JPS61229328A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61229328A
JPS61229328A JP60071778A JP7177885A JPS61229328A JP S61229328 A JPS61229328 A JP S61229328A JP 60071778 A JP60071778 A JP 60071778A JP 7177885 A JP7177885 A JP 7177885A JP S61229328 A JPS61229328 A JP S61229328A
Authority
JP
Japan
Prior art keywords
semiconductor
metal
semiconductor material
electrode
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60071778A
Other languages
Japanese (ja)
Inventor
Fumiji Hisamori
久森 文詞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP60071778A priority Critical patent/JPS61229328A/en
Publication of JPS61229328A publication Critical patent/JPS61229328A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Weting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To produce a PHS structure with excellent production yield by a method wherein a semiconductor wafer, after ground down to the level near the surface of concave part, is etched down to specified thickness. CONSTITUTION:An electrode metal 22 is formed on a specified part of a wafer 21 while an insulating film 23 and a resist 24 are formed on the peripheral part of electrode metal 22. A thick plated layer 25 is formed on the metal 22 and then semiconductor material is etched from the part wherefrom the resist 24 is removed. Next the wafer 21 is bonded on a grinding weight 26 using a was 27 to thin the semiconductor material by grinding it from the opposite side of wafer 21 until the metal 22 is separated from the semiconductor material connected to the metal 22. Another electrode 28 is vacuum-evaporated and then the wax 27 is removed. Through these procedures, each semiconductor device can be easily separated from each other since the metallic layer 28 formed on the wax 27 and the metal 28 formed on the semiconductor material are cut off by step difference part.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、プレーティラドヒートシンク(Plated
Heat 5ink、以下PH8と称する)構造からな
る半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a plated heat sink.
The present invention relates to a method for manufacturing a semiconductor device having a heat 5 ink (hereinafter referred to as PH8) structure.

〔発明の背景〕[Background of the invention]

たとえば、ガンダイオード、インバットダイオード等の
半導体装置においてはその動作時の電カー失が大きく、
かつ微少領域に発熱が集中するため、半導体材料の温度
上昇が著るしく素子の劣化をもたらすため、厚メツキ金
属による熱放散を計る手段として上述したPH8構造が
知られている。
For example, semiconductor devices such as Gunn diodes and Invat diodes lose a large amount of electricity during their operation.
In addition, since heat generation is concentrated in a minute area, the temperature rise of the semiconductor material significantly causes deterioration of the element. Therefore, the above-mentioned PH8 structure is known as a means of measuring heat dissipation using thick plated metal.

従来、このPH8構造は第2図に(a)ないしくe)に
示す方法で製造されていた。 ゛ まず、第2図(a)に示すように半導体ウェーハ1の能
動層領域側(図示せず。以下も同様)に全面にわたって
電極金属2を形成した上にメッキ法により、50μm厚
程度0厚メッキ層3を形成する。そして第2図(b)に
示すように半導体ウニ□−ハの反対側より研摩を行い半
導体材料を50μm厚程度0厚くした後′、第2図(C
)に示すように電種金属4を選択的に設ける。さらに第
2図(d) Gこ示すように電極金属4をマスクに半導
体材料をエツチングし、第2図(e)に示すように厚メ
ッキ層3をしかるべき方法で切断する。
Conventionally, this PH8 structure has been manufactured by the method shown in FIGS. 2(a) to 2(e). First, as shown in FIG. 2(a), an electrode metal 2 is formed over the entire surface of the semiconductor wafer 1 on the active layer region side (not shown; the same applies hereafter), and then a layer of about 50 μm thick is formed by plating. A plating layer 3 is formed. Then, as shown in Fig. 2(b), the semiconductor material was polished from the opposite side to make the semiconductor material thicker by about 50 μm.
), the electrolytic metal 4 is selectively provided. Further, as shown in FIG. 2(d), the semiconductor material is etched using the electrode metal 4 as a mask, and the thick plating layer 3 is cut by an appropriate method as shown in FIG. 2(e).

ところが、従来方法では次のような欠点があった。まず
、第2図(b)の工程において、厚メツキ側を研摩用重
りにはりつけて半導体材料を研摩するか、必ずしも厚さ
が均一に形成されていない厚メッキ層3の表面を基準に
研摩を行うため、半導体材料の厚さの均一性が実現しに
くかった。またその後のプロセスにおいても、半導体材
料とメッキ層の熱膨張率の違いや、ウェーハのソリ等に
より半導体材料に割れが生じ易くその後の工程が困難に
なっていた。
However, the conventional method has the following drawbacks. First, in the process shown in FIG. 2(b), the semiconductor material is polished by attaching the thick plated side to a polishing weight, or the semiconductor material is polished based on the surface of the thick plated layer 3, which does not necessarily have a uniform thickness. Because of this, it was difficult to achieve uniformity in the thickness of the semiconductor material. Further, in subsequent processes, cracks tend to occur in the semiconductor material due to differences in thermal expansion coefficients between the semiconductor material and the plating layer, warpage of the wafer, etc., making subsequent steps difficult.

