JPS61221371A - Method for synthesizing diamond - Google Patents

Method for synthesizing diamond

Info

Publication number
JPS61221371A
JPS61221371A JP5936185A JP5936185A JPS61221371A JP S61221371 A JPS61221371 A JP S61221371A JP 5936185 A JP5936185 A JP 5936185A JP 5936185 A JP5936185 A JP 5936185A JP S61221371 A JPS61221371 A JP S61221371A
Authority
JP
Japan
Prior art keywords
substrate
light
irradiated
diamond
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5936185A
Other languages
Japanese (ja)
Inventor
Hiroshi Aida
比呂史 会田
Koichi Yamaguchi
浩一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP5936185A priority Critical patent/JPS61221371A/en
Publication of JPS61221371A publication Critical patent/JPS61221371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To remarkably increase the rate of deposition when a diamond layer is formed on a substrate by a vapor phase growing method, by irradiating light having wavelengths selected from a specified range during the formation. CONSTITUTION:When a diamond layer is formed on a substrate by a vapor phase growing method to synthesize diamond, light having certain wavelengths selected from the wavelength range of 0.1-20mum is irradiated during the formation. The wavelengths of light to be irradiated depend on the kins of the substrate and a gas as a starting material. When methane is used as the gas, light having 0.18-0.23mum, 1.2-1.4mum, 1.4-2mum and 3.3-3.6mum wavelengths is irradiated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ダイアモンドの合成法、特に気相成長法によ
り良質のダイアモンドを効率良く製造する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for synthesizing diamonds, particularly to a method for efficiently producing diamonds of high quality by vapor phase growth.

(従来の技術及び問題点) 近年、低圧法によるダイアモンドの合成が区んに行なわ
れつつあり、イオン化蒸着法、スパッタ法、イオンビー
ム法等のPVD法、予備加熱CVD法、プラズマCVD
法等のCVD法等による気相成長法が普及している。
(Prior art and problems) In recent years, diamond synthesis using low-pressure methods has become increasingly popular, and includes PVD methods such as ionized vapor deposition, sputtering, and ion beam methods, preheating CVD, and plasma CVD.
Vapor phase growth methods such as CVD methods and the like are becoming widespread.

しかし、従来のPVD法においてはダイアモンド形成膜
にSF3やSP結合の炭素の混入があり、SF3をもつ
炭素があっても非晶質に近く、また温度に対しても不安
定で300°C以下ではSF3がSP2に変化し、特性
が不安定であり、そして膜中の水素(H)混入も多い。
However, in the conventional PVD method, the diamond forming film contains carbon with SF3 and SP bonds, and even if there is carbon with SF3, it is almost amorphous and is unstable with respect to temperatures below 300°C. In this case, SF3 changes to SP2, the characteristics are unstable, and hydrogen (H) is often mixed in the film.

CVD法においては、反応〃スを励起させてH原子とS
P3結合をもつ炭化水素ラジカルを生成させ、ダイアモ
ンドを合成することが行なわれているが、エネルギー幅
が広いためにSP2炭素が生じ、グラファイトや非晶質
炭素(SP2結合)が同時析出するので、析出速度を速
めることはできない。
In the CVD method, H atoms and S
Hydrocarbon radicals with P3 bonds are generated to synthesize diamonds, but due to the wide energy range, SP2 carbon is generated, and graphite and amorphous carbon (SP2 bonds) are precipitated simultaneously. It is not possible to accelerate the precipitation rate.

H2と炭化水素を用いたCVD法においては、H原子と
SP’結合を有する炭化水素ラジカルがダイアモンド合
成に重要であると考えられており、即ち炭化水素ラジカ
ルが基板上で反応してダイアモンドとなるが、H原子は
炭化水素ラジカルを作り出し、また析出したグラファイ
トをエツチングして取り除く役割をする。
In the CVD method using H2 and hydrocarbons, hydrocarbon radicals with H atoms and SP' bonds are thought to be important for diamond synthesis, that is, hydrocarbon radicals react on the substrate to form diamonds. However, H atoms create hydrocarbon radicals and also play a role in etching and removing precipitated graphite.

