JPS61231327A - Optimum degree admission degree display unit - Google Patents

Optimum degree admission degree display unit

Info

Publication number
JPS61231327A
JPS61231327A JP60071626A JP7162685A JPS61231327A JP S61231327 A JPS61231327 A JP S61231327A JP 60071626 A JP60071626 A JP 60071626A JP 7162685 A JP7162685 A JP 7162685A JP S61231327 A JPS61231327 A JP S61231327A
Authority
JP
Japan
Prior art keywords
display board
measurement point
approach
optimal area
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60071626A
Other languages
Japanese (ja)
Other versions
JPH0435648B2 (en
Inventor
Hiroshi Sano
寛 佐野
Tetsuhiko Kobayashi
哲彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60071626A priority Critical patent/JPS61231327A/en
Publication of JPS61231327A publication Critical patent/JPS61231327A/en
Publication of JPH0435648B2 publication Critical patent/JPH0435648B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To provide a data system capable of discriminating visionally atmospheric conditions such as the adaptability, comfortableness and the like of the atmosphere when they are determined by a plurality of factors, by displaying the conditions as positions on a plane whose coordinates represent measured values of these factors. CONSTITUTION:A plurality of properties of the atmosphere are picked up in terms of measured values by a sensor, and these two measured values are represented on biaxial coordinates, thus displaying the atmospheric conditions as positions of dots on a plane. Furthermore, in order to visionally clarify the meanings of positions of measured points, adapted zones, comfortable zones, and the like are designated beforehand in terms of line blocks, colors, characters and the like. For example, if the optimum zone is depicted beforehand on a display panel using the measured values of NOx and dust as coordinates during the operation of a kerosene boiler, even those non-skilled in the art can easiy catch the normal operational condition and even any slight fluctuation in the measured value can be discriminated whether it is in an allowable range or not.

Description

【発明の詳細な説明】 A9発明の技術分野 本発明は、雰囲気の最適性が複数の因子により総合的に
決まる場合に、その個々の因子の測定値を組み合わせた
位置として画像化する図的表示手段に関する。
DETAILED DESCRIPTION OF THE INVENTION A9 Technical Field of the Invention The present invention provides a graphical representation that, when the optimality of an atmosphere is comprehensively determined by a plurality of factors, images the measured values of the individual factors as a combined position. Concerning means.

B、従来技術と問題点 燃焼管理においては、常に排煙の微量成分である残存o
2.生成したNOx、Go、ばいじんの量が、省エネル
ギーおよび公害防止上の課題となる。NOxやCOの生
成は常春;残存02濃度と関係し、一定の燃焼器、一定
の燃料においてはかなりの範囲において log(○al  a  log[NNOx1lo (
02)  a  −1og (Co)log (01)
  a  −1og (ばイシン]の関係が成立するこ
とが知られている。すなわち、NOx抑制とCO抑制と
は逆の燃焼条件を要求することが普通で、上手な燃焼法
とはN0x−t+coもほどほどに少ない条件を苦心し
て見い出して操作するのがコツであるとされる。一般に
は両者の測定値を別個のセンサで測定し時間経過〒15
1数値表811較5・経験的に両者が低水準1.におさ
まるように操作しているが、目標値が浮動的なので熟練
を要する。また、燃焼器や燃焼法を改良する際にもNO
xまたはCO単独で比較すれば、どちらかを改善しても
他方が改悪される場合が多く、総合的に改善の成否を判
定することが難しい、そこで複数の測定値の変化を追い
ながらも努力目標を単一化する表示法が望まれてきた。
B. Conventional technology and problems In combustion management, residual o, which is a trace component of flue gas, is always
2. The amount of generated NOx, Go, and soot becomes an issue in terms of energy conservation and pollution prevention. The generation of NOx and CO is constant; it is related to the residual 02 concentration, and for a given combustor and a given fuel, it becomes log(○al a log[NNOx1lo (
02) a −1og (Co)log (01)
It is known that the following relationship holds true: NOx suppression and CO suppression usually require opposite combustion conditions, and a good combustion method also requires NOx - t+co. It is said that the trick is to take pains to find and operate conditions that are moderately small.Generally, the measured values of both are measured using separate sensors, and the time elapsed 〒15
1 Numerical Table 811 Comparison 5 Empirically, both are at a low level 1. Although it is operated so that the target value falls within the range, skill is required because the target value is floating. Also, when improving combustors and combustion methods, NO
When comparing x or CO alone, it is often the case that even if one is improved, the other will deteriorate, making it difficult to judge the success or failure of the improvement comprehensively.Therefore, efforts are made to track changes in multiple measured values. A display method that unifies the goal has been desired.

