JPS61231898A - Pentagon chopper driving method for 5-phase stepping motor - Google Patents

Pentagon chopper driving method for 5-phase stepping motor

Info

Publication number
JPS61231898A
JPS61231898A JP7272285A JP7272285A JPS61231898A JP S61231898 A JPS61231898 A JP S61231898A JP 7272285 A JP7272285 A JP 7272285A JP 7272285 A JP7272285 A JP 7272285A JP S61231898 A JPS61231898 A JP S61231898A
Authority
JP
Japan
Prior art keywords
current
winding
windings
point
pentagon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7272285A
Other languages
Japanese (ja)
Other versions
JPH0467439B2 (en
Inventor
Koji Noguchi
野口 孝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pulse Motor Co Ltd
Original Assignee
Nippon Pulse Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pulse Motor Co Ltd filed Critical Nippon Pulse Motor Co Ltd
Priority to JP7272285A priority Critical patent/JPS61231898A/en
Publication of JPS61231898A publication Critical patent/JPS61231898A/en
Publication of JPH0467439B2 publication Critical patent/JPH0467439B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors rotating step by step
    • H02P8/14Arrangements for controlling speed or speed and torque

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Stepping Motors (AREA)

Abstract

PURPOSE:To avoid a damage by selecting the connection of five windings, a current flow-in point and a current flow-out point so that the windings, to which currents are flowed, always become tow sets in which the windings of 2 phases are connected in series, thereby eliminating the abrupt potential change of a transistor. CONSTITUTION:A current flow-in point is selected to a point (c) as shown in Fig. (a), and a current flow-out point is selected to points A, E to flow currents to series circuits of windings 5, 3 and 2, 4 to flow the currents of the same polarity as that of the conventional type, thereby setting both ends of the winding 1 to the same negative potential to a short-circuited state (marked with 'x'). Then, the current flow-in points are selected to those as shown in Figs. (b)-(j) to flow the currents corresponding to those of the conventional type to drive a motor.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は5相ステツピングモータのペンタゴンチョッパ
駆動方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for driving a pentagon chopper of a five-phase stepping motor.

(従来技術) 5相ステツピングモータの駆動方法として提案されてい
る所謂バイポーラペンタゴン駆動方法は、第1図に示す
ようにモータのもつ5箇の巻線(1)(2)(3)(4
)(37(4)(5)を図中「・」の重性で5角形に接
続し、これらを10箇のトランジスタTr、”−Tr、
 oを用いて第2図に示す励磁シーケンスのもとに、各
巻線に励磁ステップ毎に第3図(a)〜(j)を1周期
とする励磁電流をそれぞれ流して駆動を行うものである
(Prior Art) The so-called bipolar pentagon drive method proposed as a drive method for a five-phase stepping motor is based on the motor's five windings (1), (2), (3), and (4) as shown in Figure 1.
)(37(4)(5) are connected in a pentagon with the weight of "・" in the figure, and these are connected to 10 transistors Tr, "-Tr,
According to the excitation sequence shown in Fig. 2 using .

