JPS61219961A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS61219961A
JPS61219961A JP6116485A JP6116485A JPS61219961A JP S61219961 A JPS61219961 A JP S61219961A JP 6116485 A JP6116485 A JP 6116485A JP 6116485 A JP6116485 A JP 6116485A JP S61219961 A JPS61219961 A JP S61219961A
Authority
JP
Japan
Prior art keywords
layer
surface layer
photoreceptor
amorphous carbon
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6116485A
Other languages
Japanese (ja)
Inventor
Toyoki Kazama
風間 豊喜
Kenichi Hara
健一 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6116485A priority Critical patent/JPS61219961A/en
Priority to DE19863610076 priority patent/DE3610076A1/en
Publication of JPS61219961A publication Critical patent/JPS61219961A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08285Carbon-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To prevent deterioration for a long period of time and to improve an image and photosensitivity by forming a layer made of a specified amorphous carbon hydride as the surface layer of an electrophotographic sensitive body. CONSTITUTION:The photosensitive layer 120 is formed on a conductive substrate 110, and the surface layer 130 made of amorphous carbon hydride contg. 10-40atom% H and having a thickness of 0.005-1mum and a ratio alpha1/alpha2 of absorption coefft. at 2,920cm<-1> alpha1 to that at 2,960cm<-1> alpha2 of >=0.8 in IR absorp tion spectra is formed on the photosensitive layer 120 to prepare the electrophotographic sensitive body. The photosensitive layer 120 may be divided into a blocking layer 121, a photoconductive layer 122, and a buffer layer 123. The presence of the surface layer made of the specified amorphous carbon hydride on the surface of the amorphous silicon photosensitive layer permits the photosensitive body to be improved in characteristics and made insusceptible of circumstantial staining, and to be enhanced in humidity resistance and print ing resistance.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明はアモルファスシリコン系の感光層を有する電子
写真感光体に関するものである。
The present invention relates to an electrophotographic photoreceptor having an amorphous silicon-based photosensitive layer.

【従来技術とその問題点】[Prior art and its problems]

従来、電子写真感光体として例えばアモルファスSe、
またはアモルファスSaにAs、Te。 sbなどの不純物をドープした光導電性材料を用いた感
光体、あるいはZnOやCdSなどの光導電性材料を樹
脂バインダーに分散させて用いた感光体などが使用され
ている。しかしながら、これらの感光体は耐熱性、環境
汚染性1機械的強度の点で問題がある。 近年、光導電性材料としてアモルファスシリコン(a−
5i)を用いることによって、これら従来の電子写真感
光体の欠点を解決する技術が提案されている。蒸着ある
いはスパッタリングによって作製されたa−3tは暗所
での比抵抗が10’Qcm写真感光体用の光導電性材料
としては望ましくない、このようなa−3iでは、5i
−3i結合が切れた、いわゆるダングリングボンドが生
成し、この欠陥に起因してエネルギーギャップ内に多く
の局在準位が存在する。このために熱励起担体のホッピ
ング伝導が生じて暗比抵抗が小さくなり、また光励起担
体が局在準位に捕獲されるために光導電性が悪くなって
いる。 これに対してシランガス(SiH4)のグロー放電分解
または光CVDによって作製した水素化アモルファスシ
リコン(a−S i  (H) )では、上記欠陥を水
素原子(H)で捕獲し、StにHを結合させることによ
ってダングリングボンドの数を大幅に低減できるので光
導電性が極めて良好になり、p型およびn型の価電子制
御も可能となったが、暗比抵抗値は高々10@〜1G’
Ω備であって電子写真感光体として充分なIQIIΩ1
以上の暗比抵抗値に対してまだ低い。 従ってこのようなa−31(H)からなる感光体は表面
電位の暗減衰速度が大きく初期帯電位が低い。 そこで、このようなa−3i(H)に電荷保持能を付与
するため、はう素を適量ドープすることにより暗抵抗を
101!Ω備以上まで高めることができ、カールソン方
式による複写プロセスに適用することを可能にしている
。 このようなa−Si(H)を表面とする感光体は初期的
には良好な画像が得られるものの長期間大気中あるいは
高温中に保存しておいた後、画像複写した場合しばしば
画像不良を発生することが判明している。また、多数回
複写プロセスを経験するとしだいに画像ぼけを生じてく
ることもわかっている。このような劣化した感光体は特
に高温中において、画面ぼけを発生しやすく、複写回数
が増すと画像ぼけを生じ始める臨界湿度はしだいに下が
る傾向があることが確かめられている。 上述のごとく、a−3i(H)を表面とする感光体は長
期にわたって大気や湿気にさらされることによりあるい
は複写プロセスにおけるコロナ放電等で生成される化学
種(オゾン、窒素酸化物。 発生期酸素など)により、感光体最表面が影響を受けや
すく何らかの化学的な変質によって画像不良を発生する
ものと考えられるが、その劣化メカニズムについてはこ
れまでにまだ十分な検討はなされていない、このような
画像不良の発生を防止し耐剛性を向上するために、a−
Si  (H)感光体の表面に保護層を設けて化学的安
定化を図る方法が試みられている。 例えば、表面保護層として水素化アモルファス炭化シリ
コン(a −S i X C+−x  (H) 、  
0 < Xくl)、あるいは水素化アモルファス窒化シ
リコン(a−3i、N1−x  (H)、0<X<1)
を設けることによって感光体表面層の複写プロセスある
いは環境雰囲気による劣化を防ぐ方法が知られている(
特開昭57−115559号公報)、シかし、表面保護
層中の炭素濃度あるいは窒素濃度を最適な値に選べば耐
剛性をかなり改良することができるが、高湿度雰囲気中
(R880%以上)での耐湿性を維持することができず
、数万枚の複写プ発生し、これらの表面保護層を付与し
ても、耐剛性、耐湿性を大幅に向上することができない
状況にある。
Conventionally, electrophotographic photoreceptors include, for example, amorphous Se,
Or As, Te to amorphous Sa. Photoconductors using a photoconductive material doped with impurities such as sb, or photoconductors using a photoconductive material such as ZnO or CdS dispersed in a resin binder are used. However, these photoreceptors have problems in terms of heat resistance, environmental pollution resistance, and mechanical strength. In recent years, amorphous silicon (a-
5i) has been proposed to solve the drawbacks of these conventional electrophotographic photoreceptors. A-3T produced by vapor deposition or sputtering has a specific resistance in the dark of 10'Qcm, which is undesirable as a photoconductive material for photoreceptors.