さらに、第2図(e)の工程で、厚メッキ層を切断する
ための高価な装置たとえばいわゆるダイサと称される装
置が必要となる。
Furthermore, the process shown in FIG. 2(e) requires an expensive device, such as a so-called dicer, for cutting the thick plating layer.

また、同じPH8構造を形成するため第3図(a)ない
しくe) jこ示す方法も知られている。まず、第3図
(a)に示す様に半導体ウェーハ11の必要部分に電極
金属12を、その周囲にメッキ付着防止の絶縁膜13を
形成した状態にて形成し、この電極金属14上に厚メッ
キ層14を形成する。すると、この厚メッキ層14は初
めより他と分離された形状として形成される。
Furthermore, a method shown in FIGS. 3(a) to 3(e) is also known for forming the same PH8 structure. First, as shown in FIG. 3(a), an electrode metal 12 is formed on a necessary portion of a semiconductor wafer 11, with an insulating film 13 formed around it to prevent plating adhesion, and a thick layer is formed on the electrode metal 14. A plating layer 14 is formed. Then, this thick plating layer 14 is formed in a shape separated from others from the beginning.

次に第3図(ロ)に示すように研摩用重り15に、ワッ
クス16によって前記半導体ウェーハ11の・厚メツキ
層14面をはりつけ、この半導体ウェー、ハ11の反対
側より研摩を行った後、第3図(C)に示すように両面
目合せ露光法により電極金属17を設け、第2図(ロ)
に示すように電極金属17をマスクに半導体材料をエツ
チングする。そして、絶縁膜13、ワックス16を除去
すると、第3図(e)に示すようにPH8構造ができる
Next, as shown in FIG. 3(B), the thick plating layer 14 side of the semiconductor wafer 11 is attached to the polishing weight 15 using wax 16, and the semiconductor wafer is polished from the opposite side of the wafer 11. As shown in FIG. 3(C), the electrode metal 17 is provided by the double-sided aligned exposure method, and as shown in FIG. 2(B).
The semiconductor material is etched using the electrode metal 17 as a mask as shown in FIG. Then, when the insulating film 13 and wax 16 are removed, a PH8 structure is obtained as shown in FIG. 3(e).

ところが、この方法によっても第2図の実施例に示した
半導体材料膜厚の不均一性の問題は解決できず、さらに
、第3図(C)の工程で両面目合せ露光法の為の高価な
装置が必要となる。
However, even with this method, the problem of non-uniformity in the thickness of the semiconductor material shown in the embodiment shown in FIG. 2 cannot be solved, and furthermore, the process shown in FIG. equipment is required.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に基づいてなされたものであ
りミ高価な装置の導入なくして製造歩留りの良好なPH
8構造を得る半導体装置の製造方法を提供するにある。
The present invention was made based on these circumstances, and it is possible to achieve a PH with a good manufacturing yield without introducing expensive equipment.
An object of the present invention is to provide a method for manufacturing a semiconductor device that obtains an eight-structure structure.

〔発明の概要〕[Summary of the invention]

このような目的を達成するため、本発明は半導体ウェー
ハの一面ζこ、複数の分離された電極、さらにその電極
面に厚メッキ層を形成する第1の工程と、前記厚メッキ
層の間に位置づけられる半導体領域を適当な深さにエツ
チングする第2の工程と、前記エツチングにより形成さ
れた半導体領域の凹陥部の底面を基準とし、前記半導体
ウェーハを他の面から研摩を行う第3の工程と、少なく
とも、前記電極に接続された半導体のエツチング面に電
極を形成する第5の工程と、前記第4の工程にいう機械
的固定状態を解除する第6の工程からなるようにしたも
のである。
In order to achieve such an object, the present invention includes a first step of forming a plurality of separated electrodes on one surface of a semiconductor wafer, a thick plating layer on the electrode surface, and a step of forming a thick plating layer between the thick plating layer. a second step of etching the semiconductor region to be located to an appropriate depth; and a third step of polishing the semiconductor wafer from the other side using the bottom surface of the recessed portion of the semiconductor region formed by the etching as a reference. and at least a fifth step of forming an electrode on the etched surface of the semiconductor connected to the electrode, and a sixth step of releasing the mechanically fixed state referred to in the fourth step. be.

