Film Transistor using a metal plating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023679A (en) * 1988-06-30 1991-06-11 Kabushiki Kaisha Toshiba Semiconductor device
JPH02139937A (en) * 1988-11-18 1990-05-29 Nec Corp Ldd structure mosfet
JPH03157938A (en) * 1989-11-03 1991-07-05 Philips Gloeilampenfab:Nv Method for manufacturing semiconductor device equipped with mis transistor
US5371391A (en) * 1991-12-20 1994-12-06 Nippon Steel Corporation MOS semiconductor device and method of fabricating the same
KR100317642B1 (en) * 1999-05-27 2001-12-22 구본준, 론 위라하디락사 Method for manufacturing a Thin Film Transistor using a metal plating

Also Published As

Publication number Publication date
JPH0666326B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
JP3455452B2 (en) Semiconductor device and manufacturing method thereof
JPH10150195A (en) Mosfet and its manufacture
JP2000332246A (en) Process of forming mos gate device having self-aligned trench
US7176071B2 (en) Semiconductor device and fabrication method with etch stop film below active layer
JPH0923010A (en) Semiconductor element and its preparation
KR0180310B1 (en) Method for manufacturing cmos transistor
JPH11111972A (en) Semiconductor device and its manufacture
JP3360064B2 (en) Method for manufacturing semiconductor device
JPH098321A (en) Transistor structure of semiconductor element and its manufacture
JP3057439B2 (en) Method for manufacturing semiconductor device
JPS63227059A (en) Semiconductor device and manufacture thereof
JPH10335660A (en) Semiconductor device and manufacture thereof
JPS63244683A (en) Field effect type semiconductor device and its manufacture
US7453121B2 (en) Body contact formation in partially depleted silicon on insulator device
JPS6344769A (en) Field effect transistor and manufacture of the same
KR960013947B1 (en) Mos transistor
JPS63305566A (en) Semiconductor device and manufacture thereof
JP2531688B2 (en) Method for manufacturing semiconductor device
JPH06151842A (en) Semiconductor device and its manufacture
KR100376874B1 (en) Method for manufacturing transistor of semiconductor device
KR0170513B1 (en) Mos transistor and its fabrication
JP2003115585A (en) Method for manufacturing semiconductor device
KR100587379B1 (en) Method for manufacturing of semiconductor device
JPH06314782A (en) Manufacture of semiconductor device
JPS6146984B2 (en)