従来、予備加熱したフィラメントから放出された電子に
よりH2及び炭化水素を分解させる方法やプラズマを用
いてH2や炭化水素を分解させる方法があるが、これら
の励起方法では反応に関与する電子のエネルギーが広い
幅をもって分布してお’)SP2やSP結合を有する分
子やイオンの生成が起こる。またSP’の核に作用して
SP2、SPに変化する反応も起こり、更に、生成効率
も低いため析出速度が遅く、グラファイト質炭素の混入
が避けられないのである。
Conventionally, there are methods to decompose H2 and hydrocarbons using electrons emitted from a preheated filament, and methods to decompose H2 and hydrocarbons using plasma, but these excitation methods reduce the energy of the electrons involved in the reaction. Molecules and ions having SP2 and SP bonds are generated in a wide distribution. In addition, a reaction that acts on the nucleus of SP' and changes it to SP2 and SP also occurs.Furthermore, since the production efficiency is low, the precipitation rate is slow, and the contamination of graphitic carbon is unavoidable.

(問題を解決する手段) 本発明者らは鋭意研究の結果、上記問題点を解決する方
法を開発した。
(Means for Solving the Problems) As a result of intensive research, the present inventors have developed a method for solving the above problems.

それは即ち、気相成長法により基体上にダイアモンド層
を形成するダイアモンドの合成法において、0.1〜2
0μmの範囲内の波長から選ばれる一定波長の光線を照
射しながらそれを行うことを特徴とするダイアモンドの
合成法である。
That is, in a diamond synthesis method in which a diamond layer is formed on a substrate by a vapor phase growth method, 0.1 to 2
This method of synthesizing diamonds is characterized in that it is carried out while irradiating with a light beam of a certain wavelength selected from wavelengths within the range of 0 μm.

一般に、光線が気体に照射されると、気体分子(又は原
子)は励起され、光のエネルギーが分子解離の活性化エ
ネルギーを越えると気体分子は解離し、イオンやラジカ
ルが生成する。一方、光を基体に照射すると基体の表面
は光を吸収して加熱され、この熱エネルギーによって分
子の解離・結合・拡散等が引き起こされる(以上は、気
体及び基体が光を吸収することを前提としており、吸収
光の波長は物質に依存する)。
Generally, when a gas is irradiated with a light beam, gas molecules (or atoms) are excited, and when the energy of the light exceeds the activation energy for molecular dissociation, the gas molecules dissociate, producing ions and radicals. On the other hand, when a substrate is irradiated with light, the surface of the substrate absorbs the light and is heated, and this thermal energy causes molecules to dissociate, bond, diffuse, etc. (The above assumes that the gas and the substrate absorb light. (The wavelength of absorbed light depends on the material).

本発明では、気体分子の分解、ラジカル発生またはH原
子発生に必要なエネルギーに近い波長の光線を気体に選
択的に吸収させて単一の反応のみを生じさせる。即ち、
気体の種類と光線の波長をうまく選択することによって
、SP2やSP結合を有する分子やイオンの発生を抑制
し、その結果効率良くダイアモンドを合成し、膜中への
グラファイト混入も回避しようとするものである。
In the present invention, only a single reaction occurs by selectively absorbing a light beam having a wavelength close to the energy required for decomposing gas molecules, generating radicals, or generating H atoms. That is,
By carefully selecting the type of gas and the wavelength of the light beam, the generation of molecules and ions with SP2 and SP bonds is suppressed, and as a result, diamonds are synthesized efficiently and the contamination of graphite into the film is avoided. It is.

なお、光線を基体に照射すると基体は加熱されるが、基
体表面の原子や吸収原子にも影響を及ぼし、その電子状
態を変化させ、このために基体表面が活性化して反応が
より一層促進されてダイアモンド析出が進む。
Note that when a light beam is irradiated onto a substrate, the substrate is heated, but it also affects the atoms on the surface of the substrate and absorbed atoms, changing their electronic states, which activates the surface of the substrate and further promotes the reaction. Diamond precipitation progresses.