A so-called dangling bond, in which the −3i bond is broken, is generated, and many localized levels exist within the energy gap due to this defect. For this reason, hopping conduction of thermally excited carriers occurs, which reduces the dark specific resistance, and photoconductivity deteriorates because photoexcited carriers are captured in localized levels. On the other hand, in hydrogenated amorphous silicon (a-S i (H)) produced by glow discharge decomposition of silane gas (SiH4) or photoCVD, the above defects are captured by hydrogen atoms (H) and H is bonded to St. By doing so, the number of dangling bonds can be significantly reduced, resulting in extremely good photoconductivity and control of p-type and n-type valence electrons, but the dark specific resistance value is at most 10@~1G'
IQIIΩ1 which is sufficient as an electrophotographic photoreceptor
It is still low compared to the above dark specific resistance value. Therefore, a photoreceptor made of such a-31(H) has a high dark decay rate of surface potential and a low initial charge potential. Therefore, in order to impart charge retention ability to such a-3i(H), the dark resistance was increased to 101! by doping an appropriate amount of boron. This makes it possible to improve the image quality to more than 100 Ω, making it possible to apply it to the Carlson method copying process. Although a photoreceptor with a surface of such a-Si(H) can initially produce good images, it often produces poor images when copied after being stored in the atmosphere or at high temperatures for a long period of time. It is known that this occurs. It has also been found that images become increasingly blurred as the copying process is repeated many times. It has been confirmed that such deteriorated photoreceptors are susceptible to screen blurring, especially at high temperatures, and that as the number of copies increases, the critical humidity at which image blurring begins to occur tends to gradually decrease. As mentioned above, photoreceptors with a-3i(H) surfaces are exposed to chemical species (ozone, nitrogen oxides, nascent oxygen, etc.) that are generated by long-term exposure to the atmosphere or moisture or by corona discharge during the copying process. It is thought that the outermost surface of the photoreceptor is susceptible to some kind of chemical deterioration resulting in image defects, but the mechanism of this deterioration has not yet been fully investigated. In order to prevent image defects and improve rigidity, a-
Attempts have been made to provide chemical stabilization by providing a protective layer on the surface of the Si (H) photoreceptor. For example, hydrogenated amorphous silicon carbide (a-SiXC+-x(H),
0 < Xl) or hydrogenated amorphous silicon nitride (a-3i, N1-x (H), 0<X<1)
A known method is to prevent deterioration of the photoreceptor surface layer due to the copying process or environmental atmosphere by providing a
JP-A-57-115559), stiffness can be considerably improved by selecting the optimum carbon concentration or nitrogen concentration in the surface protective layer; ), tens of thousands of copies are generated, and even if these surface protective layers are applied, the rigidity and moisture resistance cannot be significantly improved.

【発明の目的】[Purpose of the invention]

本発明の目的は、前述の欠点を除去して、長期保存およ
び繰り返し使用に際しても劣化現象を起こさず、高温雰
囲気中においても画像不良などの特性の低下のない、感
光体としての特性が常時安定していてほとんど使用環境
に制限を受けない耐久性、耐剛性、耐湿性に優れたa−
Si系感光体を提供することにある。 さらに、本発明の他の目的は、光感度が高く。 分光感度も可視域全般にわたっている感光体を提供する
ことである。 さらに、本発明の他の目的は、疲労特性に優れかつ比較
的残留電位の低い感光体を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, and to provide a photoreceptor whose characteristics are always stable, without deterioration phenomena even during long-term storage and repeated use, and without deterioration of characteristics such as image defects even in high-temperature atmospheres. The a-
An object of the present invention is to provide a Si-based photoreceptor. Furthermore, another object of the present invention is to have high photosensitivity. It is an object of the present invention to provide a photoreceptor whose spectral sensitivity also extends over the entire visible range. Furthermore, another object of the present invention is to provide a photoreceptor with excellent fatigue properties and relatively low residual potential.

