JPS61222934A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPS61222934A
JPS61222934A JP5539985A JP5539985A JPS61222934A JP S61222934 A JPS61222934 A JP S61222934A JP 5539985 A JP5539985 A JP 5539985A JP 5539985 A JP5539985 A JP 5539985A JP S61222934 A JPS61222934 A JP S61222934A
Authority
JP
Japan
Prior art keywords
optical fiber
layer
core
gas
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5539985A
Other languages
Japanese (ja)
Other versions
JPH02304B2 (en
Inventor
Makoto Tsukamoto
誠 塚本
Koji Okamura
浩司 岡村
Masaji Miki
三木 正司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5539985A priority Critical patent/JPS61222934A/en
Publication of JPS61222934A publication Critical patent/JPS61222934A/en
Publication of JPH02304B2 publication Critical patent/JPH02304B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To reduce the transmission loss of an optical fiber also at the lower wavelength side, by increasing the feed of GeCl4 gas during the formation of the intermediate deposition layer in the production of an optical fiber preform by inside chemical vapor deposition process, and decreasing the feeding rate of SiCl4 gas according to the increase of the number of deposition layers. CONSTITUTION:The feeding rate (M2) of GeCl4 gas to a quartz tube is increased in the formation of the intermediate deposition layer of core deposition layers compared with the feeding rate in the formation of the initial deposition layer and the final deposition layer. The feeding rate (N2) of SiCl4 gas is adjusted to decrease according to the increase of the number of the deposition layers from the stage of the formation of the initial layer of the core deposition layers. The optical fiber produced by the spinning of the optical fiber preform produced by the above process has low transmission loss at a short wavelength band 0f 0.85mum wavelength not to mention the long wavelength range, i.e. 1.3mum wavelength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内付化学気相堆積法による光ファイバ母材の
製造方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a method for manufacturing an optical fiber preform by an internal chemical vapor deposition method.

石英系光ファイバ母材の1つの製造方法である内付化学
気相堆積法は、ガラスの原料である5iC14、GeC
l4.  POCl3. BBr3等の原料ガスを酸素
とともに、加熱した石英管内に送込み、石英管の内壁面
にクラッド堆積層と、クラッド堆積層よりも屈折率の大
きいコア堆積層を堆積合成する方法である。
The internal chemical vapor deposition method, which is one of the manufacturing methods for silica-based optical fiber preforms, uses glass raw materials such as 5iC14 and GeC.
l4. POCl3. This is a method in which a raw material gas such as BBr3 is fed into a heated quartz tube together with oxygen, and a cladding layer and a core layer having a higher refractive index than the cladding layer are deposited and synthesized on the inner wall surface of the quartz tube.

この際、光ファイバ母材を紡糸して得られた光ファイバ
の伝送損失の低いことは勿論のこと、堆積層の形成時間
が速いことの要望が強い。
At this time, there is a strong demand that the optical fiber obtained by spinning the optical fiber preform not only has a low transmission loss but also has a fast deposition layer formation time.

第3図は内付化学気相堆積法による光ファイバ母材の製
造方法を示す断面図であって、1は光フプイバのクラッ
ドを形成する、例えば外径25龍。
FIG. 3 is a cross-sectional view showing a method of manufacturing an optical fiber preform by internal chemical vapor deposition, in which 1 is a fiber with an outer diameter of 25 mm, for example, which forms the cladding of an optical fiber.

内径22B、長さ800鶴の石英管である。It is a quartz tube with an inner diameter of 22B and a length of 800 mm.

石英管1の両端には石英管1をガラス旋盤7に装着して
回転させるサポート管が融着され、この2つのサポート
管のうち、ガラス旋盤7のベッド上に装着された駆動側
チャック5に支持されるのが排気側サポート管3であり
、従動側チャック6に支持されるのが投入側サポート管
2である。
Support tubes for mounting and rotating the quartz tube 1 on a glass lathe 7 are fused to both ends of the quartz tube 1, and one of these two support tubes is attached to a drive-side chuck 5 mounted on the bed of the glass lathe 7. What is supported is the exhaust side support pipe 3, and what is supported by the driven side chuck 6 is the input side support pipe 2.