一方、環境の快適性の支配因子としては、雰囲気の温度
と湿度の2因子が一般に承認され、それらの組み合わせ
によって不快指数が定義されている。しかし温度と湿度
の同時表示の実施は、僅かに温水プールなどにおいて横
並びの温度・湿度各数字表示がなされる程度であって、
(山内成将、センサ技術、1984−10.PO2)複
数のデジタル表示を一見しただけでは環境快適度は不明
で各人がそれらの数字から推定するには熟練を要する。
On the other hand, two factors, atmospheric temperature and humidity, are generally accepted as controlling factors for environmental comfort, and a discomfort index is defined by a combination of these factors. However, the simultaneous display of temperature and humidity is limited to a few places such as heated pools where temperature and humidity numbers are displayed side by side.
(Narimasa Yamauchi, Sensor Technology, 1984-10.PO2) The environmental comfort level is unknown just by looking at multiple digital displays, and it requires skill for each person to estimate it from those numbers.

また高温・多湿!境のカビ多発域や寒・乾環境の気管支
障害域も温度だけでなく湿度が支配しており、温度・湿
度複合による正確、簡便な状況表示が望まれている。
It's hot and humid again! Not only temperature but also humidity governs mold-infested areas in border areas and bronchial disorder areas in cold/dry environments, and there is a need for accurate and simple status display based on a combination of temperature and humidity.

C0発明の目的 本発明は雰囲気の適合性・快適性などが複数の因子によ
って定まる場合に、各因子の測定値を座標とした平面上
の位置として表示することにより、迅速かつ的確に導状
が目的に対し適合する域にあるか否か、適合性に進入し
、つつあるか否か、適合域から離脱しつつあるか否かを
視覚的に判定できる情報システムを提供する。
C0 Purpose of the Invention The present invention is capable of quickly and accurately determining conductivity by displaying measured values of each factor as coordinates on a plane when the suitability and comfort of the atmosphere are determined by multiple factors. To provide an information system that can visually determine whether or not it is in a range that is compatible with a purpose, whether it is entering or approaching the range of suitability, and whether it is leaving the range of suitability.

燃焼管理においては、省エネルギーの目的で排煙中の残
存02の減少をはかると共に公害防止の目的でNOx、
Go、ばいじんの減少をはかるのが常である。これらの
諸数値は互いに相関があり、単独に一変量だけの減少を
はかることは不可能である。複数の変量の同時削減を追
求し易くすることは本発明の目的のひ奸つである。
In combustion management, we aim to reduce residual 02 in flue gas for the purpose of energy conservation, and reduce NOx and NOx for the purpose of pollution prevention.
Go, it is usual to try to reduce soot and dust. These numerical values are correlated with each other, and it is impossible to measure a single variate reduction alone. It is one of the objectives of the present invention to facilitate the pursuit of simultaneous reduction of multiple variables.

居住環境などの快適化や、乾燥炉雰囲昂の最適化におい
ては温度と湿度の同時制御が不可欠であるが、本発明は
両側定値の単一点表示とその位置を見、ることにより、
予備知識なしに最適化の当否を判定できるようにするも
のである。
Simultaneous control of temperature and humidity is essential for making the living environment more comfortable and optimizing the drying oven atmosphere, but the present invention provides a single-point display of constant values on both sides and its position.
This makes it possible to judge whether optimization is appropriate or not without prior knowledge.

D6発明の構成 本発明は雰囲気の複数の性質をセンサにより測定値とし
て取り出し、二つの測定値を2軸の座標で示し雰囲気状
況を平面上の点の位置として表示すること、を特徴とす
る。
D6 Structure of the Invention The present invention is characterized in that a plurality of properties of the atmosphere are taken out as measured values by a sensor, and the two measured values are expressed in coordinates of two axes, and the atmospheric condition is displayed as the position of a point on a plane.

さらに、測定点位置の意味を視覚的に明確化するために
表示板上に適合域・快適域・有害域などを線区画・色彩
・文字などによりあらかじめ指定することを第2の特徴
とする。
Furthermore, a second feature is that suitable areas, comfortable areas, harmful areas, etc. are specified in advance on the display board by line divisions, colors, characters, etc. in order to visually clarify the meaning of measurement point positions.

燃焼管理において、排煙の状態をセンサによりいくつか
の測定として認識する場合、通例測定対象とされる変数
CO2ばいじん、NOx。
In combustion management, when the state of flue gas is recognized as several measurements by sensors, the variables that are usually measured are CO2, soot, and NOx.

02の4種である。There are 4 types of 02.

一般に不完全燃焼物であるCOとばいじんは似た増減挙
動を示すが、これらは酸化雰囲気の代表である02およ
び完全燃焼時に多発し易いNOxに対しては1例えば第
1図のように負の相関があり、両者の対数はマイナス勾
配の直線関係として見い出される。ただし、燃料、燃焼
器、運転方法が一定している場合にのみ一つの直線上に
のる。図中左下へ進むほどすぐれた無公害燃料(あるい
は無公害燃焼器、無公害運転方法)と認定することがで
きる。
In general, CO and soot, which are incompletely combusted products, exhibit similar increase and decrease behavior, but they differ from 02, which is representative of an oxidizing atmosphere, and NOx, which tends to occur frequently during complete combustion. There is a correlation, and the logarithm of both is found as a linear relationship with a negative slope. However, only when the fuel, combustor, and operating method are constant, will the vehicle lie on a single straight line. The further to the bottom left in the diagram, the more excellent the pollution-free fuel (or pollution-free combustor or pollution-free operating method) can be recognized.