以上はCVD法のみだけでなく PVD法においても同
様の効果があり、例えば、イオン化蒸着法においては気
体に光線を照射してイオン化させたり、気体に光線を照
射してプラズマを発生させ、そのプラズマをスパッタ法
やイオンブレーティング法に適用することができる。そ
して基体への光線照射については、CVD法と全く同様
の効果があり、特に、温度を上げる効果によって結晶性
が向上し、かつ、安定性も改善される。
The above effects are similar not only to CVD methods but also to PVD methods. For example, in the ionization vapor deposition method, a gas is irradiated with a light beam to ionize it, or a gas is irradiated with a light beam to generate plasma. can be applied to sputtering and ion blating methods. The irradiation of the substrate with light has exactly the same effect as the CVD method, and in particular, the effect of increasing the temperature improves crystallinity and stability.

本発明において照射する光線の波長は、気体と基体の種
類によって異なるが0.1〜20μmの範囲の内から選
ばれる一定の波長のものである。
The wavelength of the light beam irradiated in the present invention varies depending on the type of gas and substrate, but is a certain wavelength selected from within the range of 0.1 to 20 μm.

即ち、各種の気体にはそれぞれに好適な波長値が存在す
るので、気体の種類に応じてそれらの一定波長値の光線
を照射するのであり、例えば気体がメタン(CH,)の
場合に好適な光線は、(1)0.18−0.23μ【n
、(2)1.2−1.4μm、(3)1.4−2.0μ
+n、(4)3.3〜3.6μmの44である。
In other words, each type of gas has a suitable wavelength value, so a light beam with a certain wavelength value is irradiated depending on the type of gas. For example, when the gas is methane (CH,), a suitable wavelength value is used. The light ray is (1) 0.18-0.23μ[n
, (2) 1.2-1.4μm, (3) 1.4-2.0μm
+n, (4) 44 of 3.3 to 3.6 μm.

表1に各種気体とそれに対応する光(レーザー光)波長
を列記する。
Table 1 lists various gases and their corresponding light (laser light) wavelengths.

したがって、本発明でいう「一定の波長」の意義は、例
えば2.1μmの波長というような一点の値の波長のみ
を意味するのではなく、0゜1〜20μ…という本発明
要旨の全域範囲の中から選ばれると、一つのピークとな
り得るような極めて限られた範囲の波長域、例えば0.
90〜0.97μm、3.0〜4,0μmのごとき狭小
範囲の波長域のものをら意味するのである。
Therefore, the meaning of "a certain wavelength" in the present invention does not mean only a wavelength at a single point, such as a wavelength of 2.1 μm, but the entire range of 0°1 to 20 μm, which is the gist of the present invention. When selected from among, a very limited range of wavelengths that can form a single peak, for example 0.
This refers to wavelengths in narrow ranges such as 90 to 0.97 μm and 3.0 to 4.0 μm.

本発明では0.1μm未満の光線は除外しているが、そ
の理由は、現在はそれが得られ難く、工業的に価値が低
いためである。しかし将来、その光源が得られ易くなれ
ば、0.1μm以下の波長をもつ光も使用できると考え
られる。
In the present invention, light beams with a diameter of less than 0.1 μm are excluded because they are currently difficult to obtain and have low industrial value. However, if it becomes easier to obtain such a light source in the future, it will be possible to use light with a wavelength of 0.1 μm or less.

また、20μmを越える光線を除外したの理由は、そう
した光線ではそのエネルギーが0.06ev以下となり
、効果が低くなってしまうためである。
Furthermore, the reason why light rays exceeding 20 μm were excluded is that such light rays have energy of 0.06 ev or less, and thus are less effective.

本発明において使用する気体については、基本的には、
炭素を含む気体であって0.1〜20μ翔の光を吸収す
るものであれば良い。実際には炭化水素、ハロゲン化炭
素、有機金属化合物、C01CO□、アルコール等が挙
げられるが、ハロゲン化炭素は副産物として塩酸や7ツ
酸などの強酸を生ずるために装置及び排気系が複雑とな
り、また、有機金属化合物では金属が膜中に混入して高
純度のダイアモンド膜とはならない。CO,CO2,ア
ルコールを用いた場合は膜中に酸素が混入し易く、やは
り高純度膜とはならない。
The gases used in the present invention are basically as follows:
Any gas containing carbon and absorbing light of 0.1 to 20 microns may be used. In reality, hydrocarbons, halogenated carbons, organometallic compounds, C01CO□, alcohols, etc. can be mentioned, but halogenated carbons produce strong acids such as hydrochloric acid and hexacid as by-products, which complicates equipment and exhaust systems. Furthermore, in the case of an organometallic compound, metal is mixed into the film, and a highly pure diamond film cannot be obtained. When CO, CO2, or alcohol is used, oxygen is likely to be mixed into the film, and a highly pure film cannot be obtained.