投入側サポート管2の端末は絞られて、回転ジツイント
9を介して原料ガス供給装置10に連結されている。
The end of the input side support pipe 2 is constricted and connected to a raw material gas supply device 10 via a rotating shaft 9.

原料ガス供給装置i10は、ガラスの原料であるS 1
Cf4. GeC1g、  P QC13,BBr3等
の原料ガス及び0□を蓄え、所望の温度(例えば40℃
)で、原料ガスごとに所定の供給量に調整して石英管1
に供給する装置である。
The raw material gas supply device i10 supplies S1, which is a raw material for glass.
Cf4. 1g of GeC, PQC13, BBr3, etc. and 0□ are stored and heated to a desired temperature (e.g. 40℃
), adjust the supply amount to the specified amount for each raw material gas, and then
This is a device that supplies

ガラス旋盤7のベッド上を、石英管1の軸心に平行して
往復運動する酸水素バーナ−8は、石英管1の外周面を
1300℃乃至1600℃に加熱し、原料ガスに石英管
1内で熱酸化反応を起こさせるものである。
The oxyhydrogen burner 8, which reciprocates on the bed of the glass lathe 7 in parallel with the axis of the quartz tube 1, heats the outer peripheral surface of the quartz tube 1 to 1300°C to 1600°C, and injects the quartz tube 1 into the raw material gas. This causes a thermal oxidation reaction to occur within the reactor.

この酸水素バーナ−8の前進(投入側サポート管2側よ
り排気側サポート管3側への移動を云う、符号X、で示
す)は通常20cm1分であり、後退(符号X2で示す
)速度は、例えば1500cm/分と早い速度である。
The forward movement of this oxyhydrogen burner 8 (movement from the input side support pipe 2 side to the exhaust side support pipe 3 side, indicated by the symbol X) is normally 20 cm 1 minute, and the backward speed (indicated by the symbol X2) is , for example, at a high speed of 1500 cm/min.

したがって、長さ80cmの石英管1に、1層のガラス
層を堆積する時間は4分以上を要していた。
Therefore, it took more than 4 minutes to deposit one glass layer on the 80 cm long quartz tube 1.

また、コア堆積層数は、屈折率分布形状を滑らかにする
ため、通常50IiIは必要であるので、コア堆積層の
形成には、200分以上の長時間を要していた。
Further, since the number of core deposited layers is usually 50IiI in order to smooth the refractive index distribution shape, it takes a long time of 200 minutes or more to form the core deposited layer.

〔従来の技術〕[Conventional technology]

この酸水素バーナ−8の移動速度を早くして、光ファイ
バ母材の製造時間を短縮するため、従来は下記の手段が
行われている。
In order to increase the moving speed of the oxyhydrogen burner 8 and shorten the manufacturing time of the optical fiber preform, the following measures have been conventionally used.

酸水素バーナ−8の前進速度を25印/分にして繰り返
し移動し、石英管1に5iC14ガスを1000cc/
分、POChガスを100cc/分の供給量で供給して
、SiO□−P2O,のクラッド堆積層21を5層、石
英管lの内壁面に形成している。
The oxyhydrogen burner 8 was moved repeatedly at a forward speed of 25 marks/min, and 1000 cc/min of 5iC14 gas was supplied to the quartz tube 1.
POCh gas was supplied at a rate of 100 cc/min to form five cladding deposited layers 21 of SiO□-P2O on the inner wall surface of the quartz tube l.

その後、クラッド堆積1i21の内面に、S i02 
 Ge0z  PzOs の組成のコア堆積層22を50層形成するようにしてい
る。
After that, Si02 is applied to the inner surface of the cladding deposited 1i21.
Fifty core deposit layers 22 having a composition of Ge0zPzOs are formed.

