JPS61222132A - Production unit for semiconductor - Google Patents

Production unit for semiconductor

Info

Publication number
JPS61222132A
JPS61222132A JP6473685A JP6473685A JPS61222132A JP S61222132 A JPS61222132 A JP S61222132A JP 6473685 A JP6473685 A JP 6473685A JP 6473685 A JP6473685 A JP 6473685A JP S61222132 A JPS61222132 A JP S61222132A
Authority
JP
Japan
Prior art keywords
sample
treatment
negative potential
semiconductor manufacturing
manufacturing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6473685A
Other languages
Japanese (ja)
Inventor
Kyusaku Nishioka
西岡 久作
Hideaki Itakura
秀明 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6473685A priority Critical patent/JPS61222132A/en
Publication of JPS61222132A publication Critical patent/JPS61222132A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To increase the speed of plasma treatment, and to enable stable treatment by bringing a sample to negative potential on plasma treatment. CONSTITUTION:A substance such as SF6 is introduced into an ion source 1 as a reaction gas, an electron cyclotron resonance phenomenon is generated by applying constant microwaves and a fixed magnetic field and a high-density plasma flow 2 is generated, voltage within the range of -1--100V is applied, and a sample 3 on a sample base 4 brought to negative potential is etched and processed. Ion energy can be controlled easily only by changing negative potential applied to the sample base 4, and the damage of a device can be controlled in response to a semiconductor element treated by plasma. Accordingly, the speed of treatment is increased to all plasma treatment, such as the formation of a thin-film, surface treatment, such as the oxidization and nitriding of the surface of the sample or the like, thus enabling stable treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体製造装置に関し、さらに詳細には、半
導体素子製造工程においてイオンビームを使用して微細
加工又は薄膜形成等の表面処理を行なう装置に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor manufacturing device, and more particularly, to a device that performs surface treatment such as microfabrication or thin film formation using an ion beam in a semiconductor device manufacturing process. It is related to.

【従来の技術〕[Conventional technology]

半導体集積回路は、ますます高集積化の要求が厳しくな
っており、パターンの微細化及びゲート絶縁膜等の薄膜
化が進んでいる。現在、パターンの微細化の要求に対応
するため、平行平板型プラズマエツチング装置による反
応性イオンエツチング(以下、RIBと略す)技術が多
用されているが、このRIEでは条件により100v以
上の自己バイアス電圧が印加されることがあり、デ/N
Jイス損傷が今後の大きな問題となっている。一方、カ
ウフマン型イオン源を用いた反応性イオンビームエツチ
ング(以下、RIBEと略す)装置の場合は、イオンを
加速するのにIKVに近い電圧を印加している。また電
子サイクロトロン共鳴(以下、ECRと略す)現象を利
用したイオン源を用いたRIBE装置の場合は、このよ
うなイオン加速用グリッドなしでも大電流を得られ、微
細パターンの加工だけでなく、薄膜形成等においてもE
CRイオン源を利用した装置による方法が注目されてい
る。
2. Description of the Related Art Semiconductor integrated circuits are increasingly required to be highly integrated, and patterns are becoming finer and gate insulating films and the like are becoming thinner. Currently, in order to meet the demand for finer patterns, reactive ion etching (hereinafter abbreviated as RIB) technology using parallel plate plasma etching equipment is often used. may be applied, and de/N
Damage to J-chairs is becoming a major problem in the future. On the other hand, in the case of a reactive ion beam etching (hereinafter abbreviated as RIBE) apparatus using a Kauffman type ion source, a voltage close to IKV is applied to accelerate ions. In addition, in the case of a RIBE device that uses an ion source that utilizes the electron cyclotron resonance (hereinafter abbreviated as ECR) phenomenon, a large current can be obtained without such an ion acceleration grid, and it can be used not only for processing fine patterns but also for processing thin films. E in formation etc.
A method using an apparatus using a CR ion source is attracting attention.