【発明の要点】[Key points of the invention]

本発明の感光体は以上の目的を達成するために、層、こ
の感光層上に形成された水素を10〜40原子%含有す
る゛水素化アモルファス炭素(a−C(H))により表
面層との積層構造からなる。この感光体によれば、a−
3i系悪感光によって光感度、帯電性能を発揮するとと
もに、a−C(H)表面層によって耐刷性、耐湿性、耐
保存性、感光体特性の安定性が確保できる。
In order to achieve the above object, the photoreceptor of the present invention has a surface layer made of hydrogenated amorphous carbon (a-C(H)) containing 10 to 40 at% of hydrogen formed on the photoreceptor layer. It consists of a laminated structure. According to this photoreceptor, a-
The 3i-based photosensitive material exhibits photosensitivity and charging performance, and the a-C(H) surface layer ensures printing durability, moisture resistance, storage resistance, and stability of photoreceptor characteristics.

【発明の実施例】[Embodiments of the invention]

以下本発明の感光体について図面を参照しながら詳細に
説明する0本発明による感光体の一例は第1図に示した
如く、導電性基体110上に感光層120と表面層13
0が積層された構造である。 ここで導電性基体110は円筒状、シート状いずれでも
良く、材質的にはアルミニウム、ステンレスなとの金属
、あるいはガラス、樹脂上に導電処理をほどさこしたも
のでも良い。 感光層120は、材料的には水素化アモルファスシリコ
ン(a−3i(H))水素化弗素化アモルファスシリコ
ン(a−3l  (F、 H) ) 、水素化アモルフ
ァス炭化シリコン(a  St+−xcw(H)、(0
<X< 1))、水素化弗素化アモルファス炭化シリコ
ン(a−S i+−、C,(F、H)+(0<X< 1
))、水素化アモルファス窒化シリコン(a  S i
Nx  (H) 、  (0<X<4/3 ) )。 水素化弗素化アモルファス窒化シリコン(a −3iN
X  (F、H)、(0<X<4/3))、水素化アモ
ルファス酸化シリコン(a −S iOx  (H) 
+(0<X<2))、水素化弗素化アモルファス酸化シ
リコン(a  Sing  (F、H)、(0<X<2
))、のうちの少なくとも一つを用いた層でである。膜
厚は5〜60μmが実用的である。感光層120の中に
は必要に応じてブロッキング層121゜光導電層122
.バッファ層123等の機能分離層を設けることが有効
である。ブロッキング層121の目的は、導電性基体1
1Oからの電荷の注入を阻止することである。材料的に
は、AlzOs。 AIN、Sin、5loz 、a−3l+−* Cx 
 (F。 H)(0<X<1)、a−SiN、(H)(0<X<4
/3 ) 、  a−C(H) 、弗素化アモルファス
炭素(a−C(F) ) 、周期律表■族、V族の元素
などをドープしたa−C(H) 、  a−C(F)。 ■族、V族の元素などをドープしたa−3i(H)。 などを使用できる。膜厚は、18m以下と薄い方が良い
。 光導電層122は対象とする光の吸収能に優れかつ光導
電率の大きい材料が好ましく、a−3t(H) 、 a
−3i(F、H) *  a−5t l−X Cl1(
H)  (0<X<0.3 )、a  S iNx  
(H)(0<X<0.2 ) 、  a  S iox
  (H)  (0<X<0.1 ) 、  a  S
 i+−x Gex(H)などや、これらに周期律表■
族、■族の元素などをドープした材料が好ましい、膜厚
は3μ−以上60μ−以下が実用上好ましい、バッファ
層123の目的はより基体側の層、例えば光導電層12
2と表面層130との材料的異質性を緩和することであ
る。材料的には、a−3it−x CX  (H)(0
<’X<1)。 a−S i+−x Cs+  (F、H)(0<X<1
)、a−SiNm  (H)(0<X<4/3)、a 
 5iOx(H)(0<X<2)、’ a  5IOx
  (F、H)(0<X< 2)などを使用できる。 バッファ層123の膜厚は1分光感度、残留電位、隣接
する層との電気的整合性等の兼ね合いで決まるが、1μ
鋼以下が望ましい。 次に表面層は、水素と炭素を含むアモルファス層(a−
C(H) )であって、基本的にX線あるいは電子線に
よる回折像が明確でない膜であり、例えば一部に結晶部
を含んだとしてもその比率は低いことを意味している。 a−C(H)表面層中の水素濃度は成膜条件に依存して
1〜60原子%と変化するが、この成膜条件、すなわち
原料ガス、放電パワー、ガス流量。 ガス圧、基体温度などを適切に選定して、水素濃度を1
0〜40原子%、好適には15%36原子%に制御する
ことが望ましい、さらにまた、a−C表面層の光学的エ
ネルギーギャップEgは2.2 eV以上3.2eV以
下が好ましく、その屈折率は1.5以上2.6以下が好
ましく、比抵抗は10口〜IQI!1Ω値が好ましく、
密度は1 、3g/ cd以上が好適である。 本発明者等の知見によれば、a−C(H)表面層中に含
有される水素原子と炭素原子との結合形態は炭素原子同
志の結合状態を反映しており、形成されたa−C(H)
層が電子写真感光体の表面層として通用され得るか否か
を左右する大きな要因の一つであって重要であることが
判明している。 炭素原子同志の結合状態としてはダイヤモンド結合(四
配位)、グラファイト結合(三配位)などがある。グラ
ファイト結合や炭素と水素からなるポリマー状結合(C
H2)−を主体とするa −C(H)膜は耐薬品性に劣
り、また機械的強度にも劣ることが知られており、他方
、ダイアモンド結合を主体とするa−C(H)膜は耐薬
品性及び機械的強度に著しくすぐれていることはすでに
報告されている。 本発明者等はこの点に鑑みa−C(H)の赤外線吸収ス
ペクトルとその耐薬品性及び機械的強度について鋭意検
討を重ねた結果、a−C(H)膜の赤外線吸収スペクト
ルの中、特定の吸収係数の比とa−C(H)膜の耐薬品
性及び機械的強度との間に特有の関係の存在することを
見出し、本発明を行うに敗ったのである。 本発明において、形成されるa−C(H)表面層が電子
写真感光体の表面保護層として十分適用させ得るために
、a−C(H)表面層の赤外線吸収スペクトル2920
cm−’における吸収係数α1と2960cm−’にお
ける吸収係数αtの比αt/α1が0.8以上とされる
のが望ましい、a−C(H)層の吸収スペクトルの比が
上記の数値範囲に限定される理由の理論的裏付は今のと
ころ明確にされておらず推論の域を出ないが、次のよう
に考える。 すなわち同じ四配位の結合であっても、2960cm−
’に吸収をもつCHs型は機械的、化学的に安定である
が、2920cm−’近辺に吸収をもっCH,型はポリ
マー的に成り易い可能性がある。数多くの実験結果から
、上記数値範囲外の吸収係数比では耐薬品性1機械的強
度に劣ることが認められており、該吸収係数比が上記範
囲内にあることが必要条件であることが裏付けられてい
る。 炭素未結合手の安定化の手段としては水素のみでなく、
弗素、酸素、窒素によっても可能である。 次に本感光体の製造方法について第2図に概念的系統図
として例示するような製造装置により説明する。真空槽
210の中にアルミニウム円筒からなる導電性基体22
0を基体保持部221に装着し、真空槽210内の圧力
を10−’Torrになるように排気ポンプ240によ
り排気バルブ241を介して排気する。基体220の温
度を所定温度、例えば50〜350℃になるように保持
部221内のヒータ230および対向電極252のヒー
タ231により加熱する。保持部221と導電性基体2
20は周方向の膜均一性を出すために回転する。 次に前述のような各層を成膜するに必要な各種の原料ガ
スの圧力容器291〜295の中から成膜に必要なガス
の圧力容器バルブ、例えば281を開け、流量調節計2
71を通し、ストップバルブ261を開けて、真空槽2
10の中に供給する。 他のガスについても同様である1次に、槽内圧力を所定
の圧力、例えば0.001〜5 Torrに調節後、高
周波(RF)電源250から高周波(13,56MH,
)電力を絶縁材251を介して対向電極252に供給し
、252と基体220の間にグロー放電を発生させて成
膜を行う。 第2図には圧力容器およびそれに付属する装置は5セン
ト示されているが、このセント数は使用するガスの種類
に応じて適宜増減されてよい。 a−C(H)表面層の作製条件としては、基体温度は0
〜200℃好適には50〜150℃が望ましく、単位ガ
ス量当たりのガスの分解に要するエネルギーは300J
/cc〜20000J/ccが望ましい、ガス圧は0.
001〜0.5 Torr、好適には0.001〜0.