第2図は縦軸に原料ガスの供給流量(cc/分)を、横
軸にコア堆積層数を示し、曲線M、はGeCl4の供給
流量であり、直線N、は5iC14の供給流量である。
In Figure 2, the vertical axis shows the supply flow rate (cc/min) of the raw material gas, and the horizontal axis shows the number of core deposited layers, where the curve M is the supply flow rate of GeCl4, and the straight line N is the supply flow rate of 5iC14. .

S 1c14ガス、及び02はコア堆積層22の形成全
過程を通じて一定で、供給流量は1000cc/分であ
り、POC1!ガスは350cc/分で一定である。
S 1c14 gas and 02 are constant throughout the formation process of the core deposit layer 22, the supply flow rate is 1000 cc/min, and POC1! Gas is constant at 350 cc/min.

そして、GeCl4の量は、光ファイバの屈折率分布曲
線がほぼ梯形である屈折率分布指数が4になるようにす
るために、コア堆積層数の初期には、はぼ150cc/
分で少なく、コア堆積層22の層数の増加とともに、漸
増して曲mM+のようにしている。そして、コア堆積層
22の最内側層である50層目においては、1800c
c/分である。
The amount of GeCl4 is approximately 150 cc/GeCl4 at the initial stage of the number of core deposited layers in order to make the refractive index distribution index of the optical fiber almost trapezoidal.
As the number of layers of the core deposited layer 22 increases, it gradually increases to a curve mM+. In the 50th layer, which is the innermost layer of the core deposit layer 22, the 1800c
c/min.

従来は上述のように屈折率分布指数を調整形成するのに
、5iC14ガスは一定にしGeC1*ガスの供給量を
調整供給して、酸水素バーナ−8の移動速度を早くして
、光ファイバ母材の製造時間を短縮している。
Conventionally, in order to adjust and form the refractive index distribution index as described above, the 5iC14 gas was kept constant, the GeC1* gas was adjusted and supplied, the moving speed of the oxyhydrogen burner 8 was increased, and the optical fiber motherboard was formed. It shortens the manufacturing time of materials.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記従来の製造方法による光ファイバ母材
を紡糸して、得られた光ファイバは、波長1.3μmの
光波の伝送損失が0.68 dB/ ka+と低損失で
あるが、波長0.85μmの光波の伝送損失が2.85
 dB/kmと高いという問題点がある。
However, the optical fiber obtained by spinning the optical fiber preform by the above-mentioned conventional manufacturing method has a low transmission loss of 0.68 dB/ka+ for light waves with a wavelength of 1.3 μm; The transmission loss of the light wave is 2.85
There is a problem in that it is as high as dB/km.

〔問題点を解決するための手段〕[Means for solving problems]

上記従来の問題点を解決するため本発明にいては、Ge
Cl4ガスの供給量を、コア堆積層の中間堆積層形成時
に、初期堆積層及び後期堆積層形成時よりも多くし、且
つSiC1gガスの供給量を、該コア堆積層の初期層形
成時より層数の増加とともに滅じて供給するようにして
、光ファイバのコアの屈折率分布曲線が所望になるよう
に調整形成するものである。
In order to solve the above conventional problems, in the present invention, Ge
The amount of Cl4 gas supplied is made larger when forming the intermediate deposited layer of the core deposited layer than when the initial deposited layer and the later deposited layer are formed, and the supplied amount of SiC1g gas is made larger when forming the intermediate deposited layer of the core deposited layer than when forming the initial deposited layer of the core deposited layer. The refractive index distribution curve of the core of the optical fiber is adjusted and formed as desired by supplying the refractive index as the number increases.

〔作用〕[Effect]

従来方法で得られた光ファイバが、波長1.3μmで伝
送損失が小さく、波長0.85μmで伝送損失が大きい
のは、コア堆積層中に生成されるGeOの紫外吸収する
に起因する。
The reason why the optical fiber obtained by the conventional method has a small transmission loss at a wavelength of 1.3 μm and a large transmission loss at a wavelength of 0.85 μm is due to the ultraviolet absorption of GeO generated in the core deposited layer.