灯油ボイラ運転中のNOx、ばいじん測定値を座標とし
た測定点を、開側に表示した例を第2図に示す、焚始め
は燃焼器が冷たいために、ばいじん発生やCO発生が多
いが、昇温と共に減少し、その代わりNOxが増大する
。充分に昇温した後、負荷を調整してNOxを下げ、さ
らに空気比調整を行い、許容されたNOx、ばいじんレ
ベル以下に抑制に努める。この目標域を最適域としてあ
らかじめ表示板上に描き込んで置けば非熟練者も容易に
運転正常状態に到達でき、また測定値の多少の動揺も許
容範囲か否か判定できる。一般に定常状態では左上/右
下の移動が多く現れるが、もしさらに左下へ測定点を移
動できれば、それは新燃焼器、新燃焼方法の発見につな
がる。
Figure 2 shows an example of measurement points displayed on the open side using NOx and soot measurement values during kerosene boiler operation as coordinates.At the beginning of firing, since the combustor is cold, a lot of soot and CO is generated. It decreases as the temperature rises, and NOx increases instead. After the temperature has risen sufficiently, the load is adjusted to lower NOx, and the air ratio is further adjusted to keep NOx and dust below the allowable levels. If this target range is drawn in advance on the display board as the optimum range, even an unskilled person can easily reach the normal driving state, and also be able to determine whether some fluctuation in the measured value is within the allowable range. Generally, in a steady state, there is a lot of movement to the upper left/lower right, but if the measurement point can be moved further to the lower left, this will lead to the discovery of new combustors and new combustion methods.

表示板の右上/左下は、各不良/車載を意味するのでそ
の意を表す文字を記入し判断の迅速化、正確化を補助す
る。この文字は同意義の記号(例えばX、O)や絵(例
えば泣き顔、笑顔)で替えてもよい。
The upper right/lower left of the display board indicates each type of defective/in-vehicle, so write the letters to help make decisions faster and more accurate. This character may be replaced with a symbol of the same meaning (eg, X, O) or a picture (eg, crying face, smiling face).

縦横の座標軸の変数は交換してもよく、また対数目盛を
真数目盛に替えてもよい、真数目盛では多くの場合直線
性が失われるが、最適域の表示が三日月状になっても測
定点の進入、離脱が容易に判別できる限り差し支えない
、同じ酸化系のガスであるNOx対02の相関はこれと
いささか異なり1両者は第3図に示すようにおおむね正
の相関をしめす0両者の低減は低公害化および省エネル
ギーのため望ましい、NOx。
The variables on the vertical and horizontal coordinate axes may be exchanged, and the logarithmic scale may be replaced with an antilogarithmic scale.Although antilogarithmic scales often lose linearity, it is possible to The correlation between NOx and 02, which are the same oxidizing gases, is not a problem as long as the entrance and exit of the measurement point can be easily determined.1 The two show a generally positive correlation as shown in Figure 3.0 Both Reduction of NOx is desirable for low pollution and energy conservation.

02両因子に関する限り、左下域はど最適域であるが左
方は低02化で不完全燃焼を招くので許容限界がある。
As far as the 02 factors are concerned, the lower left region is the optimum region, but the left side has a permissible limit because low 02 results in incomplete combustion.

また断熱型の炉では過剰空気の冷却効果により、Oa増
大と共にNOx減少が起こり、結果としてNOx極大が
観測される。
In addition, in an adiabatic furnace, due to the cooling effect of excess air, NOx decreases as Oa increases, and as a result, NOx maximum is observed.

これらの事象を勘案してそれぞれの燃焼施設における省
エネルギー要求、低公害化要求を満たす線で最適域を設
定する(第4図) a N Ox :02相関表示では
無視される不完全燃焼物発生については、右上/左下、
良/不良の表示以外に左方(低o2域)に[ばいじん注
意」な・どを表示することが好ましい。
Taking these phenomena into consideration, the optimal range is set on a line that satisfies the energy saving and low pollution requirements for each combustion facility (Figure 4) a Regarding the generation of incompletely combusted products that are ignored in the NOx:02 correlation display are upper right/lower left,
In addition to the good/bad display, it is preferable to display a message such as "Be careful of dust" on the left side (low O2 area).

COまたはばいじん対02の関係にはよく知られた負の
相関があり、(例えば第5図)粗悪燃料はど右上に位置
することが知られている。
There is a well-known negative correlation between CO or dust and 02, and it is known that inferior fuel is located in the upper right corner (for example, in FIG. 5).

最適範囲はばいじんの規制値などから上限が定められ、
省エネルギー要請から02の右限界が定められ、燃焼器
の能力限界によって左下限界が定められるが、本質的に
意志的に設定でき来る。たとえば、第6図のように燃焼
器能力にとって最も好ましい最適域I (斜線域)と、
規制や業務上の要請からやむなく定められた準最適域(
点線囲い域)とを重複して表示すると便利である。
The upper limit of the optimal range is determined based on the regulation value of soot and dust, etc.
The right limit of 02 is determined based on energy saving requirements, and the lower left limit is determined based on the capacity limit of the combustor, but essentially it can be set voluntarily. For example, as shown in Fig. 6, the most preferable optimum region I for combustor capacity (shaded region),
A sub-optimal region (
It is convenient to display the dotted line area) overlappingly.