2 Torrが望ましい、成膜時には、外部からバイア
ス電圧を加えることも膜質の制御上有効である。又RF
放電の場合は自然にバイアスが発生してくる。これを通
常は自己バイアスと呼んでいるが、このようなバイ77
1.電圧は+100〜500 V、  −100〜−1
500Vが適している。 次に、具体的な実施例について述べる。 実施例 l。 トリクロルエチレンで脱脂洗浄したアルミニウムの円筒
基体220を第2図の製造装置の真空槽210の保持部
221に装着し、次の条件で厚さO02μ−のブロッキ
ング層121を形成した。 S i H4(100χ)        流量  2
50cc/分B z Hh (5000ppm、 Hz
ベース)流量  20cc/分ガス圧        
      0.5 TorrRF電力       
       5eV基本温度           
   200℃成膜時間              
10分さらにこの上に、次の条件で光導電層122を厚
さ25μmに形成した。 S i H,(100χ)        流量  2
00cc/分Bt HhC20ppm*H*ベース) 
流量  10cc/分ガス圧            
  1.2 Torr基本温度           
   200℃RF電力              
300W成膜時間              3時間
さらにこの上に、次の条件で、バッファ層123を厚さ
0.1/J磨に形成した。 s l H4(100χ)        流量  1
00cc/分CH、(100χ)        流量
  80cc/分B t Hh (2000ppm、 
Hzベース)流量  15cc/分ガス圧      
        1.OTorrRF電力      
        20W基本温度          
    200℃成膜時間             
 2分さらにこの上に、次の条件で、表面層130を厚
さ0.1 μ翔に形成した。 プロパンC,Hl(100χ)   流量  20cc
/分ガス圧              Q、l To
rrRF電力              200W基
本温度              100℃成膜時間
              5分基本温度は赤外線温
度計と熱電対により測定した。 以上のようにして形成した感光体を試料1とする。試料
lの光導電層122のエネルギーギャップは1.8eV
である。また、バッファ層123の組成はa −S l
 o、q Co、s  (H)で、そのエネルギーギャ
ップは2.1eVである。さらに、表面層130のエネ
ルギーギャップは2.7eVであり、膜の密度は1.7
g10J、屈折率は2.1+K n o o p硬度は
2000kgf/m”である、さらに、熱放出から測定
した水素濃度は35原子%であった。 この試料lの感光体をカールソン方式の普通紙複写機に
装着し、5万枚のコピーを実施したが、解像度の良い極
めて鮮明な画像かえられた。また、5万枚コピー実施後
のコピーテストにおいて温度35℃、相対湿度85%の
雰囲気におけるコピーにおいても画像は鮮明であった。 比較のために実施例1に準じて、ただ表面層だけがない
感光体を作製し、その比較例の感光体について同様に5
万枚コピー実施後コピーテストを行ったが、温度35℃
、相対湿度60%の雰囲気におけるコピーですでに画像
分解能が低下し画像ぼけが生じた0表面層を形成するこ
とにより耐湿性が大幅に向上することが判る。 表面層130の形成のためには必ずしもC5Haを用い
る必要はな(、各種の炭化水素、例えばCH4,Ct 
Ha、Ca H+o、Ct H4,Ct Ht。 C4H6などのガス、およびこれらのガスと水素や酸素
との混合ガスの使用が可能である。 実施例 2゜ a−C(H)表面層の炭素と水素の結合状態は感光体の
耐湿性、耐剛性に大きく影響する。この結合状態は赤外
線の吸収スペクトル、反射スペクトルにより判別できる
が、ここでは赤外線吸収スペクトルの例を第3図に示す
、スペクトルにおいて、2900c11−’近傍で主に
観測されるピークは2860(!11−’ 、 292
0cm −’ 、 29603−’の3つであるが、2
9200m−’と2960C11−’のピークが強度が
強く、結合状態の判定に適している。 2920cm−
’における吸収係数α1と2960cm−’における吸
収係数α2との比α!/α、と耐湿性、耐刷性との関連
を調べた。 実施例1の製法に準じてバッファ層123までを形成し
、その上へのa−C(H)表面層130の形成にあたっ
て、ガスの種類、ガス圧、基本温度を変えて6種類の感
光体を作製し、α8/α、の値と耐湿性、耐剛性との関
係を調べた。 これら感光体のα8/α8の値は第1表に示すとおり0
.72から1.5と変化していたが実施例1に準じて行
った5万枚のコピーにおいてはすべての感光体について
良好な画像かえられ、耐剛性は良好であった、耐湿性は
同じ〈実施例1と同様に、5万枚のコピー実施後、温度
35℃、相対湿度85冗の雰囲気でコピーテストを行っ
たがその結果を第1表に示す。 第1表 O印は良好な鮮明な画像かえられたことを示し、Δ印は
若干の画像不良が生じたことを示し、x印は極端な画像
不良が発生したことを示す。 α意/α1の値が0.8以上であると良好な耐湿性。 耐刷性の感光体かえられることが判る。 実施例 3゜ 感光体の感光層上に表面層を設ける構成の場合、密着性
が問題となる。また、感光体特性の面では露光しても表
面電位が消失しにくくて、残留電位が大きくなるという
欠陥が生じることがある。 そこで、a−C(H)表面層の水素濃度を変えてバッフ
ァ層との密着性を調べた。さらに残留電位との関係も調
査した。 実施例1の製法に準じてバッファ層123までを形成し
、その上へのa−C(H)表面層130の形成にあたっ
て、ガスの種類、ガス流量、ガス圧、RF電力、基体温
度などを変えてa−C(H)膜中の水素濃度の異なる感
光体を8種類作製した。 これらの試料について、a−C(H)表面層と。 バッファ層の密着性と表面層中の水素濃度との関係およ
び残留電位を調べた結果を第2表に示す。 ここでO印は密着性に優れていたことを示し、x印は劣
ることを示す。 第2表 水素濃度40原子%前後での膜の密着性の変化は極めて
急峻である。水素濃度が高いことは、密着性を増す結合
手が減少することと考えられるので好ましくない。 また、水素濃度が低いとダイヤモンド的な膜に近づくこ
とからエネルギーギャップEgが増加し残留電位が上昇
する。一方、水素濃度が高いときにはa−C(H)膜は
ポリマー状になり導電性が悪化し残留電位が増大し好ま
しくない、膜の密着性、感光体特性の残留電位の値から
みて、a−C(H)表面層中の水素濃度はlO〜40原
子%が好ましく、さらに好適には15〜36原子%であ
る。 実施例 4゜ 実施例1に準じた方法でバッファ層123までを形成し
、その上にa−C(H)表面層130を形成するにあた
って、成膜時間を変えて膜厚の異なる表面層とした感光
体を6種類製作した。これらの試料について、感光体特
性、耐湿性を調べた結果を第3表に示す。 第3表 残留電位は大きい程S/N比が低下するので小さい方が
好ましい、感度は半減衰露光量で示してあり、光量(l
ux−sec)が小さい程感度は高くなり好ましい、耐
湿性は温度35℃、相対湿度85%の雰囲気中での画像
複写により判定した結果であり、○印は良好な画像かえ
られたことを示し、×印は画像不良が生じたことを示す
。 以上の結果から、a−C(H)表面層の膜厚はo、oo
sμ1以上1μm以下が適している。 実施例 5゜ 感光体の表面層として、a  s 1l−X CX  
(H)(0<X<1)が知られている。そこでa−C(
H)表面層にStを禾加17た温合の取専汰の1−1−
ついて調べた。実施例1の試料lをSi無添加の試料l
とした0次にバッファ層123までは実施例1の方法に
準じて形成し、Stを含むa−C(H)表面層を例えば
次の様な条件で形成する。 C* Hb(100%)  流量      20cc
 /分S i H*(100%)  流量      
2cc/分ガス圧              0.2
 TorrRF電力              30
0 W基本温度              100℃
成膜時間              10分この条件
で、Stの添加量を例えばSiH4の流量を変えること
によって制御し、a−C(H)表面層へのStの添加量
の異なる感光体試料2〜4を作製した。これら4種類の
試料について組成比Si/Cと耐湿性の関係を調べた結
果を第4表に示す、耐湿性の評価は実施例4に準じ、温
度35℃。 相対湿度85%の雰囲気における画像複写で行った。 Δ印は若干の画像不良が発生したことを示す。 第4表 感光体の耐湿性上最表面層にsiを含有することは好ま
しくなく、純粋なCが望ましいが若干の不純物の存在は
さしつかえない、考えられる不純物としてはB、AI、
Si、P、As、C1,F。 p’ 6.N i、71.Mn、Mgなどである。 実施例 6゜ 実施例1に準じた方法で、光導電層122までを形成し
、その上にバッファ層123を設けることなしに直接a
−C(H)表面層を形成した。 a−C(H)膜の形成に際し、ガスの種類、ガス圧、基
体温度などを変えて、膜のエネルギーギャップEgの異
なるa−C(H)表面層を有する5種類の感光体を作製
した。膜厚は約0.2μ−とした。 この5種類の感光体について、画像テストを行ったとこ
ろ、第5表に示す結果かえられた。 第5表 ここで画像テストは温度25℃、相対湿度50%の雰囲
気における画像テストで0印は良好な鮮明な画像かえら
れたことを示し、Δ印は若干の画像不良が生じたことを
示し、X印は極端な画像不良が発生したことを示す。こ
の場合、相対湿度は50%と低いので、高EgeM域で
の画像不良は湿気によるものでなく、表面1i130と
光導電層122との間の材料的不整合によるものである
。この現象を解消するために、表面層130と光導電層
122との間にその中間の材料組成のバッファ層を設け
るのであるが、表から判るとおり、表面N130のEg
の値がEg≦2.4 eVであれば、必ずしもバッファ
71123は必要ではない。しかしながら製造上のばら
つきを考えると量産性の面からみであるいは、ためにも
、バッファ層を形成することが望ましい。
The photoreceptor of the present invention will be described below in detail with reference to the drawings.An example of the photoreceptor of the present invention is as shown in FIG.