このGeOは、酸水素バーナーの移動速度が早く、且つ
、GeCl4ガスの供給量が多いので、所定に期待する
、 GeCl4+Oz−GeOg + 2層1gの酸化反応
時間が不足で、 2 GeC1a、+Ot”GeO+ 4Cbの反応によ
り生成されるものである。
Since the movement speed of the oxyhydrogen burner is fast and the amount of GeCl4 gas supplied is large, the GeCl4+Oz-GeOg+2 layer 1g oxidation reaction time is insufficient, and 2GeC1a,+Ot"GeO+ It is produced by the reaction of 4Cb.

上記本発明の手段によれば、酸水素バーナーの移動時間
が早いにもかかわらず、G13C14ガスが所定に少な
く調整供給されるので、GeCl4ガスが過供給となら
ない。よって、GeO□の生成時間が確保され、GeO
が生成されない。
According to the above-mentioned means of the present invention, even though the moving time of the oxyhydrogen burner is fast, the G13C14 gas is adjusted to be supplied in a predetermined small amount, so that the GeCl4 gas is not oversupplied. Therefore, the generation time of GeO□ is secured, and the GeO
is not generated.

また、S icl*ガスの供給量が、コア堆積層の初期
層形成時より層数の増加とともに減じて、最終堆積層形
成時には、GeCl4ガスの供給量より少なく供給する
ので、コアの所望の屈折率分布曲線が得られる。
In addition, the supply amount of SiCl* gas decreases as the number of layers increases from the time of initial layer formation of the core deposited layer, and when the final deposited layer is formed, it is supplied less than the supply amount of GeCl4 gas, so that the desired refraction of the core can be achieved. A rate distribution curve is obtained.

〔実施例〕〔Example〕

第1図は本発明の1実施例の、原料ガス供給組成図であ
る。
FIG. 1 is a raw material gas supply composition diagram in one embodiment of the present invention.

。        本発明は、第3図に示す装置を使用
し、酸水素バーナ−8の前進速度を25cm/分にして
繰り返し移動し、石英管1に5iC1,ガスを1000
cc/分、POChガスを100cc/分、0!を10
00cc/分の供給量で供給して、5iOz −P2O
3のクラッド堆積層21を5層、石英管lの内壁面に従
来と同様に形成している。
. The present invention uses the apparatus shown in FIG. 3, moves the oxyhydrogen burner 8 repeatedly at a forward speed of 25 cm/min, and injects 5 iC1 gas into the quartz tube 1 at a rate of 1000.
cc/min, POCh gas 100cc/min, 0! 10
00cc/min supply rate, 5iOz -P2O
Five layers of the cladding deposited layers 21 of No. 3 are formed on the inner wall surface of the quartz tube l in the same manner as before.

その後、クラッド堆積層21の内面に、S ioz  
 Gem5   PzOsの組成のコア堆積層22を5
0層形成するようにしている。
After that, Sioz is applied to the inner surface of the cladding layer 21.
Gem5 The core deposited layer 22 with the composition of PzOs is
0 layers are formed.

この場合、それぞれの原料ガスの供給量は、第3図の原
料ガス供給組成図に示すような供給量である。
In this case, the supply amount of each raw material gas is as shown in the raw material gas supply composition diagram of FIG. 3.

第3図は縦軸に原料ガス供給流量(cc/分)を、横軸
にコア堆積層数を示し、曲線M!はGeC11ガスの供
給流量であり、直線N2は5iC14の供給流量である
In FIG. 3, the vertical axis shows the raw material gas supply flow rate (cc/min), the horizontal axis shows the number of core deposited layers, and the curve M! is the supply flow rate of GeC11 gas, and the straight line N2 is the supply flow rate of 5iC14.

0□はコア堆積層22の形成全過程を通じて一定で、1
000cc/分であり、POCl3ガスはコア堆積層2
2の最初の1層目の形成時には1500cc/分で供給
し、その後は層数の増加とともに、定量ずつ直線的に減
じて、最終の堆積層形成時である50層目には、500
cc/分になるようにしている。
0□ is constant throughout the formation process of the core deposited layer 22, and 1
000cc/min, and the POCl3 gas is
When forming the first layer of 2, it was supplied at a rate of 1,500 cc/min, and thereafter, as the number of layers increased, it was linearly reduced by a constant amount, and when the final deposited layer was formed, at the 50th layer, 500 cc/min was supplied.
cc/min.