しかし、炭化水素は光吸収データも豊富で取り扱いやす
(好適である。中でもSP3結合から成る飽和炭化水素
はダイヤモンドへの転換効率が良く、特にメタン(CH
、)が好ましい。
However, hydrocarbons have abundant optical absorption data and are easy to handle (suitable).Among them, saturated hydrocarbons consisting of SP3 bonds have a high conversion efficiency into diamond, especially methane (CH
, ) is preferred.

基体温度については、室A〜500“Cにおいては非晶
質ダイヤモンドが、500〜1100°Cで結晶質ダイ
ヤモンドが得られるので、必要に応じて望みの特性のダ
イアモンド膜の生成温度条件下で行えばよい。
Regarding the substrate temperature, amorphous diamond can be obtained in chamber A to 500°C, and crystalline diamond can be obtained in chamber A to 1100°C. That's fine.

(実施例) 例1: 窒化珪素、炭化珪素、石英、珪素及びモリブデンの各材
質の基板を用意し、それらの基体表面にダイアモンド膜
を以下の条件でCVD法によって形成させた。
(Examples) Example 1: Substrates made of silicon nitride, silicon carbide, quartz, silicon, and molybdenum were prepared, and diamond films were formed on the surfaces of these substrates by CVD under the following conditions.

照射光:レーザー光 波長1.32μm、出力111I
温度 :800°C 反応気体と供給量:メタン−水素(CI(、/1(2=
 6/1000) 15cc/+in 圧力 : I Torr 反応時間:1時間 本例では、レーザー光の照射は基体へは行わず、基体表
面との間隔を5〜10+11111置いて、基体表面の
全面に沿って平行状態で照射した。
Irradiation light: Laser light, wavelength 1.32μm, output 111I
Temperature: 800°C Reaction gas and supply amount: Methane-hydrogen (CI(,/1(2=
6/1000) 15cc/+in Pressure: I Torr Reaction time: 1 hour In this example, the laser beam was not irradiated onto the substrate, but was irradiated along the entire surface of the substrate with a distance of 5 to 10+11111 from the substrate surface. Irradiated in parallel.

SEM(走査型電子顕微鏡)a察及びX線回折結果、各
基体上には4μmの厚さのダイアモンド膜が均一に析出
していることが確認された。
As a result of SEM (scanning electron microscopy) and X-ray diffraction, it was confirmed that a diamond film with a thickness of 4 μm was uniformly deposited on each substrate.

例2: 例1と同じ材質の各材質基板の表面に、ダイアモンド膜
を以下の条件でCVD法によって形成した。
Example 2: A diamond film was formed on the surface of each substrate made of the same material as in Example 1 by CVD under the following conditions.

照射光:[1ル−ザー光 波ffc0.193μm出力
30W[2]       波i 10.6μm 出力
IKH温度 :800°C 反応気体と供給量:メタン20cc/111in、水素
50cc/mn 圧力 : I Torr 反応時間:2時間 本例では、レーザー光[11の照射を例1のものと同様
の方向、間隔で行う一方、レーザー光[21の照射を基
体表面へ垂直に当てて、レーザー光[11とレーザー光
[2]とを交差するようにして実施した。
Irradiation light: [1 Loser light Wave ffc 0.193 μm output 30 W [2] Wave i 10.6 μm Output IKH temperature: 800°C Reaction gas and supply amount: Methane 20 cc/111 in, hydrogen 50 cc/mn Pressure: I Torr Reaction Time: 2 hours In this example, the irradiation of the laser beam [11 was performed in the same direction and interval as in Example 1, while the irradiation of the laser beam [21 was applied perpendicularly to the substrate surface. This was carried out by intersecting the light [2].

SEM観察及びX線回折の結果、各基体表面上には80
μmの厚さのダイアモンドが析出してりすることが確認
された。
As a result of SEM observation and X-ray diffraction, 80
It was confirmed that diamonds with a thickness of μm were precipitated.