〔発明の実施例〕[Embodiments of the invention]

第1図(a)ないしくd)は本発明による半導体装置の
製造方法の一実施例を示す工程図である。まず、第1図
(a)に示す様に、半導体ウェーハ21の必要部分に電
極金属22を、その周囲に絶縁膜2.3を、さらにその
周囲にレジスト24を形成する。そして、前記電極金属
22上に厚メッキ層25を形成する。次に第1図(b)
に示す様にレジスト24を除去した部分より半導体材料
のエツチングをする。
FIGS. 1(a) to 1(d) are process diagrams showing an embodiment of a method for manufacturing a semiconductor device according to the present invention. First, as shown in FIG. 1(a), an electrode metal 22 is formed on a necessary portion of a semiconductor wafer 21, an insulating film 2.3 is formed around it, and a resist 24 is formed around it. Then, a thick plating layer 25 is formed on the electrode metal 22. Next, Figure 1(b)
As shown in FIG. 3, the semiconductor material is etched from the area where the resist 24 has been removed.

このエツチング深さは形成すべき半導体装置の厚さより
大きなものとする。次に第1図(C)に示す様に、ウェ
ーハを研摩用重り26に、ワックス2フによりはりつけ
半導体ウェーハの反対側より研摩を行い半導体材料を薄
くする。この際、既にエツチングした半導体材料の形状
(第1図の)中点線に示した円形部)をモニターしなが
ら研摩を進めることにより、半導体ウェーハ面と平行な
研摩を実現することは容易である。このような研摩は各
電極金属22と接続された半導体材料がそれぞれ分離さ
れるまで行われる。その後第1図(C)に示すように、
半導体材料のエツチングを行い厚さを最適化する。この
エツチング深さは均一に行われる。
This etching depth is greater than the thickness of the semiconductor device to be formed. Next, as shown in FIG. 1C, the wafer is attached to a polishing weight 26 using wax 2 and polished from the opposite side of the semiconductor wafer to thin the semiconductor material. At this time, by proceeding with polishing while monitoring the shape of the already etched semiconductor material (circular portion shown by the dotted line in FIG. 1), it is easy to realize polishing parallel to the surface of the semiconductor wafer. Such polishing is performed until the semiconductor material connected to each electrode metal 22 is separated. After that, as shown in Figure 1 (C),
Optimize the thickness by etching the semiconductor material. This etching depth is uniform.

そして電極金R28を真空蒸着法により付着し、ワック
ス26を除去する。これにより、ワックス26上に形成
された金属層28と半導体材料上に形成された電極金属
28とは段差部によって切断されていることから、各半
導体装置は容易に分離される。
Electrode gold R28 is then deposited by vacuum evaporation, and wax 26 is removed. Thereby, since the metal layer 28 formed on the wax 26 and the electrode metal 28 formed on the semiconductor material are cut by the stepped portion, each semiconductor device can be easily separated.

このように構成した半導体装置の製造方法において、エ
ツチングされた半導体層面を基準として他方の面から研
摩(機械的)がなされている。すなわち、エツチングに
よる化学処理はその深さが均一にして凹陥部が形成され
ることになり、その均一な深さに形成された裏面を基準
(モニタで認識しながら)として、反対側から研摩を行
っていることから半導体ウェーハ面と平行に研摩がなさ
れることになる。そして、このようにして前記凹陥部の
表面に近接するまで半導体ウェーハを研摩した後、さら
にエツチングにより所定の深さにエツツチングを施こし
ていることから、その深さも均一となり結局は電極金属
22.28間の半導体材料層厚が均一になる。
In the method for manufacturing a semiconductor device constructed in this way, polishing (mechanical) is performed from the other surface with the etched semiconductor layer surface as a reference. In other words, the chemical treatment by etching creates a concave portion with a uniform depth, and polishing is performed from the opposite side using the back surface formed with the uniform depth as a reference (while recognizing it on the monitor). Because of this, polishing is done parallel to the semiconductor wafer surface. After the semiconductor wafer is polished until it comes close to the surface of the recess in this way, etching is further performed to a predetermined depth, so that the depth becomes uniform and eventually the electrode metal 22. The thickness of the semiconductor material layer between 28 becomes uniform.

また上述した製造工程の説明から明らかなように、ダイ
サ、あるいは両面目金せ装置等の大規模な装置を必要と
することがなくなる。
Furthermore, as is clear from the above description of the manufacturing process, there is no need for large-scale equipment such as a dicer or a double-sided metallization device.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による半導体装置の製造方
法によれば、高価な装置の導入なくして製造歩留りの良
好なPH8構造を得ることができるようになる。
As described above, according to the method of manufacturing a semiconductor device according to the present invention, a PH8 structure with a good manufacturing yield can be obtained without introducing expensive equipment.