一方、GeCl4の供給量はコア堆積層22の最初の1
層目は150cc/分で、以後層数の増加とともに漸増
し、中間層の25層目でほぼ1400cc/分の最高値
となり、その後、層数の増加とともに漸減して、最終の
堆積層形成時である50層目には、800cc/分にな
るようにしている。
On the other hand, the supply amount of GeCl4 is
The speed of each layer is 150 cc/min, which gradually increases as the number of layers increases, reaching a maximum value of approximately 1400 cc/min at the 25th intermediate layer, and then gradually decreases as the number of layers increases, until the final deposited layer is formed. In the 50th layer, the flow rate is set to 800 cc/min.

このように、光ファイバの屈折率を高くする添加物原料
であるGeCl4ガスを、中高の曲NaM zにしたが
って供給し、光ファイバの屈折重分−布曲線がほぼ梯形
である屈折率分布指数が4になるようにしている。
In this way, GeCl4 gas, which is an additive raw material that increases the refractive index of an optical fiber, is supplied according to the mid-high curve NaMz, and the refractive index distribution index of the optical fiber is made such that the refraction weight distribution curve is almost trapezoidal. I'm trying to get it to 4.

このようにして得られた光ファイバ母材は、後期のコア
堆積層形成時に、従来方法°に比較して著しくGeC1
aガスの供給量が少ないので、GeOが生成量が極めて
少ない。
The optical fiber preform obtained in this way has a significantly higher GeCl content during the formation of the core deposited layer in the latter stage compared to the conventional method.
Since the amount of a gas supplied is small, the amount of GeO produced is extremely small.

よって、このような光ファイバ母材を紡糸して得られた
光ファイバは、波長1.3μmの光波の伝送損失がほぼ
0.68dB/に11で低損失であることは勿論のこと
、波長0.85μmの光波の伝送損失も2、30 dB
/kmとなり、従来に比較して0.5dB/km低くす
ることができた。
Therefore, the optical fiber obtained by spinning such an optical fiber base material not only has a low transmission loss of approximately 0.68 dB/11 for light waves with a wavelength of 1.3 μm, but also has a low transmission loss of approximately 0.68 dB/11. .85μm light wave transmission loss is also 2.30 dB
/km, which is 0.5 dB/km lower than the conventional method.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、波長0.85μmの短波
長帯においても、伝送損失が少なく、且つ、光ファイバ
母材の製造時間が短い等、実用上で優れた効果がある。
As explained above, the present invention has excellent practical effects such as low transmission loss and short manufacturing time of the optical fiber preform even in the short wavelength band of 0.85 μm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の原料ガス供給組成図、 第2図は従来の原料ガス供給組成図、 第3図は内付化学気相堆積法による光ファイバ母材の製
造方法を示す断面図である。 図において、 1は石英管、 2は投入側サポート管、 3は排気側サポート管、 5は駆動側チャック、 6は従動側チャック、 7はガラス旋盤、 8は酸水素バーナ−, 9は回転ジヨイント、 IOは原料ガス供給装置、 21はクラッド堆積層、 22はコア堆積層、 M I、 M zはGeCl4供給曲線、N +、 N
 zはS iCL供給曲線を示す。 第 1 り 警 2 固
Fig. 1 shows a raw material gas supply composition diagram of one embodiment of the present invention, Fig. 2 shows a conventional raw material gas supply composition diagram, and Fig. 3 shows a method for manufacturing an optical fiber preform by internal chemical vapor deposition method. FIG. In the figure, 1 is a quartz tube, 2 is an input side support tube, 3 is an exhaust side support tube, 5 is a driving side chuck, 6 is a driven side chuck, 7 is a glass lathe, 8 is an oxyhydrogen burner, and 9 is a rotating joint. , IO is a raw material gas supply device, 21 is a cladding deposited layer, 22 is a core deposited layer, M I, Mz are GeCl4 supply curves, N +, N
z indicates the SiCL supply curve. 1st police 2nd police