温度:湿度の相関は特定されていないが、密閉環境で一
定ガスを昇温すれば湿度は低下するので左上がりのカー
ブを描くようになる。ただし、快適域はこの勾配にかな
らずしも沿う必要はなく、設定者の要求によって定める
The correlation between temperature and humidity has not been determined, but if you raise the temperature of a certain gas in a sealed environment, the humidity will decrease, so it will draw a curve that slopes upward to the left. However, the comfort zone does not necessarily have to follow this slope, but is determined by the request of the person setting it.

温度目盛は等間隔目盛でよいが、乾燥炉雰囲気センサの
ように広い温度域をカバーする必要のある場合は17T
(絶対温度の逆数)等間隔目盛を採用かる方が好ましい
、湿度目盛は相対湿度(%)を使うのが普通であるが、
簡便のために乾湿球温度差(’C)を使うこともでき、
また高温においては絶対湿度を使うこともできる。
The temperature scale may be a uniformly spaced scale, but if it is necessary to cover a wide temperature range such as a drying oven atmosphere sensor, use 17T.
(Reciprocal of absolute temperature) It is preferable to use a scale with equal intervals.For humidity scales, it is normal to use relative humidity (%).
For convenience, the wet and dry bulb temperature difference ('C) can also be used,
Absolute humidity can also be used at high temperatures.

温度対湿度図における寒暑感覚は、第7図のようになり
あまり湿度の影響を受けない、一般快適温度レベルは2
2〜25℃の間にあるが、筋肉労働時には下限18℃ま
で快適、安静時には上限28℃までが快適、と状況によ
り変化する。また使用頻度を考慮した経済的暖房最適域
とすれば下限値を居室20℃、トイレ18℃。
The sensation of cold and heat in the temperature vs. humidity diagram is shown in Figure 7, and is not affected by humidity much, and the general comfortable temperature level is 2.
The temperature ranges between 2 and 25 degrees Celsius, but it varies depending on the situation, with a lower limit of 18 degrees Celsius being comfortable during muscular labor and an upper limit of 28 degrees Celsius being comfortable at rest. Furthermore, if we consider the optimal range for economical heating considering the frequency of use, the lower limit is 20°C in the living room and 18°C in the bathroom.

廊下15℃、玄関10℃と変化して使う方が好ましい、
湿度快適レベルはおおむね30〜70%の間にあるが、
第8図に示すように単なる不快感よりも高湿度のカビ多
発不衛生域、低湿度の気管支障害域を忌避するべきこと
が重要になる。
It is preferable to use the temperature at 15℃ in the hallway and 10℃ at the entrance.
The humidity comfort level is generally between 30 and 70%.
As shown in Figure 8, it is more important to avoid unsanitary areas with high humidity where mold is prevalent and areas with bronchial obstruction due to low humidity than just discomfort.

温・湿部快適性を取り入れた尺度としての不快指数は第
9図に示すように右下がり勾配となっている。不快指数
70は一割の人々が不快。
The discomfort index, which is a measure that incorporates comfort in warm and humid areas, has a downward slope to the right, as shown in Figure 9. A discomfort index of 70 means that 10% of people are uncomfortable.

75は半数、の人々が不快、80はほとんど全員不快と
されているのでその等高線を示す、しかし不快指数は寒
冷不快を表さないので快適性下限界設定には役立たない
75 is said to be uncomfortable for half of the people, and 80 is considered uncomfortable for almost everyone, so the contour lines are shown. However, the discomfort index does not represent cold discomfort, so it is not useful for setting the lower limit of comfort.

温・湿快適域の設定は従って、左右限界には不衛生限界
を、下方限界には寒冷感レベルを。
Therefore, when setting the temperature and humidity comfort range, the left and right limits are the unsanitary limits, and the lower limit is the cold sensation level.

右上方には不快指数による限界をそれぞれ設定したもの
が合理的で第1O図のように一般快適域■及び耐えられ
る準快適域■を表示するのがよい、冷房は快適域の上限
、暖房は快適域下限への到達を目指す運転をするのがよ
い。
In the upper right corner, it is reasonable to set limits based on the discomfort index, and it is better to display the general comfort area ■ and the tolerable semi-comfort area ■ as shown in Figure 1O. Cooling is the upper limit of the comfort range, heating is It is best to drive with the aim of reaching the lower limit of your comfort zone.

一般空調では温・湿度図上においてカビ多発域、気管支
障害域など忌避域を予め表示し、また左上/左下/右上
/右下に暑/寒/蒸/冷などを表示することにより制御
者の意図に対し、より的確に照合させることができる。
In general air conditioning, avoidable areas such as mold-prone areas and bronchial obstruction areas are displayed in advance on the temperature/humidity diagram, and hot/cold/humidity/cold, etc. are displayed in the upper left/lower left/upper right/lower right. It is possible to more accurately match the intention.