即ち第1に第1図のようにエミッタが電源Vの正極性端
子■に接続されたスイッチTr9. Tr7 、 Tr
5のオン、コレクタが電源Vの負極性端子eに直接接続
されたスイッチTr2 、Tr6 のオンにより、第3
図(α)に示すroI点を■電位とし、「・」点を負電
位として4箇の巻線+2)(31fJ (5)に図中矢
印方向の電流を流し、次に例えば第2図のCW力方向廻
すときスイッチTrp、Tr3.Tr、1.Tr6.T
r2をオンとして4箇の巻線fl)+3)+4)+5)
に第3図(b)の矢印方向に電流を流す。そして以下ク
ロックが入る毎にスイッチのオンオフ制御により巻線(
1)+2)+4)+5)に第3図tc)に示す矢印方向
の電流、巻線+17 、 +27 、 +3) 、 +
5)に第3図+d)の矢印方向の電流を流し、以下第6
図(θ)→(q)→・・・の順序で電流を流したのち最
後に第1図のスイッチTr7 、 Tr5とTrlo、
 Tr6 、 Tr2  をオンとして、第6図(jl
に示す矢印方向の電流を4箇の巻線(t) + <2)
 1tsl l (4)に流す励磁順序をとって〆動す
るもので、電流流出入ポイントA、B、C,D、にの電
位関係をまとめると第1表のようになる。
That is, first, as shown in FIG. 1, the switch Tr9. Tr7, Tr
The third
The roI point shown in figure (α) is set to ■ potential, and the point "・" is set to negative potential, and a current is passed through the four windings +2) (31fJ (5) in the direction of the arrow in the figure. Next, for example, as shown in figure 2, When turning in the CW force direction, switch Trp, Tr3.Tr, 1.Tr6.T
With r2 on, 4 windings fl)+3)+4)+5)
A current is passed in the direction of the arrow in FIG. 3(b). Then, each time the clock enters, the winding (
1) +2) +4) +5) and the current in the direction of the arrow shown in Figure 3 tc), the winding +17 , +27 , +3) , +
5), apply a current in the direction of the arrow in Figure 3 + d), and then
After passing the current in the order of (θ) → (q) →..., the switches Tr7, Tr5 and Trlo in Figure 1 are finally connected.
Turning on Tr6 and Tr2, as shown in Fig. 6 (jl
Current in the direction of the arrow shown in the four windings (t) + <2)
Table 1 summarizes the potential relationships at the current inflow and outflow points A, B, C, and D.

第1表 このペンタゴン駆動方式では常に5相のうち4相の巻線
に電流を流す4相励磁即ち4−4φフルステツプ励出で
あるため常に最大出力が発揮される。
Table 1 In this pentagon drive system, the maximum output is always produced because it is four-phase excitation, that is, 4-4φ full-step excitation, in which current is always passed through the windings of four of the five phases.

しかも第3図中に示すように各励磁ステップ毎に電流流
入点(図中「0」点)または電流流出点(図中「・」点
)が5相のうちの異なる一相の両端に必らず位置するこ
とになる。例えば第5図(cL)のように電流流入点が
両端に作られた巻線(1)においては、両端が正の同電
位になって図中rXJ印のように短絡されたと同様な状
態になる。また第3図tblのように流出点が作られた
場合には、巻線(2)の両端が負の同電位となって短絡
され、結果とじて巻線(IH2)(3)(4)(31(
41(5)の順序で短絡状態になる。従ってフィードバ
ック制御を行うことなしにすぐれたダンピングをロータ
にきかせて共振現象を効果的に消し去るすぐれた利点が
ある。またこれに加えて他の駆動方式例えばスタンダー
ド駆動方式の場合制御用トランジスタスイッチが第4図
に示すように原理的に20箇必要であるに対し、第1図
に示すように1/2の10箇ですむ回路構成上のすぐれ
た利点が酷られる。
Moreover, as shown in Figure 3, for each excitation step, a current inflow point (point "0" in the diagram) or a current outflow point (point "・" in the diagram) must be at both ends of a different phase among the five phases. It will be located at the same time. For example, in the winding (1) in which current inflow points are made at both ends as shown in Figure 5 (cL), both ends have the same positive potential, resulting in a short-circuited state as indicated by rXJ in the figure. Become. In addition, when an outflow point is created as shown in Figure 3 tbl, both ends of the winding (2) are at the same negative potential and are short-circuited, resulting in the winding (IH2) (3) (4) (31(
A short circuit occurs in the order of 41(5). Therefore, there is an excellent advantage of applying excellent damping to the rotor and effectively eliminating the resonance phenomenon without performing feedback control. In addition to this, in the case of other drive systems, such as the standard drive system, 20 control transistor switches are required in principle as shown in Figure 4, but as shown in Figure 1, 10 The superior advantage of the circuit configuration, which requires only a few points, is severely affected.