0 is a stacked structure. Here, the conductive substrate 110 may be either cylindrical or sheet-like, and may be made of metal such as aluminum or stainless steel, or glass or resin subjected to conductive treatment. The photosensitive layer 120 is made of hydrogenated amorphous silicon (a-3i (H)), hydrogenated fluorinated amorphous silicon (a-3l (F, H)), or hydrogenated amorphous silicon carbide (a St+-xcw (H)). ), (0
<X< 1)), hydrogenated fluorinated amorphous silicon carbide (a-S i+-, C, (F, H) + (0<X< 1
)), hydrogenated amorphous silicon nitride (a Si
Nx (H), (0<X<4/3)). Hydrogenated fluorinated amorphous silicon nitride (a-3iN
X (F, H), (0<X<4/3)), hydrogenated amorphous silicon oxide (a-S iOx (H)
+ (0<X<2)), hydrogenated fluorinated amorphous silicon oxide (a Sing (F, H), (0<X<2
)). A practical film thickness is 5 to 60 μm. The photosensitive layer 120 includes a blocking layer 121 and a photoconductive layer 122 as necessary.
.. It is effective to provide a functional separation layer such as the buffer layer 123. The purpose of the blocking layer 121 is to
The purpose is to prevent charge injection from 1O. In terms of material, it is AlzOs. AIN, Sin, 5loz, a-3l+-*Cx
(F.H)(0<X<1), a-SiN, (H)(0<X<4
/3), a-C(H), fluorinated amorphous carbon (a-C(F)), a-C(H), a-C(F) doped with elements of Groups II and V of the periodic table, etc. ). a-3i(H) doped with group ①, group V elements, etc. etc. can be used. The thinner the film thickness is, 18 m or less, the better. The photoconductive layer 122 is preferably made of a material that has excellent absorption ability for target light and high photoconductivity; a-3t(H), a
-3i(F,H) * a-5t l-X Cl1(
H) (0<X<0.3), aSiNx
(H) (0<X<0.2), a Siox
(H) (0<X<0.1), a S
i+-x Gex (H), etc., and the periodic table■
It is preferable to use a material doped with an element of group 1 or group Ⅰ, etc., and the film thickness is practically preferable to be 3 μm or more and 60 μm or less.
2 and the surface layer 130 is alleviated. In terms of material, a-3it-x CX (H) (0
<'X<1). a-S i+-x Cs+ (F, H) (0<X<1
), a-SiNm (H) (0<X<4/3), a
5iOx (H) (0<X<2),' a 5IOx
(F, H) (0<X<2), etc. can be used. The thickness of the buffer layer 123 is determined based on factors such as 1-minute sensitivity, residual potential, and electrical consistency with adjacent layers;
Steel or lower is preferable. Next, the surface layer is an amorphous layer (a-
C(H) ), and is basically a film whose diffraction pattern by X-rays or electron beams is not clear, meaning that even if it contains some crystal parts, the proportion thereof is low. The hydrogen concentration in the a-C(H) surface layer varies from 1 to 60 atomic % depending on the film forming conditions, that is, the raw material gas, discharge power, and gas flow rate. By appropriately selecting gas pressure, substrate temperature, etc., the hydrogen concentration can be reduced to 1.
The optical energy gap Eg of the a-C surface layer is preferably 2.2 eV or more and 3.2 eV or less, and its refraction The ratio is preferably 1.5 or more and 2.6 or less, and the specific resistance is 10 to IQI! 1Ω value is preferred;
The density is preferably 1.3 g/cd or more. According to the findings of the present inventors, the bonding form between hydrogen atoms and carbon atoms contained in the a-C(H) surface layer reflects the bonding state between carbon atoms, and the formed a- C(H)
It has been found that this is one of the major factors that determines whether or not a layer can be used as a surface layer of an electrophotographic photoreceptor. Bonding states between carbon atoms include diamond bonds (tetracoordinated) and graphite bonds (tricoordinated). Graphite bonds and polymeric bonds made of carbon and hydrogen (C
It is known that a-C(H) films mainly composed of H2)- have poor chemical resistance and poor mechanical strength; on the other hand, a-C(H) films mainly composed of diamond bonds It has already been reported that this material has excellent chemical resistance and mechanical strength. In view of this, the present inventors have conducted intensive studies on the infrared absorption spectrum of a-C(H), its chemical resistance, and mechanical strength, and have found that in the infrared absorption spectrum of the a-C(H) film, It was discovered that a specific relationship exists between a specific absorption coefficient ratio and the chemical resistance and mechanical strength of the a-C(H) film, and the present invention was unsuccessful. In the present invention, in order that the a-C(H) surface layer formed can be sufficiently applied as a surface protective layer of an electrophotographic photoreceptor, the infrared absorption spectrum of the a-C(H) surface layer is 2920.
The ratio αt/α1 of the absorption coefficient α1 at cm-' and the absorption coefficient αt at 2960 cm-' is preferably 0.8 or more, and the ratio of the absorption spectrum of the a-C(H) layer is within the above numerical range. Although the theoretical basis for the reason for this limitation has not been clarified at the moment and remains at the level of speculation, we think as follows. In other words, even for the same four-coordinate bond, 2960 cm-
The CHs type having an absorption at 2920 cm-' is mechanically and chemically stable, but the CH type having an absorption near 2920 cm-' may tend to form a polymer. Numerous experimental results have shown that chemical resistance 1 mechanical strength is inferior when the absorption coefficient ratio is outside the above numerical range, and it is confirmed that the absorption coefficient ratio within the above range is a necessary condition. It is being Hydrogen is not the only means of stabilizing carbon dangling bonds.
