JPS61224213A - Stabilizing material for superconducting composite body - Google Patents

Stabilizing material for superconducting composite body

Info

Publication number
JPS61224213A
JPS61224213A JP60065508A JP6550885A JPS61224213A JP S61224213 A JPS61224213 A JP S61224213A JP 60065508 A JP60065508 A JP 60065508A JP 6550885 A JP6550885 A JP 6550885A JP S61224213 A JPS61224213 A JP S61224213A
Authority
JP
Japan
Prior art keywords
stabilizing material
alloy
superconducting
superconducting composite
composite body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60065508A
Other languages
Japanese (ja)
Other versions
JPH0568805B2 (en
Inventor
武井 広見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60065508A priority Critical patent/JPS61224213A/en
Publication of JPS61224213A publication Critical patent/JPS61224213A/en
Publication of JPH0568805B2 publication Critical patent/JPH0568805B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は複合超電導導体に用いる安定化材に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a stabilizing material used in composite superconducting conductors.

〈従来の技術とその問題点〉 核融合、エネルギー貯蔵などに応用する大型超電導マグ
ネットでは、Yグネット保護の観点からインダクタンス
を小さくして高磁界を発生さ−けるため、大容量導体を
用いることが不可欠である。
<Conventional technology and its problems> In large superconducting magnets used in nuclear fusion, energy storage, etc., it is necessary to use large-capacity conductors in order to reduce inductance and generate high magnetic fields from the perspective of protecting the Y magnet. It is essential.

また、これらの大型マグネットの超電導安定化の設削は
、導体の一部に常電導転移が起った場合の発熱(G)よ
り冷却熱量(Q)を大きくし、常電導部が伝播すること
なく超電導状態に復帰するようにするタライオスタチイ
ツクな安定化法によっている、。
In addition, in order to stabilize the superconductivity of these large magnets, the amount of cooling heat (Q) is larger than the heat generated (G) when normal conduction transition occurs in a part of the conductor, and the normal conduction part is prevented from propagating. This is achieved through a Taliostatic stabilization method that allows the material to return to the superconducting state without any problems.

上記の発熱(G)および冷却熱量(Q)は次式により示
される。
The above heat generation (G) and cooling heat amount (Q) are expressed by the following equations.

即ち、G−ρ/S−I   ・・・・・・(1)o=p
−h     ・・・・・・(2)但し、に通電電流値 ρ:安定化材の抵抗率 S:安定化材の断面積 p:冷却表面積 h:s体とヘリウム間の熱流束 である。
That is, G-ρ/S-I (1) o=p
-h (2) However, current value ρ: resistivity S of the stabilizing material: cross-sectional area p of the stabilizing material: cooling surface area h: heat flux between the s-body and helium.

この式から超電導導体としては、ρを小さくし、s、p
、hを大きくすることが必要である。
From this equation, as a superconducting conductor, ρ is small, s, p
, h must be increased.

これらのうちplhは導体寸法、形状により、はぼ決め
られてしまい、またSを大きくすると、マグネッ1〜が
人(1′1化し、]ス1〜的に問題である。
Of these, plh is roughly determined by the conductor size and shape, and if S is made large, the magnet 1~ becomes human (1'1), which is a problem in terms of space.

従っ(、超電導導体の安定化(Aどじて1.−J、抵抗
率ρが小ざいことか8四で、通帛は純銅か用いられる。
Therefore, the stabilization of the superconducting conductor (A is 1.-J, the resistivity ρ is 84, probably because it is small, and pure copper is used as the conductor.

しかし、安定化(・Aどし−(’ Cuを用いIこ場合
は、1hに高磁界での安定・111か悪い。そしてこの
安定・lノlを十分にするに1.Jl多量のCuか必要
とイrす、電流密度か減少し、マグネツlへjl法か増
大覆る。
However, in this case, the stability in a high magnetic field for 1 h is 111 or worse.And in order to make this stability sufficient, a large amount of Cu is required for 1 h. If it is necessary, the current density will decrease and the magnetic flux will increase.

これtJCuの電気抵抗は磁器抵抗効果により、磁界と
共に蔦しく増加り−るため、電気抵抗と共に熱伝導かイ
代下覆るため−(ある。
Since the electrical resistance of tJCu increases rapidly with the magnetic field due to the magnetic resistance effect, the heat conduction and the electrical resistance decrease by a certain amount.