第2図及び第3図は従来のプラズマ処理装置を示し、図
において、1はイオン源、2はイオンビーム、3は試料
、4はこの試料の載置された試料台である。
2 and 3 show a conventional plasma processing apparatus. In the figures, 1 is an ion source, 2 is an ion beam, 3 is a sample, and 4 is a sample stage on which the sample is placed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来のプラズマ処理装置では、第2図及び第3
図に示したように試料台4の電位を接地又は浮遊状態に
しており、このような状態ではエツチング等の処理速度
が遅い、あるいはイオン電流が不安定になる等の問題が
あった。
However, in conventional plasma processing equipment,
As shown in the figure, the potential of the sample stage 4 is grounded or in a floating state, and in such a state there are problems such as slow etching processing speed or unstable ion current.

この発明の目的は、これらの問題点を解消するためにな
されたもので、処理速度が速く、安定なイオン電流を有
する半導体製造装置を得ることである。
The purpose of the present invention was to solve these problems, and it is an object of the present invention to provide a semiconductor manufacturing apparatus that has a high processing speed and a stable ion current.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体製造装置は、プラズマ処理する際
に、試料を負電位にするようにしたものである。
In the semiconductor manufacturing apparatus according to the present invention, a sample is brought to a negative potential during plasma processing.

〔作用〕[Effect]

この発明においては、プラズマ処理の際に試料を負電位
にしたから、プラズマ処理速度が増大し、安定な処理が
可能となった。
In this invention, since the sample was brought to a negative potential during plasma treatment, the plasma treatment speed increased and stable treatment became possible.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図は本発明の一実施例による半導体製造装置を示し、図
において、lは試料に照射するイオンビームを発生する
イオン源、2は該イオン源1から発生されたイオンビー
ム(プラズマ流)、3はエツチング等を行なうべき試料
、4は該試料3の設置された試料台であり、この試料台
4には電源5により負の電位が印加されている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows a semiconductor manufacturing apparatus according to an embodiment of the present invention, in which l is an ion source that generates an ion beam to irradiate a sample, 2 is an ion beam (plasma flow) generated from the ion source 1, and 3 Reference numeral 4 denotes a sample to be etched, etc., and 4 is a sample stage on which the sample 3 is placed. A negative potential is applied to this sample stage 4 by a power source 5.

このような構成になる本実施例装置において、イオン源
1より引き出されたプラズマ流2は、負の電位を印加さ
れた試料台4上に設置された試料3に照射され、プラズ
マ処理が行なわれる。
In the apparatus of this embodiment having such a configuration, the plasma flow 2 extracted from the ion source 1 is irradiated onto the sample 3 placed on the sample stage 4 to which a negative potential is applied, and plasma processing is performed. .

ここで、上記装置を使用して、多結晶シリコンの微細パ
ターンをエツチング加工した場合の作用効果について以
下に説明する。
Here, the effects when etching a fine pattern of polycrystalline silicon using the above-mentioned apparatus will be described below.

反応性ガスとして六フッ化イオン(SF4)をイオン源
1に導入し、2.45G Hzのマイクロ波と876G
の磁場を印加することによりECR現象を起こして、高
密度プラズマ流2を発生し、−40v程度の電圧を印加
し負電位となった試料台4上の試料3をエツチング加工
した。この場合、マイクロ波電力を500W、エツチン
グ処理室のガス圧力を0.15Paとして多結晶シリコ
ンを毎分23Qnm以上の高速度にてエツチング加工す
ることが可能であった。試料台4の電位を、接地又は浮
遊状態にした場合のエツチング速度は、それぞれ毎分2
00nmと210nmであり、このような従来のものに
比し明らかに高速度でエツチング可能なことがわかる。
Hexafluoride ions (SF4) were introduced into the ion source 1 as a reactive gas, and 2.45 GHz microwave and 876 G
By applying a magnetic field of , an ECR phenomenon was caused to generate a high-density plasma flow 2, and a voltage of about -40 V was applied to etching the sample 3 on the sample stage 4, which had a negative potential. In this case, it was possible to etch polycrystalline silicon at a high speed of 23 Qnm per minute or more using microwave power of 500 W and gas pressure in the etching chamber of 0.15 Pa. The etching speed when the potential of the sample stage 4 is grounded or floating is 2/min.
00 nm and 210 nm, and it can be seen that etching can be performed at a clearly higher speed than the conventional method.