(従来技術の問題点) しかしその反面前記したように電源の入出カポインドが
5箇所であるにもかかわらず、必らず各励磁ステップ過
程において異なる1相の巻線の両端を同′電位として短
絡状態にすることから4−4φ励磁に限定され、例えば
スタンダード方式のようにハーフ駆動のための所謂4−
5φ励磁を行うことができない不利がある。またこのよ
うな駆動方法を採用した場合、例えが第5図(α)中に
示すように2相分の電流を流すポイント(図中A、B、
E)と1相分の電流しか流さないポイント(図中C,D
)があり、しかも2相分または1相分の電流を流すポイ
ントは第3図(α)〜(j)に示すように励磁過程に訃
いて次々と変化する。このため制御回路の構成が複雑に
なると同時に大きい電源容量を必要とするなど、他の駆
動方式に比して経済的な不利がある。これに加えて電流
流出入ポイントにおける電位の変化を励磁シーケンスに
沿って見ると、制御用トランジスタスイッチは前記第1
表のようにH−L−H−Lの急激な電位変化をオフタイ
ムをもつことなく頻繁に繰返し受けるため、トランジス
タは苛酷な条件で使用されることになる。従ってトラン
ジスタの破損を回避するための工夫が必要となり、上記
電流の供給上の回路の複雑化と併せて回路構成を著しく
複雑にする。このため使用条件によっては、他の駆動方
式にまさることが明らかであるにもかかわらず、殆ど実
用化されていないのが現状である。
(Problems with the prior art) However, on the other hand, as mentioned above, even though there are five input and output points for the power supply, both ends of the windings of different phases are always short-circuited with the same potential in each excitation step process. Due to the state, it is limited to 4-4φ excitation, for example, so-called 4-4φ excitation for half drive as in the standard method.
There is a disadvantage that 5φ excitation cannot be performed. In addition, when such a driving method is adopted, as shown in Fig. 5 (α), the points where the current for two phases flows (A, B,
E) and points where only one phase of current flows (C, D in the figure)
), and the point at which two-phase or one-phase current flows changes one after another during the excitation process, as shown in FIG. 3 (α) to (j). For this reason, the configuration of the control circuit becomes complicated and at the same time it requires a large power supply capacity, which is economically disadvantageous compared to other drive systems. In addition to this, if we look at the changes in potential at the current inflow and outflow points along the excitation sequence, we can see that the control transistor switch
As shown in the table, transistors are used under severe conditions because they are frequently subjected to rapid potential changes of H-L-HL without any off time. Therefore, it is necessary to take measures to avoid damage to the transistors, which, together with the complication of the circuit for supplying the current, significantly complicates the circuit configuration. For this reason, although it is clear that this drive method is superior to other drive methods depending on the conditions of use, it is currently hardly put into practical use.

本発明は上記の如きペンタゴン、駆動方式のもつ諸欠点
の一掃を目的としてなされたものである。
The present invention has been made for the purpose of eliminating the various drawbacks of the pentagon drive system as described above.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段および作用)本発明はペ
ンタゴン接続された各相に流される電流の極性および短
絡状態とされる巻線が各励磁ステップ段階において従来
方式と同一となり、かつ電流の流される巻線が必らず2
相宛直列接続された2組になるように、5箇の巻線の接
続と電流流入点と電流流出点を選定して、前記したペン
メゴン駆動方式の諸欠点の一掃を図ったものである。
(Means and Effects for Solving the Problems) The present invention provides that the polarity of the current flowing through each phase connected to the pentagon and the windings that are short-circuited are the same as in the conventional method at each excitation step, and the current The number of windings that are swept away is always 2.
The five winding connections and current inflow points and current outflow points are selected so that two sets are connected in series for each phase, thereby eliminating the various drawbacks of the penmegon drive system described above.