また経時′変化を追う目的で古い測定点の併合表示(薄
い点、或いは軌跡として)をすることにより、体の環境
慣れの効果も読み込んで変化速度の緩急を調整すること
ができる。
Furthermore, by displaying old measurement points together (as thin dots or trajectories) for the purpose of tracking changes over time, it is possible to read the effect of the body's habituation to the environment and adjust the speed of change.

E0発明の実施例 実施例1 燃焼排煙中のNOxと残存02測定値の相関表示を第4
図に示す、下の直線はガスストーブの例であって、スト
ーブ下方からの空気供給を制限した実験値である。左方
へ寄るほどNOx。
Embodiments of the E0 invention Example 1 Correlation display between NOx in combustion flue gas and residual 02 measurement value
The lower straight line in the figure is an example of a gas stove, and is an experimental value in which the air supply from below the stove is restricted. The closer to the left, the more NOx.

残存o2が減少し好ましいがCO中毒の危険が高まるの
で安全を配慮してやや高めに最適域を設定しておく方が
よい、上の曲線は断熱性の高い炉、密閉性の良い加熱炉
の例であって、・N。
It is preferable to reduce residual O2, but the risk of CO poisoning increases, so it is better to set the optimum range slightly higher for safety reasons.The above curve is an example of a furnace with high insulation and a heating furnace with good airtightness. And,・N.

Xの極大値が現れる。定常燃焼では曲線上を測定点が往
復するようになるが、省エネルギー目的では最適域をN
Ox極大の右側よりも左側に設定することが好ましい、
いずれのケースでも左側(02欠乏)に寄り過ぎれば、
不完全燃焼物を多発するので、測定点がここへ近づかな
いように警戒するために表示板左側には第4図のように
「CO・ばいじん注意」などと明示する。
The maximum value of X appears. In steady combustion, the measurement point moves back and forth on the curve, but for energy saving purposes, the optimum range is set to N.
It is preferable to set it to the left of the Ox maximum rather than to the right.
In either case, if it leans too far to the left (02 deficiency),
Since incompletely combusted products frequently occur, the message ``Caution for CO and soot'' will be clearly displayed on the left side of the display board, as shown in Figure 4, to prevent the measurement point from approaching this area.

実施例2 第6図に、A重油ボイラ排煙のばいじん:02相関表示
板の例を示した。斜線部■は燃焼器として最良の状況で
あり、目標とすべき最適域である0点線囲い■は操業許
容域であり、工場内で決めたばいじん規制レベルで上限
を、省エネ許容度で右限を定めた。ボイラ起動時からウ
オームアツプ期間中は大過剰01および規制値を越える
NOxが発生(右上域)するが、できるだけ速□やかに
点線囲い域に入るように操業する。
Example 2 FIG. 6 shows an example of the soot and dust of A heavy oil boiler flue gas:02 correlation display board. The shaded area ■ is the best situation for a combustor, and the 0-dot line box ■, which is the optimal range to aim for, is the operating permissible range. has been established. During the warm-up period from the start of the boiler, a large excess of NOx and NOx exceeding the regulation value are generated (upper right area), but the operation should be carried out so as to enter the dotted line area as quickly as possible.

安定した後は点線囲い域から測定点がはみ出さぬように
、更に省エネ低公害の最も好ましい斜線域Iに測定点が
くるように常に努力して運転を行った。それは供給空気
量、供給燃料量、ダンパー開度、バーナチップ変更、排
煙再循環比。
After stabilization, constant efforts were made to ensure that the measurement points did not protrude from the dotted line area, and furthermore, to place the measurement points in the shaded area I, which is the most preferable area for energy saving and low pollution. These are the amount of air supplied, amount of fuel supplied, damper opening, burner tip change, and exhaust gas recirculation ratio.

二段燃焼空□気比など諸要素の調整による。By adjusting various factors such as the two-stage combustion air/air ratio.

実施例3          ′ 第11図に大型重油ボイラ排煙(りおよび灯油ストーブ
(II)のG O: Oを相関表示板の例を示した。置
線帯(1)はボイラの定常状態におけるGO:Oi測定
点変動域で、CO多発危険度の少ない部分を最適域(斜
線部)として選定した0曲線帯(II)はストーブの定
常状態におけるCO:02測定点変動域で、CO多発危
険度の少なく、安定した谷の部分を最適域(斜線部)と
して選定した。
Example 3' Figure 11 shows an example of a display board that correlates GO: O of a large heavy oil boiler flue gas and kerosene stove (II). The 0 curve band (II), which is the optimum range (hatched area) in the Oi measurement point variation range where the risk of CO occurrence is small, is the CO:02 measurement point variation range in the steady state of the stove, and is the area where the risk of CO occurrence is low. We selected the stable valley part as the optimal area (hatched area).