要するに、CILは磁界の増加に伴41つ抵抗率の増加
、即ら磁器抵抗効果か大ぎいことか欠点てあり、このこ
とから磁器抵抗効果の小さな高紳用Aρを安定化材とし
て用いることが望まれている。しかしイfから、高純度
A&4゜1機械強度、特(こ耐疲労強電か小ざい欠点か
あり、繰返し電磁力が導体に加えられるパルスマグネツ
1〜C1,J、人きイr問題となるのC゛ある。
In short, CIL has the disadvantage that the resistivity increases as the magnetic field increases, that is, the magnetic resistance effect is too large. From this, it is difficult to use high-grade Aρ, which has a small magnetic resistance effect, as a stabilizing material. desired. However, from IF, high purity A & 4゜1 mechanical strength, special (fatigue resistant strong electric current, small defects, pulsed magnets 1~C1,J where repeated electromagnetic force is applied to the conductor, it becomes a problem for human beings) There is.

〈問題点を解決するための手段〉 この発明は一ト記した従来の欠陥に鑑み、これを解消J
べく検i]の結果得られたものである。
<Means for Solving the Problems> In view of the above-mentioned conventional deficiencies, this invention solves them.
This is the result obtained from the following test.

即ち、この発明は紳Aρ棒をAg、Zr、Snのなかか
ら選ばれIこ1種類の元素を0.02−・0.2重足%
含有する罰金金で被覆し!こことを特徴とJる超電贈複
合導体用安定化il;Aである。
That is, in this invention, the Aρ rod is selected from Ag, Zr, and Sn, and this one type of element is 0.02-0.2%.
Covered with fine gold containing! This is a stabilized film for superconductive composite conductors, which has the following characteristics.

〈作用〉 以下、この発明を図面を参照して詳細に説明する。<Effect> Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図においでlJ、、コはSn、Zrあるい(ま八。In Figure 1, lJ, ko are Sn, Zr or (mahachi).

を0.02〜0.2%含有したCu合金層2を被覆した
高純度AρC゛ある。
There is a high-purity AρC coated with a Cu alloy layer 2 containing 0.02 to 0.2% of AρC.

この発明は第1図に断面構造を示Jように集合導体にC
u合金被覆したへ〇祠を安定化4Aとして用いるもので
ある。ここでC1合金被覆八へは気合金管中にA&棒を
入れて作製した複合ビレットの押出し、あるいはCIL
合金パイプとA&棒の複合伸線によって作製される33
なお第1図にaiLプる3はNb −TLまたはNb5
SnJへ細多芯超電導線である。
In this invention, the cross-sectional structure is shown in FIG.
A u-alloy coated hemium is used as the stabilizing 4A. Here, C1 alloy coating 8 is produced by extrusion of a composite billet made by putting A & rod into a gas alloy tube, or CIL
33 made by composite wire drawing of alloy pipe and A & rod
In addition, aiL pull 3 in Figure 1 is Nb -TL or Nb5
SnJ is a thin multicore superconducting wire.

この発明において高紬磨へg棒の外周を被覆する罰金金
層の索4Aど4TるC1合金にはAg、Zr、Snの何
れか1種を0.02へ、0.2%含有さゼたことか特徴
であるか、これtJ、電気抵抗を低下させることなくC
uの弾痕を増加ざ1!るので゛ある。
In this invention, the fine gold layer cable 4A, 4T, and C1 alloy that coats the outer periphery of the g-rod in Takatsugi contain 0.02% to 0.2% of any one of Ag, Zr, and Sn. Perhaps this is a characteristic of tJ, C without decreasing electrical resistance.
Increase the number of bullet holes in u! There is because there is.

このAg、Zr、SnのCu合金中への含有量を0.0
2へ・()、2%とするの(コ1.0.02%以下では
機械的強1良を増加させるのに不十分であること、また
0、2%以上を加えめど、電気抵抗の大ぎな増加を生じ
ること、さらに加IT二性を劣化さμるので好ましくな
いためである。
The content of Ag, Zr, and Sn in the Cu alloy is 0.0
Go to 2.(), 2% (1.0.02% or less is insufficient to increase mechanical strength, and adding 0.2% or more will increase electrical resistance. This is because it is undesirable because it causes a large increase and further deteriorates the added IT duality.