即ち第5図(α)(b)に示す4−4φ励磁方式におけ
る従来方式と本発明の結線の対比図から明らかなように
、従来のものが第5図(α)のように巻線が(1ン→(
2)→(3)→(4)→(5)の順序で接続され、かつ
巻線(1)(2)が巻終り同士(図「・」点でない点)
、(2H3)が巻始め同士(図中「・」点)、(5)+
4)が巻終り同士、(4)(5)が巻始め同士、+5)
(1)が巻始め巻終り端がそれぞれ直列に接続されてい
る。これに対し本発明においては、第5図(1)lのよ
うに巻線を(2)→(4)→(1ン→(3)→(5)ま
たは(1)→(3)→(5)→(2)→(4)の順序で
接続し、かつ巻線(2H4)が巻始めと巻終り、(40
1)が巻始め同士、(1](31が巻終りと巻始め、(
31(5)が巻終りと巻始め、(5)+21が巻終り同
士がそれぞれ直列に接続されてペンタゴン接続されると
同時に、各駆動ステップ段階において電流の流される巻
線が必らず2相宛直列になった状態のもとに、各巻線に
従来方式と同一極性の電流を流しうるように制御用トラ
ンジスタをオンオフ制御して、電流流入点rQJおよび
電流流出点「・」を選定することを特徴とするものであ
る。
That is, as is clear from the comparison diagram of the connection of the conventional method and the present invention in the 4-4φ excitation method shown in FIG. 5(α)(b), the conventional method has a winding as shown in FIG. (1 → (
Connected in the order of 2) → (3) → (4) → (5), and windings (1) and (2) are at the end of each winding (points that are not "・" points in the figure)
, (2H3) are at the beginning of the winding (point "・" in the figure), (5)+
4) is between the end of the volume, (4) and (5) are between the beginning of the volume, +5)
(1) The beginning and end of the winding are connected in series. On the other hand, in the present invention, as shown in FIG. 5(1)l, the windings are Connect in the order of 5) → (2) → (4), and the winding (2H4) is connected at the beginning and end of the winding, and (40
1) is between the beginning of the volume, (1] (31 is the end of the volume and the beginning of the volume, (
31(5) is the end of the winding and the beginning of the winding, and (5)+21 is the end of the winding is connected in series and connected in a pentagonal manner, and at the same time, the winding through which current is passed in each drive step is not necessarily two-phase. To select the current inflow point rQJ and the current outflow point "・" by controlling the control transistor on and off so that the current with the same polarity as in the conventional method can flow through each winding under the condition that the windings are connected in series. It is characterized by:

即ち第6図(cL)のように電流流入点をポイントCに
選定し、流出点をポイン)A、Kに選定することにより
、巻4!f5)+3)の直列回路と+204)の直列回
路に電流を流して、各巻線(5)(2)(3)(4)(
4)に第3図Ta)に示す従来方式と同一極性の電流を
流し、巻線(1)の両端を同一負電位として短絡状態(
図中X印)にする。次に第6図(b)のように電流流入
点をポイントCとDに選定し、流出点をポイントAに選
定することにより、各巻線に従来方式を示す第5図(b
)と同一極性の電流をそれぞれ流すと同時に、巻線(2
)を短絡状態(図中×印)にする。以下第6図(c7〜
(jlに示すように電流の流入出点を選定することによ
り、第5図tar〜(jlの従来方式に対応する電流を
各相に流して駆動を行うようにしたものである。
That is, by selecting the current inflow point as point C and the current outflow point as points A and K as shown in FIG. 6(cL), Volume 4! By passing current through the series circuit of f5) +3) and the series circuit of +204), each winding (5) (2) (3) (4) (
4), a current of the same polarity as in the conventional method shown in Figure 3 Ta) is passed, and both ends of the winding (1) are set at the same negative potential to create a short-circuit state (
mark (X in the diagram). Next, as shown in Fig. 6(b), the current inflow points are selected at points C and D, and the current outflow point is selected at point A.
), and at the same time, currents of the same polarity as the windings (2
) into a short-circuit state (marked with an x in the figure). Figure 6 below (c7~
By selecting the inflow and outflow points of the current as shown in (jl), the current corresponding to the conventional method shown in FIG.