This is also possible with fluorine, oxygen, and nitrogen. Next, a method for manufacturing the present photoreceptor will be explained using a manufacturing apparatus as illustrated as a conceptual system diagram in FIG. A conductive substrate 22 made of an aluminum cylinder is placed in a vacuum chamber 210.
0 is attached to the substrate holder 221, and the vacuum chamber 210 is evacuated via the exhaust valve 241 by the exhaust pump 240 so that the pressure within the vacuum chamber 210 becomes 10-'Torr. The temperature of the base body 220 is heated to a predetermined temperature, for example, 50 to 350° C., by the heater 230 in the holding part 221 and the heater 231 of the counter electrode 252. Holding part 221 and conductive base 2
20 rotates to achieve uniformity of the film in the circumferential direction. Next, from the pressure vessels 291 to 295 for the various raw material gases necessary for forming each layer as described above, open the pressure vessel valve, for example 281, for the gas necessary for film formation, and turn on the flow rate controller 2.
71, open the stop valve 261, and open the vacuum chamber 2.
Supply within 10. The same goes for other gases. After adjusting the pressure inside the tank to a predetermined pressure, for example, 0.001 to 5 Torr, a high frequency (13,56 MH,
) Electric power is supplied to the counter electrode 252 via the insulating material 251 to generate glow discharge between the counter electrode 252 and the base 220 to form a film. In FIG. 2, the pressure vessel and its associated equipment are shown as 5 cents, but this number may be increased or decreased as appropriate depending on the type of gas used. The conditions for producing the a-C(H) surface layer are that the substrate temperature is 0.
~200°C, preferably 50~150°C, and the energy required to decompose the gas per unit amount of gas is 300 J.
/cc to 20000J/cc is desirable, and the gas pressure is 0.
001 to 0.5 Torr, preferably 0.001 to 0.00 Torr.
2 Torr is desirable. During film formation, applying a bias voltage from the outside is also effective in controlling film quality. Also RF
In the case of discharge, a bias naturally occurs. This is usually called self-bias, but this kind of bias77
1. Voltage is +100~500V, -100~-1
500V is suitable. Next, specific examples will be described. Example l. An aluminum cylindrical substrate 220 that had been degreased and washed with trichlorethylene was attached to the holding part 221 of the vacuum chamber 210 of the manufacturing apparatus shown in FIG. 2, and a blocking layer 121 having a thickness of O02μ was formed under the following conditions. S i H4 (100χ) Flow rate 2
50cc/min B z Hh (5000ppm, Hz
Base) Flow rate 20cc/min gas pressure
0.5 TorrRF power
5eV basic temperature
200℃ film formation time
After 10 minutes, a photoconductive layer 122 was formed thereon to a thickness of 25 μm under the following conditions. S i H, (100χ) Flow rate 2
00cc/min Bt HhC20ppm*H*base)
Flow rate 10cc/min gas pressure
1.2 Torr basic temperature
200℃RF power
300W film formation time: 3 hours Further, a buffer layer 123 was formed thereon to a thickness of 0.1/J under the following conditions. s l H4 (100χ) Flow rate 1
00cc/min CH, (100χ) Flow rate 80cc/min B t Hh (2000ppm,
Hz base) Flow rate 15cc/min Gas pressure
1. OTorrRF power
20W basic temperature
200℃ film formation time
After 2 minutes, a surface layer 130 with a thickness of 0.1 μm was formed thereon under the following conditions. Propane C, Hl (100χ) flow rate 20cc
/min gas pressure Q, l To
rrRF power: 200 W Base temperature: 100° C. Film forming time: 5 minutes The base temperature was measured using an infrared thermometer and a thermocouple. The photoreceptor formed as described above is referred to as Sample 1. The energy gap of the photoconductive layer 122 of sample 1 is 1.8 eV
It is. Further, the composition of the buffer layer 123 is a −S l
o,q Co,s (H) and its energy gap is 2.1 eV. Furthermore, the energy gap of the surface layer 130 is 2.7 eV, and the density of the film is 1.7
g10J, the refractive index is 2.1+K no op hardness is 2000 kgf/m'', and the hydrogen concentration measured from heat emission is 35 atomic %. After installing it in a copying machine and making 50,000 copies, it was able to produce very clear images with good resolution.Also, in a copy test after making 50,000 copies, it was found that the image quality in an atmosphere of 35°C and relative humidity of 85% was confirmed. The image was clear even when copying.For comparison, a photoreceptor without only the surface layer was prepared according to Example 1, and the photoreceptor of the comparative example was similarly coated with 5.
A copy test was conducted after copying 10,000 copies, but the temperature was 35℃.
It can be seen that the moisture resistance is significantly improved by forming the surface layer, which already deteriorates the image resolution and causes image blur when copying in an atmosphere with a relative humidity of 60%. For forming the surface layer 130, it is not necessary to use C5Ha (various hydrocarbons, such as CH4, Ct
Ha, Ca H+o, Ct H4, Ct Ht. It is possible to use gases such as C4H6 and mixtures of these gases with hydrogen and oxygen. Example 2゜a-C(H) The bonding state of carbon and hydrogen in the surface layer greatly influences the moisture resistance and rigidity resistance of the photoreceptor. This bonding state can be determined from the infrared absorption spectrum and reflection spectrum. Here, an example of the infrared absorption spectrum is shown in Figure 3. In the spectrum, the peak mainly observed near 2900c11-' is 2860(!11- ', 292
0cm-', 29603-', but 2
The peaks at 9200m-' and 2960C11-' have strong intensities and are suitable for determining the binding state. 2920cm-
The ratio α between the absorption coefficient α1 at ' and the absorption coefficient α2 at 2960 cm-'! The relationship between /α, moisture resistance, and printing durability was investigated. Up to the buffer layer 123 was formed according to the manufacturing method of Example 1, and in forming the a-C(H) surface layer 130 thereon, six types of photoreceptors were fabricated by changing the type of gas, gas pressure, and basic temperature. was prepared, and the relationship between the value of α8/α, moisture resistance, and stiffness resistance was investigated. The α8/α8 value of these photoreceptors is 0 as shown in Table 1.