また、この発明の安定化材の他の一例を示すと、第2図
のようにNb −TL極細多芯超電導線からなるモノリ
シック導体4の外周を高純度へρ1、さらにその最外周
をC1合金層で被覆したものである。これは複合ビレツ
1〜の押出し、またはCuパイプ、Aρバイブ、Nb−
TL超電導導体の複合伸線にJ、って作製することもで
きる。
In addition, to show another example of the stabilizing material of the present invention, as shown in FIG. It is coated with a layer. This can be done by extruding composite billet 1 or Cu pipe, Aρ vibe, Nb-
It is also possible to produce J by composite wire drawing of TL superconducting conductor.

〈実施例〉 以下、この発明を実施例ににり説明する。<Example> The present invention will be explained below with reference to Examples.

下記、第1表に示した組成のC11合金からなる外−4
= 径70anの管の中に99.99%のA&棒を入れ、上
、下問じCu合金からなる諸をし、真空室中でC11合
金管内部を真空引ぎした後、蓋を電子ビーム溶接して、
複合ビレツ1〜を作製した。
Outer-4 made of C11 alloy with the composition shown in Table 1 below.
= A 99.99% A & rod was placed in a tube with a diameter of 70an, the upper and lower parts were made of Cu alloy, the inside of the C11 alloy tube was evacuated in a vacuum chamber, and the lid was exposed to an electron beam. weld,
Composite billet 1~ were produced.

これを静水圧押出機を用いて30mφに押出した。ここ
でC1合金の被覆率は15%である。
This was extruded to a size of 30 mφ using a hydrostatic extruder. Here, the coverage of C1 alloy is 15%.

次に押出材を伸線および圧延し、3×16−の板を2枚
、5×10−の板を1枚作製した。
Next, the extruded material was drawn and rolled to produce two 3 x 16- plates and one 5 x 10- plate.

これらの板材と別途作製した5 X 5 m%のNb 
−TL極細多芯超電導線を半田(Pb−8TI共品合金
)で接着合体して大容量の超電導導体を得た。
These plates and 5 x 5 m% Nb prepared separately
-TL ultra-fine multicore superconducting wires were bonded together with solder (Pb-8TI alloy) to obtain a large-capacity superconducting conductor.

一方、この発明による8m径の01合金被’JAρ棒を
用い、回転曲げ疲労試験により耐疲労強度を調べた。ま
た4、2Kにおいて、電気抵抗率を測定した。その結果
は第1表に示した。
On the other hand, using a 01 alloy coated 'JAρ bar with a diameter of 8 m according to the present invention, its fatigue strength was examined by a rotary bending fatigue test. Furthermore, the electrical resistivity was measured at 4 and 2K. The results are shown in Table 1.

なお比較のために測定した99.99%八ρへに比べ、
電気抵抗率は若干増加しているが、耐疲労強度が著しく
改善されていることが認められた。
In addition, compared to 99.99% 8ρ measured for comparison,
Although the electrical resistivity increased slightly, it was observed that the fatigue strength was significantly improved.

第1表 〈発明の効果〉 以」二のように、この発明は超電導複合導体用の安定化
材として八〇、Zr、Snのうちの1種を0.02〜0
.2%含有したC11合金で被覆したA&を用いるもの
であり、通常、超電導の安定化材として用いられでいる
Cuに比べ、超電導を安定化させる力が大ぎい。
Table 1 <Effects of the Invention> As shown in 2 below, this invention uses one of 80, Zr, and Sn as a stabilizing material for superconducting composite conductors in the amount of 0.02 to 0.
.. It uses A& coated with a C11 alloy containing 2%, and has a greater ability to stabilize superconductivity than Cu, which is normally used as a stabilizing material for superconductivity.

これは極低温で、特に高磁界において、C1iに比べ電
気抵抗率の小さいA&を用いているためである。
This is because A&, which has a lower electrical resistivity than C1i, is used at extremely low temperatures, especially in a high magnetic field.

また、通常安定化材における疲労フラッフは、材料の表
面で発生し、内部に伝播する。
Furthermore, fatigue fluff in stabilized materials usually occurs on the surface of the material and propagates inside.

この発明は材料外周をAg、Zr、Snの何れかを0.
02〜0.2%含有したCUL合金層とすることにより
耐疲労強度を向上させることができたのである。
In this invention, the outer periphery of the material is coated with 0.0% of Ag, Zr, or Sn.
By creating a CUL alloy layer containing 0.02 to 0.2%, fatigue strength could be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明になる安定化材の1例を示す断面構造
図、第2図はこの発明の他の1例を示す平面図である。
FIG. 1 is a sectional structural view showing one example of the stabilizing material according to the invention, and FIG. 2 is a plan view showing another example of the invention.