【図面の簡単な説明】[Brief explanation of drawings]

−第1図は本発明による半導体装置の一実施例を示す工
程図、第2図は従来の半導体装置の製造方法の一例を示
す工程図、第3図は従来の半導体装置の他の製造方法の
他の例を示す工程図である。 21・・・半導体ウェーハ、22.28・・・電極金属
、23・・・絶縁膜、24・・・レジスト、25・・・
厚メッキ層、26・・・研摩用重り、27・・・ワック
ス。
- Fig. 1 is a process diagram showing an embodiment of a semiconductor device according to the present invention, Fig. 2 is a process diagram showing an example of a conventional method for manufacturing a semiconductor device, and Fig. 3 is another conventional method for manufacturing a semiconductor device. It is a process diagram which shows another example. 21...Semiconductor wafer, 22.28...Electrode metal, 23...Insulating film, 24...Resist, 25...
Thick plating layer, 26... polishing weight, 27... wax.

Claims (1)

【特許請求の範囲】[Claims] 半導体ウェーハの一面に、複数の分離された電極さらに
その電極面に厚メッキ層を形成する第1の工程と、前記
厚メッキ層の間に位置づけられる半導体領域を適当な深
さにエッチングする第2の工程と、前記エッチングによ
り形成された半導体領域の凹陥部の底面を基準とし、前
記半導体ウェーハを他の面から研摩を行う第3の工程と
、少なくとも前記電極に接続された半導体を機械的に固
定した状態にて前記研摩面をエッチングし、このエッチ
ングを前記電極に接続された各半導体が物理的に分離さ
れるまで行う第4の工程と、少なくとも前記電極に接続
された半導体のエッチング面に電極を形成する第5の工
程と、前記第4の工程にいう機械的固定状態を解除する
第6の工程とからなることを特徴とする半導体装置の製
造方法。
A first step of forming a plurality of separated electrodes on one surface of a semiconductor wafer and a thick plating layer on the electrode surface, and a second step of etching a semiconductor region positioned between the thick plating layers to an appropriate depth. a third step of polishing the semiconductor wafer from the other side using the bottom surface of the recess in the semiconductor region formed by the etching as a reference, and mechanically polishing at least the semiconductor connected to the electrode. a fourth step of etching the polished surface in a fixed state and performing this etching until each semiconductor connected to the electrode is physically separated; and at least etching the etched surface of the semiconductor connected to the electrode A method for manufacturing a semiconductor device, comprising a fifth step of forming an electrode, and a sixth step of releasing the mechanically fixed state referred to in the fourth step.
JP60071778A 1985-04-04 1985-04-04 Manufacture of semiconductor device Pending JPS61229328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60071778A JPS61229328A (en) 1985-04-04 1985-04-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60071778A JPS61229328A (en) 1985-04-04 1985-04-04 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61229328A true JPS61229328A (en) 1986-10-13

Family

ID=13470364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60071778A Pending JPS61229328A (en) 1985-04-04 1985-04-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61229328A (en)

Similar Documents

Publication Publication Date Title
US3897627A (en) Method for manufacturing semiconductor devices
GB2150755A (en) Semiconductor device structures
US4033027A (en) Dividing metal plated semiconductor wafers
US3913217A (en) Method of producing a semiconductor device
CN111799178A (en) Double-sided copper-plating thick film process for ultrathin wafer
US3616348A (en) Process for isolating semiconductor elements
US4023260A (en) Method of manufacturing semiconductor diodes for use in millimeter-wave circuits
US3698941A (en) Method of applying contacts to a semiconductor body
US4698901A (en) Mesa semiconductor device
US4035830A (en) Composite semiconductor circuit and method of manufacture
US3661741A (en) Fabrication of integrated semiconductor devices by electrochemical etching
JPS61229328A (en) Manufacture of semiconductor device
US4095330A (en) Composite semiconductor integrated circuit and method of manufacture
US4023258A (en) Method of manufacturing semiconductor diodes for use in millimeter-wave circuits
US6074948A (en) Method for manufacturing thin semiconductor device
JPH09139387A (en) Formation of electrode of semiconductor device
KR100311463B1 (en) Method for manufacturing plated heat sink
JPH07120642B2 (en) Semiconductor device and manufacturing method thereof
JPH02214127A (en) Semiconductor device and manufacture thereof
JPH0779035A (en) Manufacture of semiconductor device
JPH0777265B2 (en) Method for manufacturing semiconductor device
JP2576462B2 (en) Method for manufacturing semiconductor device
JPS6177369A (en) Manufacture of semiconductor device
JP2002231731A (en) Method for fabricating compound semiconductor device
JPH0350733A (en) Manufacture of semiconductor device