なお、本例適用の変形として、レーザー光[2]の照射
を基体表面全面には行わず、直径約10u++++のリ
ング(線の太さ10μ)を描くようにして(線輪パター
ンとして)基体表面へ照射したところ、基体表面の照射
パターン部分のみにダイアモンド膜が形成された。
As a modification of this example, the laser beam [2] is not applied to the entire surface of the substrate, but is applied to the substrate surface by drawing a ring (line thickness: 10μ) with a diameter of approximately 10u++++ (as a ring pattern). When the substrate was irradiated, a diamond film was formed only on the irradiated pattern portion of the substrate surface.

例3: 照射レーザー光(波長0.193μ論、出力30W )
を基体表面に対して、45°の傾斜角をもって投光した
ことの他は、例1と同じである。
Example 3: Irradiation laser light (wavelength 0.193μ theory, output 30W)
The procedure was the same as in Example 1 except that the light was projected at an inclination angle of 45° with respect to the substrate surface.

例4: 照射光に、重水素ランプ光又は低圧水銀ランプ(184
、9n +n及び253.7nIIlに発光ピークあり
)を使用し、反応気体をメタン5cc/+in、水素1
00cc/min、温度850°C1反応時間2時間の
条件下で行った結果、基体上に2μ111のダイアモン
ドが形成された。
Example 4: Deuterium lamp light or low pressure mercury lamp (184
, 9n +n and 253.7nIIl), and the reaction gases were methane 5cc/+in, hydrogen 1
As a result, a diamond of 2μ111 was formed on the substrate.

その他の例として、電子ビームによりグラファイトを水
素雰囲気中で蒸発させ、0.193μmのArFエキシ
マレーザ−を照射して基体上にダイアモンド膜を形成さ
せることや、水素雰囲気中でグラファイトをターデッド
にして高周波を印加してスパッタを行い、照射レーザー
光は波長0゜193μlのArFレーザーと10.6μ
lのCo2レーザーとを同時に基体へ照射し、照射した
個所のみにダイアモンド膜を形成することを実施した。
Other examples include evaporating graphite with an electron beam in a hydrogen atmosphere and irradiating it with a 0.193 μm ArF excimer laser to form a diamond film on the substrate, or terminating graphite in a hydrogen atmosphere and applying high frequency Sputtering is performed by applying a
The substrate was simultaneously irradiated with 1 of Co2 laser, and a diamond film was formed only in the irradiated areas.

(発明の効果) 本発明においては、0.1〜20μmの範囲の波長から
選択される気体の種類に応じて特定の波長の光線を気体
に照射することによって、sp’結合の炭素を効果的に
生成させながら、基体上にダイアモンド膜を形成させる
ので、従来法に比し基体上にsp、sp2によるグラフ
ァイト等を生成することが非常に少な(、よって短い時
間で良質のダイアモンドを基体表面上に形成することが
できるのである。
(Effects of the Invention) In the present invention, sp'-bonded carbon can be effectively removed by irradiating the gas with a light beam of a specific wavelength selected from the wavelength range of 0.1 to 20 μm depending on the type of gas. Since a diamond film is formed on the substrate while the diamond film is generated on the substrate, there is very little generation of graphite, etc. due to sp and sp2 on the substrate compared to the conventional method. It can be formed into

そしてまた、レーザー光等を基体上の特定個所にある種
のパターンを描くようにして照射した場合は、そのパタ
ーンどうりに基体表面上にダイアモンド膜を形成するこ
とができるという特徴があるので、該技術の各種1分野
への応用も大いに期待される。
Another characteristic is that when a laser beam or the like is irradiated in a manner that draws a certain pattern on a specific location on a substrate, a diamond film can be formed on the surface of the substrate in accordance with the pattern. Application of this technology to various fields is also highly anticipated.