(効果) 以上のように本発明では従来のものが電流並人出ポイン
トが5箇所であるに対し3箇所であるので、それだけ制
御回路が簡単になる。また必らず2つの相が直列になっ
た回路に共通に電流が流され、従来のように成るポイン
トでは2組分、成るポイントでは1組分の電流が流入出
することがなくナル。従って電流のバランスがよくなる
ばかりか、電流容量などが1/2になり、トランジスタ
の損失の減少による効率の上昇と発熱の低下を図りつる
。しかも本発明では従来と+i+様各励磁ステップ毎に
短絡相を有するためロータの制動に効果を発揮して共振
現象を抑圧できる。また本発明では巻線が直列になるた
め電流の立上りに悪影響を及ぼすように考えられ勝ちで
あるが、本発明では直列となる2相の既にオンしている
相の逆起電力を利用して直列となった新たな相が助出さ
れるので、従来方式と同等またはこれを土建るものとな
る。
(Effects) As described above, in the present invention, the number of current output points is three compared to five in the conventional system, so the control circuit is simplified accordingly. In addition, a common current flows through a circuit in which two phases are connected in series, and the current for two sets at the point where the phases are connected as in the conventional case, and the current for one set at the point where the phases are formed as in the past, do not flow in or out, resulting in a null. Therefore, not only is the current balance improved, but the current capacity is halved, which increases efficiency and reduces heat generation by reducing transistor loss. Moreover, in the present invention, since a short-circuit phase is provided for each excitation step like the conventional one, it is possible to exert an effect on braking the rotor and suppress the resonance phenomenon. In addition, in the present invention, since the windings are connected in series, it is likely to have a negative effect on the rise of the current, but in the present invention, the back electromotive force of the already turned on phase of the two phases connected in series is used. Since a new series series phase is created, this method is equivalent to or even better than the conventional method.

即ち本発明では例えば第6図(cL)→fblのステッ
プにおいてEポイントがオフになったとき、巻線(4)
から逆起電力が発生するが、これはそのま〜巻線(1)
に加えられるため立上りは悪1ヒしない。またオフする
巻線(2)のコイルからの逆起電力も巻線(4)に加算
的に働くと同時に、巻線(2)の短絡電流はロータに最
適な制岬効果を示すように働く。また第6図(bl→(
C1のステップではCポイントがオフとなり、これによ
り発生した逆起電力はそのまま巻線(2)に投入され、
またこのときオフとなった巻線(5)に発生した逆起電
力も巻線(5)に加算的に働くと同時に、巻1Q(3)
の短絡電流はロータに最適な効果を示すように働く。従
って電流の立上りは従来と同等またはそれ以上になり短
絡相にもとづく制動効果も向上されて共振現象の発生を
効果的に防ぐことができる。
That is, in the present invention, for example, when the E point is turned off in the step from FIG. 6 (cL) to fbl, the winding (4)
A back electromotive force is generated from the winding (1).
Because it is added to , there is no bad start. In addition, the back electromotive force from the coil of winding (2) that turns off acts additively on winding (4), and at the same time, the short-circuit current of winding (2) acts so as to exhibit an optimal cape effect on the rotor. . Also, Fig. 6 (bl→(
In step C1, the C point is turned off, and the counter electromotive force generated by this is directly input to the winding (2),
In addition, the back electromotive force generated in the winding (5), which was turned off at this time, acts additively on the winding (5), and at the same time, the winding 1Q (3)
The short-circuit current of works on the rotor to show optimum effect. Therefore, the rise of the current is equal to or higher than that of the conventional case, and the damping effect based on the shorted phase is improved, so that the occurrence of resonance phenomenon can be effectively prevented.