Claims (1)

【特許請求の範囲】[Claims] 内付化学気相堆積法による光ファイバ母材の製造におい
て、GeCl_4ガスの石英管への供給量は、コア堆積
層の中間堆積層形成時に、初期堆積層及び後期堆積層形
成時よりも多くし、且つSiCl_4ガスの供給量は、
該コア堆積層の初期層形成時より層数の増加とともに減
じるように供給して、コア堆積層を形成するようにした
ことを特徴とする光ファイバ母材の製造方法。
In manufacturing the optical fiber base material by internal chemical vapor deposition, the amount of GeCl_4 gas supplied to the quartz tube is larger when forming the intermediate deposit layer of the core deposit layer than when forming the initial deposit layer and the late deposit layer. , and the supply amount of SiCl_4 gas is
A method for manufacturing an optical fiber preform, characterized in that the core deposited layer is formed by supplying the core deposited layer in such a manner that the number of core deposited layers decreases as the number of layers increases from when the core deposited layer is initially formed.
JP5539985A 1985-03-19 1985-03-19 Production of optical fiber preform Granted JPS61222934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5539985A JPS61222934A (en) 1985-03-19 1985-03-19 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5539985A JPS61222934A (en) 1985-03-19 1985-03-19 Production of optical fiber preform

Publications (2)

Publication Number Publication Date
JPS61222934A true JPS61222934A (en) 1986-10-03
JPH02304B2 JPH02304B2 (en) 1990-01-05

Family

ID=12997452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5539985A Granted JPS61222934A (en) 1985-03-19 1985-03-19 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPS61222934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154162A (en) * 2003-11-20 2005-06-16 Sumitomo Electric Ind Ltd Method and apparatus for processing glass pipe, and glass pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154162A (en) * 2003-11-20 2005-06-16 Sumitomo Electric Ind Ltd Method and apparatus for processing glass pipe, and glass pipe
US7637125B2 (en) 2003-11-20 2009-12-29 Sumitomo Electric Industries, Ltd. Glass tube processing method, apparatus and glass tube
US8015845B2 (en) 2003-11-20 2011-09-13 Sumitomo Electric Industries, Ltd. Glass tube processing method
US8024945B2 (en) 2003-11-20 2011-09-27 Sumitomo Electric Industries, Ltd. Glass tube processing apparatus

Also Published As

Publication number Publication date
JPH02304B2 (en) 1990-01-05

Similar Documents

Publication Publication Date Title
US4217027A (en) Optical fiber fabrication and resulting product
US3966446A (en) Axial fabrication of optical fibers
CA1050833A (en) Optical fiber fabrication involving homogeneous reaction within a moving hot zone
US4909816A (en) Optical fiber fabrication and resulting product
US4334903A (en) Optical fiber fabrication
US4257797A (en) Optical fiber fabrication process
GB2128982A (en) Fabrication method of optical fiber preforms
WO2010029734A1 (en) Process for producing optical-fiber base material
US4932990A (en) Methods of making optical fiber and products produced thereby
US4149867A (en) Method of producing an optical fiber
JP2005092211A (en) Low loss optical fiber and manufacturing method of optical fiber preform
JPS61222934A (en) Production of optical fiber preform
US4504299A (en) Optical fiber fabrication method
EP0023209B1 (en) Improved optical fiber fabrication process
JPH03242342A (en) Production of preform for optical fiber
JPH0557216B2 (en)
JPH0331657B2 (en)
JPS62108748A (en) Preparation of glass fiber base material
KR100800813B1 (en) Method of manufacturing optical fiber preform, Optical fiber preform and Optical fiber manufactured using the same
EP0301797A1 (en) Methods of making optical fiber and products produced thereby
JP3517250B2 (en) Method for producing glass fiber preform for optical transmission line
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JPS59454B2 (en) Manufacturing method of fiber base material for optical transmission
JPS6259063B2 (en)
JPS5924097B2 (en) Glass body manufacturing method