Claims (7)

【特許請求の範囲】[Claims] (1)気相成長法により基体上にダイアモンド層を形成
するダイアモンドの合成法において、0.1〜20μm
の範囲の波長から選ばれる一定波長の光線を照射しなが
らそれを行うことを特徴とするダイアモンドの合成法。
(1) In a diamond synthesis method in which a diamond layer is formed on a substrate by vapor phase growth,
A method of synthesizing diamonds, which is characterized by performing this process while irradiating light with a certain wavelength selected from a wavelength range of .
(2)光線を反応気体に照射する特許請求の範囲第1項
に記載のダイアモンドの合成法。
(2) A method for synthesizing diamond according to claim 1, in which a reaction gas is irradiated with light.
(3)光線を蒸発原料に照射する特許請求の範囲第1項
記載のダイアモンドの合成法。
(3) The method for synthesizing diamonds according to claim 1, wherein the evaporated raw material is irradiated with light.
(4)光線を基体に照射する特許請求の範囲第1項記載
のダイアモンドの合成法。
(4) A method for synthesizing diamonds according to claim 1, wherein a light beam is irradiated onto a substrate.
(5)光線を反応気体及び基体に照射する特許請求の範
囲第1項記載のダイアモンドの合成法。
(5) A method for synthesizing diamonds according to claim 1, wherein a light beam is irradiated onto a reaction gas and a substrate.
(6)炭化水素ガスをダイアモンド原料とする特許請求
の範囲第1項ないし第5項のいずれかに記載のダイアモ
ンドの合成法。
(6) A method for synthesizing diamonds according to any one of claims 1 to 5, using hydrocarbon gas as a raw material for diamonds.
(7)水素を雰囲気ガスに用いる特許請求の範囲第1項
ないし第6項記載のダイアモンドの合成法。
(7) A method for synthesizing diamonds according to any one of claims 1 to 6, in which hydrogen is used as an atmospheric gas.
JP5936185A 1985-03-26 1985-03-26 Method for synthesizing diamond Pending JPS61221371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5936185A JPS61221371A (en) 1985-03-26 1985-03-26 Method for synthesizing diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5936185A JPS61221371A (en) 1985-03-26 1985-03-26 Method for synthesizing diamond

Publications (1)

Publication Number Publication Date
JPS61221371A true JPS61221371A (en) 1986-10-01

Family

ID=13111049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5936185A Pending JPS61221371A (en) 1985-03-26 1985-03-26 Method for synthesizing diamond

Country Status (1)

Country Link
JP (1) JPS61221371A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534275A (en) * 2010-07-30 2013-09-02 ディアロテック Method of synthesizing materials, in particular diamond, by chemical vapor deposition and apparatus for applying the method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189625A (en) * 1985-02-18 1986-08-23 Canon Inc Formation of deposited film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189625A (en) * 1985-02-18 1986-08-23 Canon Inc Formation of deposited film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534275A (en) * 2010-07-30 2013-09-02 ディアロテック Method of synthesizing materials, in particular diamond, by chemical vapor deposition and apparatus for applying the method

Similar Documents

Publication Publication Date Title
Deshpandey et al. Diamond and diamondlike films: Deposition processes and properties
US5462776A (en) Conversion of fullerenes to diamonds
CA2018886A1 (en) Process for making diamond, doped diamond, diamond-cubic boron nitride composite films at low temperature
CA2100132C (en) Method of producing synthetic diamond
JPH06316402A (en) Production of hard boron nitride by photoirradiation-assisted plasma cvd
JPS61221371A (en) Method for synthesizing diamond
JPH059513B2 (en)
JP3082979B2 (en) Method for forming a-DLC-Si film
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPH0518799B2 (en)
JP3898622B2 (en) Carbon film forming method and apparatus, and carbon film and product coated with the carbon film
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPH04238897A (en) Method for forming diamond film
JPH01298095A (en) Production of diamondlike carbon film
JPS61201694A (en) Vapor phase synthesis method for diamond
JPH04119982A (en) Production of boron nitride film
JPS63107899A (en) Formation of thin film
JPH09118976A (en) Manufacture of diamond like carbon thin film and dissimilar atom substituted diamond like carbon thin film
JPS63297299A (en) Method for vapor synthesis of diamond
JPS63134662A (en) Method for synthesizing high hardness boron nitride
JPH1087395A (en) Production of high quality thin carbon film in diamond form
JPS60178622A (en) Manufacture of semiconductor device
JPH04209797A (en) Synthesis of diamond
JPH05271945A (en) Formation of thin nitride film
JPH0518800B2 (en)