また更に本発明では第6図(α)〜(j)の各ステップ
における各ポイントA、B、O,D、Eの電位変化は第
2表のようになる。例えばポイン)Aにおける電位変化
を見た場合、 第2表 ステップ第6図(OLHb)(clにおいてはLレベル
、ステップ第6図(dJ (elにおいてはオフ、(f
J IgJ (h) K $−いてはHレベル、ステッ
プ第5図fi)fj)においてはオフとなるように、各
ポイントB、O,D、]!:についてもLとHの間には
必らずオフの期間が入る。このため前記従来方式のよう
に各ポイントにおけるトランジスタは苛酷な動作を強い
られることがなく、その結果トランジスタの保護回路を
必要としなくなるので、前記電流人出点の減少と共に回
路は簡単化される。従って回路の複雑化にもとづく実用
化への阻害は排除される。
Furthermore, in the present invention, potential changes at each point A, B, O, D, and E in each step of FIG. 6 (α) to (j) are as shown in Table 2. For example, when looking at the potential change at point A, in Table 2 Step Figure 6 (OLHb) (cl is L level, step Figure 6 (dJ (el is OFF, (f
J IgJ (h) K $- is at H level, and each point B, O, D, ]! : Also, there is always an off period between L and H. Therefore, unlike in the conventional system, the transistors at each point are not forced to operate harshly, and as a result, there is no need for a protection circuit for the transistors, and the circuit is simplified as the number of current output points decreases. Therefore, obstacles to practical application due to circuit complexity are eliminated.

また以上では4−4φ励磁について説明したが、本発明
によれば4−5φ励磁が可能となり・・−フ駆動を行う
ことができる。即ちオフ図(6L)のように4−4φ励
磁を示す第6図tcL+と同様に最初電流流人用意をポ
イン) C、A、 、 Eに選定し、次にオフ図(cL
+のように電流流入点をポイントC9流出点をポイント
Aに選定することにより、巻線(5)(31の直列回路
と巻線(2H4H1)の直列回路を形成して5相全部に
所要励磁極性の電流を流し、再びオフ図(1)lのよう
に電流流人高点を第6図(blと同様に短絡相(279
外の4相に電流を流す。次にオフ図tb+のように電流
の流入出点をり、Aに選定して巻線+2)(3)(4)
(5)f31の直列回路と巻線(41(1)の直列回路
を形成して5相全部に電流を流し、以下オフ図(cl(
cl・・・・・・の要領によりそれぞれ所要極性の電流
を4φ→5φ→4φ→5φの順序で流すことができる。
Moreover, although 4-4φ excitation has been described above, according to the present invention, 4-5φ excitation is possible, and . . . -F drive can be performed. In other words, as in Figure 6 tcL+, which shows 4-4φ excitation as shown in the OFF diagram (6L), first prepare the current flow controller) C, A, , E, and then select the OFF diagram (cL
By selecting the current inflow point as point C9 and the current outflow point as point A as shown in +, a series circuit of winding (5) (31) and winding (2H4H1) is formed and all five phases are energized as required. Flow the current of the polarity, turn off the high point of the current flow as shown in Figure (1)l again, and connect the short circuit phase (279) as shown in Figure 6 (bl).
Flow current to the outer four phases. Next, draw the current inflow and outflow points as shown in the off diagram tb+, select A, and winding +2) (3) (4).
(5) Form a series circuit of f31 and winding (41(1)) to flow current to all five phases, and the following is an off diagram (cl(
According to the procedure of cl..., currents of required polarity can be made to flow in the order of 4φ→5φ→4φ→5φ.