また浮遊状態の場合、エツチングが不安定であった。Furthermore, in the floating state, etching was unstable.

このように本発明では、試料台4に適度な負電位を印加
することによってプラズマ処理速度を増大させること、
及び安定な処理を行なうことが可能となった。ここで、
負電位としてはデバイスの損傷を考慮して−1V〜−1
00vが適当である。
In this way, in the present invention, the plasma processing speed is increased by applying an appropriate negative potential to the sample stage 4,
And it became possible to perform stable processing. here,
The negative potential is -1V to -1 in consideration of damage to the device.
00v is appropriate.

特に、イオン源1としてイオン加速用グリッドなしのE
CR型イオン源を使用した場合加速電圧を低くでき、デ
バイス損傷を低減することができるが、本発明の場合、
試料を負電位にしているので、この試料に高エネルギー
の電子が照射されるのを弱める作用もあり、デバイス損
傷をさらに低減する効果がある。
In particular, as the ion source 1, an E without an ion acceleration grid is used.
When using a CR type ion source, the acceleration voltage can be lowered and device damage can be reduced, but in the case of the present invention,
Since the sample is at a negative potential, it also has the effect of weakening the irradiation of high-energy electrons to the sample, which has the effect of further reducing device damage.

また、この発明による装置を使用することにより、試料
台へ印加する負電位を変えるだけで、イオンエネルギを
容易に制御することが可能であり、プラズマ処理する半
導体素子に応じてデバイス損傷を制御できることとなる
Furthermore, by using the apparatus according to the present invention, it is possible to easily control ion energy by simply changing the negative potential applied to the sample stage, and device damage can be controlled depending on the semiconductor element to be plasma processed. becomes.

さらに以上述べた以外の効果として、イオンを試料近く
に集束し、プラズマ処理速度の均一性を向上できるとい
う効果もある。
In addition to the above-mentioned effects, there is also the effect that ions can be focused near the sample and the uniformity of the plasma processing rate can be improved.

なお、以上はイオンビームを試料に照射しエツチング加
工する例について述べたが、この発明は、これに限定さ
れるものではなく、薄膜形成又は試料表面の酸化・窒化
等の表面処理等すべてのプラズマ処理装置に適用可能で
ある。
Although the above has described an example of etching processing by irradiating a sample with an ion beam, this invention is not limited to this, and the present invention is applicable to all types of plasma processing such as thin film formation or surface treatment such as oxidation or nitridation of the sample surface. Applicable to processing equipment.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明に係る半導体製造装置によれば、
試料台を装置壁面に対し負電位とすることにより、プラ
ズマ処理速度を増大し、安定な処理が可能となる効果が
ある。
As described above, according to the semiconductor manufacturing apparatus according to the present invention,
Setting the sample stage at a negative potential with respect to the wall surface of the apparatus has the effect of increasing the plasma processing speed and making stable processing possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体製造装置の断面
図、第2図及び第3図は従来の半導体製造装置の断面図
である。 l・・・イオン源、2・・・イオンビーム、3・・・試
料、4・・・試料台、5・・・電源。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, and FIGS. 2 and 3 are cross-sectional views of a conventional semiconductor manufacturing apparatus. l...Ion source, 2...Ion beam, 3...Sample, 4...Sample stage, 5...Power source. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (6)