実施例4 第10図に環境の温度:湿度相関の表示板の例を示した
。適温感、適湿感、不快指数などすべての要件を満たす
一般快適域(i)は狭く、調整は容易ではない、そこで
参考に点線域として半不快線と寒冷線とで上下をカット
した準快適域(II)を第9図に示した。電算器室など
多くの精密機器室は準快適域の寒冷寄りに設定される。
Example 4 FIG. 10 shows an example of a display board showing the environmental temperature/humidity correlation. The general comfort zone (i), which satisfies all requirements such as appropriate temperature, appropriate humidity, and discomfort index, is narrow and difficult to adjust.For reference, the dotted line area is a semi-comfortable area whose top and bottom are cut by the semi-comfort line and the cold line. Region (II) is shown in FIG. Many precision equipment rooms, such as computer rooms, are set on the cold side of the semi-comfortable range.

紡績工場は糸を加湿する必要のため、準快適域の最湿潤
寄りに設定される。更に、温水プールの雰囲気は、気温
30℃±2℃、湿度70±10%と一般快適域から遥か
離れた上方が最適域として設定される。これは人体が裸
であること及び水温が外温より2ないし4℃低いことに
より快適域が移動したためである。
Because spinning mills need to humidify the yarn, they are set at the wettest level of the semi-comfortable range. Furthermore, the optimum atmosphere of the heated pool is set at a temperature of 30° C.±2° C. and a humidity of 70±10%, far above the general comfort zone. This is because the comfort zone has shifted due to the nakedness of the human body and the fact that the water temperature is 2 to 4 degrees Celsius lower than the outside temperature.

F。発明の効果 燃焼管理において排煙のセンシングに本発明を適用する
ことにより、これまで別個に抑制をめざしていたNOx
、ばいじん等を有機的関連のもとに統合抑制をはかるこ
とができる。すなわち、これまでのNOx低減、ばいじ
ん低減の二目標は1表示面における左下方向への移動と
いう単一目標に切り替わり燃焼管理が誰にでも容易にな
る* N Ox対co、ばいじん対02などの関係にお
いても同様である。
F. Effects of the Invention By applying the present invention to flue gas sensing in combustion management, NOx, which had previously been separately aimed at being suppressed, can be reduced.
, dust, etc. can be integrated and suppressed based on organic relationships. In other words, the previous two goals of NOx reduction and soot and dust reduction have been changed to a single goal of moving toward the lower left on one display screen, making combustion management easier for anyone * Relationships between NOx vs. CO, soot vs. 02, etc. The same applies to

またほぼ同一の条件下で特定条件のみを変化させた時の
効果を次の表のように判定できるので、新しい燃焼技術
の追究、開発に資することこれらは、センシングの知能
化の効果の一つである。
In addition, the effect of changing only specific conditions under almost the same conditions can be determined as shown in the table below, which will contribute to the pursuit and development of new combustion technology.These are some of the effects of intelligent sensing. It is.

測定点の移動を経時的に追って行くことにより最適化へ
向かっているか、最適域から離脱しつつあるかを定性的
に判断でき、事前に変動方向をW7A!xJすることで
操作の安全性を高めることができる。
By following the movement of the measurement point over time, you can qualitatively judge whether you are moving toward optimization or leaving the optimal range, and you can determine the direction of change in advance. xJ can increase the safety of operation.

最適範囲、不適状態などを表示板上に予め表示しておく
ことにより、非熟練者にも制御目標を理解させ誤操作を
少なくすることができる。
By displaying the optimal range, unsuitable conditions, etc. on the display board in advance, even non-skilled users can understand the control objectives and reduce erroneous operations.

居住環境や乾燥炉などの空調においては、温度・湿度測
定値を一点の位置として表示することにより、使用者の
設定した最適域と現状との適合性を数値を介さずに判断
できる。その結果。
For air conditioning in residential environments, drying ovens, etc., by displaying the measured temperature and humidity values as a single point, it is possible to judge the compatibility between the optimum range set by the user and the current situation without using numerical values. the result.

無駄な過度の冷暖房を避けることができ、省エネルギー
が達成される。また快適−9忌避域などの組み合わせ選
定により、個々の使用者の目的に沿った冷暖房最適域デ
ザインが可能になり、空調の知能化が可能となる。
Wasteful excessive heating and cooling can be avoided and energy savings can be achieved. In addition, by selecting combinations such as Comfort-9 Avoidance Zones, it becomes possible to design optimal heating and cooling zones in line with the objectives of each individual user, making it possible to make air conditioning more intelligent.

環境に対する身体順応の速度は個人差が激しく規格化し
難いが1本発明表示を使用することにより不適応ショッ
クを避ける運転が容易になる。また人間の側の適応化訓
練も連続的に到達目標が明示されるためやり易くなる。
Although the speed of physical adaptation to the environment varies widely among individuals and is difficult to standardize, the use of the display of the present invention facilitates driving that avoids maladaptive shocks. Adaptation training on the human side is also easier because the goals to be achieved are continuously made clear.