Claims (2)

【特許請求の範囲】[Claims] (1)純Al棒をAg、Zr、Snのなかから選ばれた
1種類の元素を0.02〜0.2重量%含有したCu合
金で被覆したことを特徴とする超電導複合導体用安定化
材。
(1) Stabilization for superconducting composite conductors characterized by coating a pure Al rod with a Cu alloy containing 0.02 to 0.2% by weight of one type of element selected from Ag, Zr, and Sn. Material.
(2)純Al棒は、その純度が99.9%以上である特
許請求の範囲第1項記載の超電導複合導体用安定化材。
(2) The stabilizing material for a superconducting composite conductor according to claim 1, wherein the pure Al rod has a purity of 99.9% or more.
JP60065508A 1985-03-28 1985-03-28 Stabilizing material for superconducting composite body Granted JPS61224213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60065508A JPS61224213A (en) 1985-03-28 1985-03-28 Stabilizing material for superconducting composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60065508A JPS61224213A (en) 1985-03-28 1985-03-28 Stabilizing material for superconducting composite body

Publications (2)

Publication Number Publication Date
JPS61224213A true JPS61224213A (en) 1986-10-04
JPH0568805B2 JPH0568805B2 (en) 1993-09-29

Family

ID=13289074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60065508A Granted JPS61224213A (en) 1985-03-28 1985-03-28 Stabilizing material for superconducting composite body

Country Status (1)

Country Link
JP (1) JPS61224213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251113A (en) * 1985-08-29 1987-03-05 住友電気工業株式会社 Copper stabilized nb-ti superconductor
JPH02243733A (en) * 1989-03-15 1990-09-27 Fujikura Ltd Copper alloy wire rod

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224007A (en) * 1983-06-02 1984-12-15 日立電線株式会社 Composite superconductive conductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224007A (en) * 1983-06-02 1984-12-15 日立電線株式会社 Composite superconductive conductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251113A (en) * 1985-08-29 1987-03-05 住友電気工業株式会社 Copper stabilized nb-ti superconductor
JPH02243733A (en) * 1989-03-15 1990-09-27 Fujikura Ltd Copper alloy wire rod
JPH0477060B2 (en) * 1989-03-15 1992-12-07 Fujikura Ltd

Also Published As

Publication number Publication date
JPH0568805B2 (en) 1993-09-29

Similar Documents

Publication Publication Date Title
Kunzler et al. Superconductivity in Nb 3 Sn at high current density in a magnetic field of 88 kgauss
US3958327A (en) Stabilized high-field superconductor
JP2897776B2 (en) Electrical conductor in wire or cable form
Eisterer et al. Enhanced transport currents in Cu-sheathed MgB2 wires
Ašner High field superconducting magnets
JP2002373534A (en) Superconducting wire, its producing method, and superconducting magnet using it
Akihama et al. Fabrication of multifilamentary Nb-Al by a powder metallurgy process
JPS61224213A (en) Stabilizing material for superconducting composite body
US3616530A (en) Method of fabricating a superconducting composite
US5628835A (en) Nb3 Al Group superconductor containing ultrafine Nb2 Al particles
McInturff et al. Pulsed field losses in metal‐filled superconducting multifilamentary braids
JPS61231143A (en) Manufacture of stabilizing material for composite superconductor
JPS61227306A (en) Stabilizing material for superconducting composite body
JPH03156809A (en) Application of oxide superconductive conductor
JPH0251807A (en) Manufacture of nb3al superconducting wire rod with extremely fine multiplex structure
Kreilick et al. The design and fabrication of multifilamentary NbTi composites utilizing various matrix materials
JPS60250506A (en) Compound superconductive wire blank
JPH02103814A (en) Superconducting transmission cable
Foner et al. Improved Performance Powder Metallurgy and In Situ Processed Multifilamentary Superconductors
Sharma et al. Multifilamentary V3Ga wires and tapes with composite cores
King et al. Flux jump stability in Nb/sub 3/Sn tape
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JPS60107213A (en) Aluminum stabilized superconductive wire
JPH01163911A (en) Wire drawing method for oxide type superconductor
JP3046828B2 (en) Nb Lower 3 Method for Manufacturing Sn Composite Superconductor