【特許請求の範囲】[Claims] (1)イオンビームを試料に照射するイオン源と、上記
試料を保持する試料台を装置壁面に対し負電位にする負
電圧印加手段とを備えたことを特徴とする半導体製造装
置。
(1) A semiconductor manufacturing apparatus comprising: an ion source that irradiates a sample with an ion beam; and negative voltage application means that brings a sample stage holding the sample to a negative potential with respect to a wall surface of the apparatus.
(2)上記負電位を−1Vないし−100Vとしたこと
を特徴とする特許請求の範囲第1項記載の半導体製造装
置。
(2) The semiconductor manufacturing apparatus according to claim 1, wherein the negative potential is -1V to -100V.
(3)該装置は試料をエッチング処理するものであるこ
とを特徴とする特許請求の範囲第1項又は第2項に記載
の半導体製造装置。
(3) The semiconductor manufacturing apparatus according to claim 1 or 2, wherein the apparatus performs an etching process on a sample.
(4)該装置は試料に対し薄膜形成処理を行なうもので
あることを特徴とする特許請求の範囲第1項又は第2項
に記載の半導体製造装置。
(4) The semiconductor manufacturing apparatus according to claim 1 or 2, wherein the apparatus performs a thin film forming process on a sample.
(5)該装置は試料に対し酸化・窒化等の表面変質処理
を行なうものであることを特徴とする特許請求の範囲第
1項又は第2項に記載の半導体製造装置。
(5) The semiconductor manufacturing apparatus according to claim 1 or 2, wherein the apparatus performs surface alteration treatment such as oxidation and nitridation on a sample.
(6)上記イオン源が電子サイクロトロン共鳴(ECR
)型イオン源であることを特徴とする特許請求の範囲第
1項ないし第5項のいずれかに記載の半導体製造装置。
(6) The above ion source is equipped with electron cyclotron resonance (ECR).
6. The semiconductor manufacturing apparatus according to claim 1, wherein the semiconductor manufacturing apparatus is a type ion source.
JP6473685A 1985-03-27 1985-03-27 Production unit for semiconductor Pending JPS61222132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6473685A JPS61222132A (en) 1985-03-27 1985-03-27 Production unit for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6473685A JPS61222132A (en) 1985-03-27 1985-03-27 Production unit for semiconductor

Publications (1)

Publication Number Publication Date
JPS61222132A true JPS61222132A (en) 1986-10-02

Family

ID=13266727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6473685A Pending JPS61222132A (en) 1985-03-27 1985-03-27 Production unit for semiconductor

Country Status (1)

Country Link
JP (1) JPS61222132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306618A (en) * 1989-05-20 1990-12-20 Sanyo Electric Co Ltd Method of forming semiconductor thin film
JPH09102544A (en) * 1995-05-09 1997-04-15 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306618A (en) * 1989-05-20 1990-12-20 Sanyo Electric Co Ltd Method of forming semiconductor thin film
JPH09102544A (en) * 1995-05-09 1997-04-15 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture

Similar Documents

Publication Publication Date Title
JP4073204B2 (en) Etching method
JPH03218627A (en) Method and device for plasma etching
US7858155B2 (en) Plasma processing method and plasma processing apparatus
JPH0892765A (en) Etching method
US20210335625A1 (en) Dry etching apparatus and dry etching method
JP2006253190A (en) Neutral particle beam processing apparatus and method of neutralizing charge
JPS61222132A (en) Production unit for semiconductor
JPS6044825B2 (en) Etching method
JP3445657B2 (en) ECR plasma etching method for diamond thin film
JP2006324691A (en) Machining method and apparatus thereof
JPH08203869A (en) Method and system for plasma processing
JP3223287B2 (en) Neutral particle processing method and device
JP2514328B2 (en) Semiconductor manufacturing equipment
JPH0457091B2 (en)
JPH06252097A (en) Plasma etching device
KR940010505B1 (en) Fine processing method and device thereby
JPH05291155A (en) Plasma processor
JPS62205627A (en) Manufacturing device for semiconductor device
JPH025413A (en) Plasma processor
JP2000012529A (en) Surface machining apparatus
JP2794963B2 (en) Dry etching method and dry etching apparatus
JPH02133573A (en) Hard-carbon film forming device
JPH04290226A (en) Method and apparatus for generation of plasma
JPS611025A (en) Plasma processing apparatus
JPS6373624A (en) Processing apparatus using microwave plasma in magnetic field