【図面の簡単な説明】[Brief explanation of drawings]

第113iNOx:ばイシン相関図 t、C重油ボイラ、Il、A重油ボイラ、■、灯油ボイ
ラ 第2図 NOx:ばいじん相関表示板 第3図 NOx:O@相関図 1、C重油ボイラ、■、断熱炉、m、A重油水冷炉、■
、灯油ボイラ 第4図 N Ox : 02相関表示板第5図 ばいじ
ん:ot相関図 1、C重油加熱炉、 I[、A重油実験炉、■、灯油実
験炉 第6図 ばいじん=02相関表示板 第7図 寒暑快適レベル A、常用冷房域、B、常用暖房域 第8図 湿気快適レベル 第9図 温度:湿度図上の不快指数等高線第10図 温
度:湿度相関表示板 1、一般快適域、■、準快適域、C0温水プール、D、
紡績工場、E、電算機家 弟11wJ co:02相関図と表示板[、C重油ボイ
ラ、■、灯油ストーブバーナ 特許出願人 工業技術院長 等 々 力 達指定代理人
 工業技術院大阪工業技術試験所長速水諒三 掬対理賓(%) 71@対 ム五β−髪(χン
113 iNOx: Basin correlation diagram t, C heavy oil boiler, Il, A heavy oil boiler, ■, Kerosene boiler Figure 2 NOx: Soot and dust correlation display board Figure 3 NOx: O @ correlation diagram 1, C heavy oil boiler, ■, Heat insulation Furnace, m, A heavy oil water-cooled furnace, ■
, Kerosene boiler Fig. 4 NOx: 02 correlation display board Fig. 5 Dust: ot correlation chart 1, C heavy oil heating furnace, I [, A heavy oil experimental reactor, ■, Kerosene experimental reactor Fig. 6 Soot = 02 correlation display board Figure 7 Cold and hot comfort level A, regular cooling area, B, regular heating area Figure 8 Humidity comfort level Figure 9 Temperature: Discomfort index contour on the humidity chart Figure 10 Temperature: Humidity correlation display board 1, general comfort area, ■, semi-comfortable area, C0 heated pool, D,
Spinning factory, E, computer 11wJ co:02 correlation diagram and display board [, C heavy oil boiler, ■, kerosene stove burner patent applicant Director of the Agency of Industrial Science and Technology, etc. Designated agent Director of the Osaka Institute of Industrial Science and Technology, Agency of Industrial Science and Technology Ryozo Hayami vs. Rihin (%) 71 @ vs. Mugo β-hair (χ n

Claims (10)

【特許請求の範囲】[Claims] (1)雰囲気状態の評価のために、雰囲気の性質として
得られる複数の変量測定値を縦軸および横軸の座標にと
ることにより、雰囲気の状況を平面上の点の位置、ある
いは点の動きとして表示することを特徴とする最適域進
入度表示板。
(1) In order to evaluate the atmospheric condition, by taking multiple variable measurements obtained as the properties of the atmosphere as coordinates on the vertical and horizontal axes, we can evaluate the atmospheric condition by measuring the position of a point on a plane or the movement of a point. An optimal area approach display board characterized by displaying as follows.
(2)表示板上の両軸座標にNOx濃度、COまたはば
いじん濃度をとることを特徴とする特許請求の範囲第1
項の最適域進入度表示板。
(2) Claim 1 characterized in that the NOx concentration, CO or soot concentration is taken on both axis coordinates on the display board.
Optimal area approach display board.
(3)表示板上の両軸座標にNOx濃度、O_2濃度を
とることを特徴とする特許請求の範囲第1項の最適域進
入度表示板。
(3) The optimum range approach degree display board according to claim 1, characterized in that NOx concentration and O_2 concentration are plotted on both axis coordinates on the display board.
(4)表示板上の両軸座標にCOまたはばいじん濃度、
O_2濃度をとることを特徴とする特許請求の範囲第1
項の最適域進入度表示板。
(4) CO or dust concentration on both axes coordinates on the display board,
Claim 1 characterized in that O_2 concentration is taken.
Optimal area approach display board.
(5)表示板上の両軸座標に温度、湿度をとることを特
徴とする特許請求の範囲第1項の最適域進入度表示板。
(5) The optimum range approach degree display board according to claim 1, characterized in that temperature and humidity are measured on both axis coordinates on the display board.
(6)表示板の面上における測定点を視覚的に検出し易
くするために、円、楕円、三角形、四角形または六角形
によって表現することを特徴とする特許請求の範囲第1
項の最適域進入度表示板。
(6) Claim 1 characterized in that the measurement points on the surface of the display board are expressed by circles, ellipses, triangles, quadrilaterals, or hexagons in order to make it easier to visually detect them.
Optimal area approach display board.
(7)表示板の面上において、測定点の移動経過を認識
易くするために、現在の測定点を濃色またはぬりつぶし
の円、一定時間前の測定点をより薄色または網目の円、
さらに一定時間前の測定点をさらにより薄色または疎な
網目の円によって同時に表示することを特徴とする特許
請求の範囲第1項の最適域進入度表示板。
(7) On the surface of the display board, in order to make it easier to recognize the movement progress of the measurement point, the current measurement point is marked with a dark colored or filled circle, and the measurement point a certain time ago is marked with a lighter colored or meshed circle.
2. The optimal area approach display board according to claim 1, wherein measurement points taken a certain period of time ago are simultaneously displayed using circles with a lighter color or sparse mesh.
(8)表示板の面上において、測定点の移動経過を認識
し易くするために、一定時間前の測定点より現在の測定
点にいたる各点を連結した測定点軌跡を表示板上に表示
することを特徴とする特許請求の範囲第1項の最適域進
入度表示板。
(8) Display on the display board a measurement point locus that connects each point from the measurement point a certain time ago to the current measurement point to make it easier to recognize the movement progress of the measurement point. An optimal area approach display board according to claim 1, characterized in that:
(9)表示板の面上において、最適範囲と指定された域
をあらかじめ線で囲い、または彩色することにより、測
定点の最適域進入、離脱が容易に判定できるようにした
特許請求の範囲第1項の最適域進入度表示板。
(9) The area designated as the optimum range on the surface of the display board is surrounded by a line or colored in advance, so that it is possible to easily determine whether a measuring point enters or leaves the optimum area. Optimal area approach display board for item 1.
(10)表示板上の最適域に対し、上下左右にその適・
不適状況を表現する文字を表示板上に表示することを特
徴とする特許請求の範囲第1項の最適域進入度表示板。
(10) For the optimal area on the display board,
An optimal range approach display board according to claim 1, characterized in that characters expressing unsuitable conditions are displayed on the display board.
JP60071626A 1985-04-03 1985-04-03 Optimum degree admission degree display unit Granted JPS61231327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60071626A JPS61231327A (en) 1985-04-03 1985-04-03 Optimum degree admission degree display unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60071626A JPS61231327A (en) 1985-04-03 1985-04-03 Optimum degree admission degree display unit