従って4−5φ励迅を可能としてハーフ駆動を実現でき
る。またこのときの電流流人高点の電位変化は第3表の
ようになり、4−4φ励磁と同様にHレベルとLレベル
の間に必らずオフタイムが存在することから、トランジ
スタの保護回路を不要とする。従って前記従来方式の諸
欠点を一掃した実用的なバイポーラペンタゴンチョッパ
駆動方法を実現できる。
Therefore, 4-5φ excitation speed is possible and half drive can be realized. In addition, the potential change at the high point of the current flow at this time is as shown in Table 3, and as with 4-4φ excitation, there is always an off time between the H level and L level, so it is necessary to protect the transistor. Eliminates the need for circuits. Therefore, it is possible to realize a practical bipolar pentagon chopper driving method that eliminates the various drawbacks of the conventional method.

第6表Table 6

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第6図(α)〜(jlおよび第4図は
従来方式の説明図であって、このうち第1図は巻線接続
図、第2図は動作シーケンス図、第3図は各ステップ毎
の励磁状態図、第4図はスタンダード方式のスイッチ回
路図である。第5図(α)(b)は従来と本発明におけ
る巻線接続の対比図、第6図(cl〜(jlは4−4φ
励磁における各ステップ毎の励磁状態図、オフ図(α)
〜(C′)は4−5φ励磁における各ステップ毎の励磁
状態図である。 +11t21+31+41(5)−・・巻線、 Trl
 〜Tr10−制御用トランジスタ、  A、B、C,
D、K・・・電流流入または流出点。
1, 2, 6 (α) to (jl) and 4 are explanatory diagrams of the conventional system, of which FIG. 1 is a winding connection diagram, FIG. 2 is an operation sequence diagram, Fig. 3 is an excitation state diagram for each step, Fig. 4 is a standard switch circuit diagram, Fig. 5 (α) (b) is a comparison diagram of winding connections in the conventional method and the present invention, Fig. 6 (cl~(jl is 4-4φ
Excitation state diagram for each step in excitation, OFF diagram (α)
-(C') are excitation state diagrams for each step in 4-5φ excitation. +11t21+31+41(5)-...Winding, Trl
~Tr10-control transistor, A, B, C,
D, K... Current inflow or outflow point.

Claims (1)

【特許請求の範囲】[Claims] (1)5箇の巻線をそれぞれ所要巻回極性のもとに(1
)(2)(3)(4)(5)の順序で直列接続してペン
タゴン接続回路を形成すると共に、各励磁ステップにお
ける励磁電流の流入点と流出点を選定して1相の巻線を
(1)(2)(3)(4)(5)の順序で順次短絡状態
にしながら他の4相の巻線に所要極性の電流を流して励
磁するペンタゴンチョッパ駆動方法において、各巻線の
巻回極性を同一としながら巻線を(2)(4)(1)(
3)(5)の順序でペンタゴン接続すると共に、1相の
巻線が(1)(2)(3)(4)(5)の順序の短絡状
態をもちながら、他相の巻線に所要極性の電流をそれぞ
れ流すように各励磁ステップにおける電流の流入点およ
び流出点を選定して、電流の流される巻線が各ステップ
段階において2相宛直列された2組となるようにしたこ
とを特徴とする5相ステッピングモータのペンタゴンチ
ョッパ駆動方法。
(1) Each of the five windings is connected to the required winding polarity (1
) (2) (3) (4) (5) are connected in series to form a pentagon connection circuit, and the inflow and outflow points of the excitation current in each excitation step are selected to form a one-phase winding. (1) (2) (3) (4) (5) In the pentagon chopper driving method in which the windings of the other four phases are excited by flowing current of the required polarity while being short-circuited in order, the windings of each winding are (2) (4) (1) (
3) In addition to connecting the pentagon in the order of (5), the winding of one phase has the short-circuit condition in the order of (1), (2), (3), (4), and (5), and the winding of the other phase is connected as required. The inflow and outflow points of the current at each excitation step are selected so that currents of different polarities flow, and the windings through which the current flows are two sets connected in series for two phases at each step. Pentagon chopper drive method using a 5-phase stepping motor.
JP7272285A 1985-04-08 1985-04-08 Pentagon chopper driving method for 5-phase stepping motor Granted JPS61231898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7272285A JPS61231898A (en) 1985-04-08 1985-04-08 Pentagon chopper driving method for 5-phase stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7272285A JPS61231898A (en) 1985-04-08 1985-04-08 Pentagon chopper driving method for 5-phase stepping motor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP3050529A Division JPH0697876B2 (en) 1991-02-22 1991-02-22 Pentagon chopper driving method for 5-phase stepping motor
JP24853093A Division JPH06319294A (en) 1993-09-10 1993-09-10 Five-phase stepping motor