.. 72 to 1.5, but in 50,000 copies made according to Example 1, good images were obtained on all photoconductors, the rigidity was good, and the moisture resistance was the same. As in Example 1, after copying 50,000 sheets, a copy test was conducted in an atmosphere with a temperature of 35.degree. C. and a relative humidity of 85.degree. C., and the results are shown in Table 1. In Table 1, the O mark indicates that a good clear image has been obtained, the Δ mark indicates that some image defect has occurred, and the X mark indicates that extreme image defect has occurred. Good moisture resistance is achieved when the value of α/α1 is 0.8 or more. It can be seen that the photoreceptor can be changed for printing durability. Example 3 In the case of a structure in which a surface layer is provided on the photosensitive layer of a photoreceptor, adhesion becomes a problem. Furthermore, in terms of photoreceptor characteristics, the surface potential is difficult to disappear even when exposed to light, and a defect may occur in which the residual potential becomes large. Therefore, the hydrogen concentration of the a-C(H) surface layer was changed to examine its adhesion to the buffer layer. Furthermore, the relationship with residual potential was also investigated. Up to the buffer layer 123 was formed according to the manufacturing method of Example 1, and when forming the a-C(H) surface layer 130 thereon, the type of gas, gas flow rate, gas pressure, RF power, substrate temperature, etc. Eight types of photoreceptors with different hydrogen concentrations in the a-C(H) film were fabricated. For these samples, a-C(H) surface layer and. Table 2 shows the results of investigating the relationship between the adhesion of the buffer layer and the hydrogen concentration in the surface layer and the residual potential. Here, an O mark indicates excellent adhesion, and an x mark indicates poor adhesion. Table 2 The change in film adhesion is extremely steep when the hydrogen concentration is around 40 at.%. A high hydrogen concentration is undesirable because it is considered to reduce the number of bonds that increase adhesion. Furthermore, when the hydrogen concentration is low, the film approaches a diamond-like film, which increases the energy gap Eg and increases the residual potential. On the other hand, when the hydrogen concentration is high, the a-C(H) film becomes polymer-like, the conductivity deteriorates, and the residual potential increases, which is undesirable. The hydrogen concentration in the C(H) surface layer is preferably 10 to 40 atomic %, more preferably 15 to 36 atomic %. Example 4: Up to the buffer layer 123 was formed in the same manner as in Example 1, and when forming the a-C(H) surface layer 130 thereon, the film formation time was changed to form a surface layer with a different thickness. Six types of photoreceptors were manufactured. Table 3 shows the results of examining the photoreceptor characteristics and moisture resistance of these samples. The larger the residual potential in Table 3, the lower the S/N ratio, so a smaller one is preferable.Sensitivity is shown in half-attenuation exposure,
The smaller the value (ux-sec), the higher the sensitivity, which is preferable.The humidity resistance was determined by copying images in an atmosphere at a temperature of 35°C and a relative humidity of 85%, and the mark ○ indicates that a good image was obtained. , × indicates that an image defect has occurred. From the above results, the film thickness of the a-C(H) surface layer is o, oo
A suitable thickness is sμ1 or more and 1 μm or less. Example 5 As the surface layer of the photoreceptor, a s 1l-X CX
(H) (0<X<1) is known. So a-C(
H) Warming specialty 1-1- with 17 St added to the surface layer
I looked into it. Sample 1 of Example 1 was replaced with Si-free sample 1.
The layers up to the zero-order buffer layer 123 are formed according to the method of Example 1, and the a-C(H) surface layer containing St is formed under, for example, the following conditions. C* Hb (100%) Flow rate 20cc
/min S i H* (100%) Flow rate
2cc/min gas pressure 0.2
TorrRF power 30
0 W basic temperature 100℃
Film formation time: 10 minutes Under these conditions, the amount of St added was controlled, for example, by changing the flow rate of SiH4, and photoreceptor samples 2 to 4 with different amounts of St added to the a-C(H) surface layer were produced. . Table 4 shows the results of examining the relationship between composition ratio Si/C and moisture resistance for these four types of samples. The evaluation of moisture resistance was conducted in accordance with Example 4 at a temperature of 35°C. Image copying was performed in an atmosphere with relative humidity of 85%. The Δ mark indicates that some image defects have occurred. Table 4: In view of the moisture resistance of the photoreceptor, it is not preferable to contain Si in the outermost layer, and pure C is desirable, but the presence of some impurities is not a problem. Possible impurities include B, AI,
Si, P, As, C1, F. p'6. Ni, 71. These include Mn and Mg. Example 6゜By a method similar to Example 1, up to the photoconductive layer 122 is formed, and directly a is formed without providing a buffer layer 123 thereon.
-C(H) surface layer was formed. When forming the a-C(H) film, five types of photoreceptors having a-C(H) surface layers with different film energy gaps Eg were created by changing the gas type, gas pressure, substrate temperature, etc. . The film thickness was approximately 0.2μ. When image tests were conducted on these five types of photoreceptors, the results shown in Table 5 were obtained. Table 5 Here, the image test was conducted in an atmosphere with a temperature of 25°C and a relative humidity of 50%. A mark of 0 indicates that a good clear image was obtained, and a mark of Δ indicates that a slight image defect occurred. , X marks indicate that extreme image defects have occurred. In this case, the relative humidity is as low as 50%, so the image defects in the high EgeM region are not due to moisture but due to material mismatch between surface 1i 130 and photoconductive layer 122. In order to eliminate this phenomenon, a buffer layer with a material composition intermediate between the surface layer 130 and the photoconductive layer 122 is provided, but as can be seen from the table, the Eg of the surface layer N130 is
If the value of Eg≦2.4 eV, the buffer 71123 is not necessarily required. However, considering manufacturing variations, it is desirable to form a buffer layer for the sake of mass production.

【発明の効果】 本発明によれば、a−3t系悪感光の表面に、水素をl
θ〜40原子%、より好適には15〜36原子%含有す
るa−C(H)からなる表面層を設けることにより、感
光体特性の良好な、環境汚染を受けにくい、耐湿性、耐
剛性に格段に優れた電子写真感光体をえることができる
。すなわち、a −5t系悪感光上にa−C(H)膜を
適切に設けることにより、a −Si系光導電性材料の
優れた特性−高光感度、可視光全域にわたる高い分光感
度、低疲労。 低い残留電位など−を良好に保持しながら、その上に設
けられた高純度(特にSiを含まない)で、炭素と合目
的的に結合した適当量の水素を含有したa−C(H)膜
の保護膜としての機能−オシン。 窒素酸化物1発生期の酸素など対する耐性、特に優れた
耐湿性、耐刷性−により長期保存および繰り返し使用に
際しても劣化現象を起こさず、高温雰囲気中でも画像不
良などの特性の低下がほとんどみちれない−J@v−泳
ふ1.アの11(堂鋒嘗宇l。 ていてほとんど使用環境に制約を受けない、耐久性、耐
剛性、耐湿性に優れた電子写真感光体をえることができ
る。これによりいわゆる感光体の寿命が大幅にのびるこ
とになり、それを装着した複写機のメンテナンスが容易
になり、えられる効果は極めて大きい。
Effects of the Invention According to the present invention, hydrogen is applied to the surface of the a-3t-based ill-sensitivity photo.