Publications (2)

Publication Number Publication Date
JPS61231327A true JPS61231327A (en) 1986-10-15
JPH0435648B2 JPH0435648B2 (en) 1992-06-11

Family

ID=13466049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60071626A Granted JPS61231327A (en) 1985-04-03 1985-04-03 Optimum degree admission degree display unit

Country Status (1)

Country Link
JP (1) JPS61231327A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256000A (en) * 1988-04-06 1989-10-12 Hitachi Ltd Process state display device
CN101806485A (en) * 2010-03-29 2010-08-18 广东美的电器股份有限公司 Air conditioner control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128833A (en) * 1978-03-30 1979-10-05 Sumitomo Metal Ind Ltd Combustion control method for combustion furnace
JPS5661849U (en) * 1979-10-19 1981-05-26
JPS5821174A (en) * 1981-07-30 1983-02-07 Nippon Telegr & Teleph Corp <Ntt> Inspecting circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128833A (en) * 1978-03-30 1979-10-05 Sumitomo Metal Ind Ltd Combustion control method for combustion furnace
JPS5661849U (en) * 1979-10-19 1981-05-26
JPS5821174A (en) * 1981-07-30 1983-02-07 Nippon Telegr & Teleph Corp <Ntt> Inspecting circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256000A (en) * 1988-04-06 1989-10-12 Hitachi Ltd Process state display device
CN101806485A (en) * 2010-03-29 2010-08-18 广东美的电器股份有限公司 Air conditioner control method

Also Published As

Publication number Publication date
JPH0435648B2 (en) 1992-06-11

Similar Documents

Publication Publication Date Title
CN107631423B (en) A kind of air-conditioner control method and air conditioner based on position of human body
US4330260A (en) Method and apparatus for regulating the combustion in a furnace
Chen et al. Effect of inhabitant behavioral responses on adaptive thermal comfort under hot summer and cold winter climate in China
Yang et al. Evaluation of four control strategies for building VAV air-conditioning systems
CN110671798A (en) Indoor thermal environment control system for predicting thermal sensation based on artificial intelligence technology
JPH09105545A (en) Air-conditioning device
Janssen et al. Ventilation for control of indoor air quality: A case study
US6431457B1 (en) Air heater control
Fujii et al. Japanese residential air-conditioning: natural cooling and intelligent systems
US7104460B2 (en) Method and controller for determining carbon dioxide emissions from a recirculating air heater
JPS61231327A (en) Optimum degree admission degree display unit
JP2020118420A (en) Ventilation system
Parsons Determining infiltration rates and predicting building occupancy using CO2 concentration curves
Aldakheel et al. Indoor environmental quality evaluation of smart/artificial intelligence techniques in buildings–a review
CN115451413A (en) Air volume control method, device and system, storage medium and waste incineration system
Marjanovic et al. Design and simulation of a fuzzy controller for naturally ventilated buildings
FR2349795A1 (en) Furnace or oven combustion control - monitors fuel supply or flue gases or both, to continuously control air supply fan speed
JPH04353311A (en) Combustion controller
JPH06331201A (en) Indoor environment setting device for air conditioner
Berckmans et al. Validity of the Archimedes number in ventilating commercial livestock buildings
IT8921964A1 (en) INDUSTRIAL OVEN.
Baus et al. Process control for thermal comfort maintenance using fuzzy logic
JP2729867B2 (en) Hot water temperature control method for heating boiler
JPS55132663A (en) Baking method of coated pipe
JPS6365230A (en) Burning control method for hot air furnace

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term