Publications (2)

Publication Number Publication Date
JPS61231898A true JPS61231898A (en) 1986-10-16
JPH0467439B2 JPH0467439B2 (en) 1992-10-28

Family

ID=13497529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7272285A Granted JPS61231898A (en) 1985-04-08 1985-04-08 Pentagon chopper driving method for 5-phase stepping motor

Country Status (1)

Country Link
JP (1) JPS61231898A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243887A (en) * 1988-03-22 1989-09-28 Meretsuku:Kk Circuit and method for minute angle drive of step motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150655A (en) * 1984-12-22 1986-07-09 Oriental Motor Kk Drive circuit of multilayer stepping motor
JPS61185056A (en) * 1985-02-06 1986-08-18 Meretsuku:Kk 4-5 phase drive system of pentagon wirings of 5-phase pulse motor
JPS6347049A (en) * 1986-08-08 1988-02-27 Toshiba Corp Machining method for diamond member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150655A (en) * 1984-12-22 1986-07-09 Oriental Motor Kk Drive circuit of multilayer stepping motor
JPS61185056A (en) * 1985-02-06 1986-08-18 Meretsuku:Kk 4-5 phase drive system of pentagon wirings of 5-phase pulse motor
JPS6347049A (en) * 1986-08-08 1988-02-27 Toshiba Corp Machining method for diamond member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243887A (en) * 1988-03-22 1989-09-28 Meretsuku:Kk Circuit and method for minute angle drive of step motor

Also Published As

Publication number Publication date
JPH0467439B2 (en) 1992-10-28

Similar Documents

Publication Publication Date Title
CN107306103B (en) Method for switching between full winding mode and half winding mode in a three-phase electric machine
US9882521B2 (en) Apparatus and methods of controlling electric drive with reconfigurable winding
US3530347A (en) Energy transfer means for stepping motors
JPH0799959B2 (en) Inverter with winding switching function
US5225758A (en) Apparatus for driving a variable reluctance motor
EP0896422A1 (en) Current control in driving DC-brushless motor with independent windings
JPS61231898A (en) Pentagon chopper driving method for 5-phase stepping motor
US4418309A (en) Two phase induction motor circuit with series connected center-tapped stator windings
JPH0378498A (en) Driving circuit for stepping motor
JPS60194797A (en) Holding circuit of pulse motor
JP3274894B2 (en) Motor drive method
JPH04217899A (en) Method for driving pentagon chopper of five-phase stepping motor
JPH06319294A (en) Five-phase stepping motor
JPS60128899A (en) Driving method of step motor
EP0848488A1 (en) Method of driving a multiphase brushless DC motor and output stage
DE732753C (en) Reversing pole connection for regenerative braking of single-phase series motors, especially railway motors
JPS61236397A (en) Drive circuit for stepping motor
JPS614498A (en) Driving method of multispeed pulse motor
SU1001398A2 (en) Device for control of electric drive with two-zone controlling
JPH03284192A (en) Driving circuit for stepping motor
JPS58123383A (en) Normal and reverse rotation switching circuit for motor
JPS6339498A (en) Stepping motor drive circuit
JPH02261095A (en) Stepping motor controller
JPH0540720Y2 (en)
JPH03215193A (en) Stepping motor driving circuit