By providing a surface layer consisting of a-C(H) containing θ to 40 at%, more preferably 15 to 36 at%, the photoreceptor has good properties, is less susceptible to environmental pollution, has moisture resistance, and is resistant to rigidity. It is possible to obtain an electrophotographic photoreceptor with significantly superior properties. That is, by appropriately providing an a-C(H) film on the a-5t photosensitive material, the excellent properties of the a-Si photoconductive material - high photosensitivity, high spectral sensitivity over the entire visible light range, and low fatigue. . A-C(H) which is of high purity (particularly Si-free) and contains an appropriate amount of hydrogen purposely bonded to carbon, while maintaining a good low residual potential etc. Membrane function as a protective film - Osin. Due to its resistance to oxygen during the generation of nitrogen oxides, especially excellent moisture resistance, and printing durability, it does not deteriorate even after long-term storage and repeated use, and there is almost no deterioration in properties such as image defects even in high-temperature atmospheres. No-J@v-Swim1. A.11 (Dofeng 11) It is possible to obtain an electrophotographic photoreceptor with excellent durability, rigidity resistance, and moisture resistance, which is almost unrestricted by the environment in which it is used. This will greatly extend the lifespan, and the maintenance of copying machines equipped with it will become easier, and the benefits will be extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の感光体の概念的断面図、第2図は本発
明の感光体を製造可能な装置の一例の概念的系統図、第
3図は本発明の表面層を形成すa−C(H)膜の一例の
赤外線吸収スペクトル図。 110:導電性基体、120:感光層、121ニブロッ
キング層、122:光導電層123:バッファ層、13
08表面層。 第1図 第2図 ヲ友1(c−一“つ 第3図
FIG. 1 is a conceptual cross-sectional view of the photoreceptor of the present invention, FIG. 2 is a conceptual system diagram of an example of an apparatus capable of manufacturing the photoreceptor of the present invention, and FIG. 3 is a conceptual diagram of a method for forming the surface layer of the present invention. An infrared absorption spectrum diagram of an example of a -C(H) film. 110: conductive substrate, 120: photosensitive layer, 121 blocking layer, 122: photoconductive layer 123: buffer layer, 13
08 surface layer. Figure 1 Figure 2 Friends 1 (c-1) Figure 3

Claims (1)

【特許請求の範囲】 1)導電性基体上に形成されたアモルファスシリコン系
の感光層と該感光層上に形成された表面層からなる電子
写真感光体において、前記表面層が水素を10〜40原
子%含有する水素化アモルファス炭素からなることを特
徴とする電子写真感光体。 2)特許請求の範囲第1項記載の感光体において、表面
層が水素を15〜36原子%含有する水素化アモルファ
ス炭素からなることを特徴とする電子写真感光体。 3)特許請求の範囲第1項記載の感光体の表面層を形成
する水素化アモルファス炭素の赤外線吸収スペクトルに
おいて、2920cm^−^1における吸収係数α_1
と2960cm^−^1における吸収係数α_2の比α
_2/α_1の値が0.8以上であることを特徴とする
電子写真感光体。 4)特許請求の範囲第1項記載の感光体において、表面
層の膜厚が0.005μm以上1.0μm以下であるこ
とを特徴とする電子写真感光体。
[Scope of Claims] 1) An electrophotographic photoreceptor comprising an amorphous silicon-based photosensitive layer formed on a conductive substrate and a surface layer formed on the photosensitive layer, wherein the surface layer contains 10 to 40 hydrogen atoms. An electrophotographic photoreceptor comprising hydrogenated amorphous carbon containing atomic percent. 2) An electrophotographic photoreceptor according to claim 1, wherein the surface layer is made of hydrogenated amorphous carbon containing 15 to 36 atom % of hydrogen. 3) In the infrared absorption spectrum of the hydrogenated amorphous carbon forming the surface layer of the photoreceptor according to claim 1, the absorption coefficient α_1 at 2920 cm^-^1
and the ratio α of the absorption coefficient α_2 at 2960 cm^-^1
An electrophotographic photoreceptor characterized in that the value of _2/α_1 is 0.8 or more. 4) An electrophotographic photoreceptor according to claim 1, wherein the surface layer has a thickness of 0.005 μm or more and 1.0 μm or less.
JP6116485A 1985-03-26 1985-03-26 Electrophotographic sensitive body Pending JPS61219961A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6116485A JPS61219961A (en) 1985-03-26 1985-03-26 Electrophotographic sensitive body
DE19863610076 DE3610076A1 (en) 1985-03-26 1986-03-25 Electrophotographic, photosensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6116485A JPS61219961A (en) 1985-03-26 1985-03-26 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS61219961A true JPS61219961A (en) 1986-09-30

Family

ID=13163226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6116485A Pending JPS61219961A (en) 1985-03-26 1985-03-26 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS61219961A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275859A (en) * 1985-05-31 1986-12-05 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS629355A (en) * 1985-07-05 1987-01-17 ゼロツクス コ−ポレ−シヨン Xerographic image forming member containing amorphous carbon
JPS6283471A (en) * 1985-10-09 1987-04-16 Hitachi Ltd Method and apparatus for forming carbon film
JPS62150355A (en) * 1985-12-25 1987-07-04 Fuji Xerox Co Ltd Electrophotographic sensitive body
US5039358A (en) * 1989-02-01 1991-08-13 Siemens Aktiengesellschaft Amorphous, hydrogenated carbon electroactive passivation layer
US6001521A (en) * 1997-10-29 1999-12-14 Canon Kabushiki Kaisha Electrophotographic photosensitive member
US6238832B1 (en) 1997-12-25 2001-05-29 Canon Kabushiki Kaisha Electrophotographic photosensitive member
US6406824B1 (en) 1998-11-27 2002-06-18 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus having the photosensitive member
US6586149B2 (en) 2000-03-16 2003-07-01 Canon Kabushiki Kaisha Light-receiving member, image-forming apparatus, and image-forming method
US7498110B2 (en) 2004-03-16 2009-03-03 Canon Kabushiki Kaisha Electrophotographic photosensitive member
JP2009185336A (en) * 2008-02-06 2009-08-20 Yamaguchi Prefecture Amorphous carbon film and method for forming the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275859A (en) * 1985-05-31 1986-12-05 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS629355A (en) * 1985-07-05 1987-01-17 ゼロツクス コ−ポレ−シヨン Xerographic image forming member containing amorphous carbon
JPH06295081A (en) * 1985-07-05 1994-10-21 Xerox Corp Photoconductor for electrophotography and formation member of image
JPS6283471A (en) * 1985-10-09 1987-04-16 Hitachi Ltd Method and apparatus for forming carbon film
JPS62150355A (en) * 1985-12-25 1987-07-04 Fuji Xerox Co Ltd Electrophotographic sensitive body
US5039358A (en) * 1989-02-01 1991-08-13 Siemens Aktiengesellschaft Amorphous, hydrogenated carbon electroactive passivation layer
US6001521A (en) * 1997-10-29 1999-12-14 Canon Kabushiki Kaisha Electrophotographic photosensitive member
US6238832B1 (en) 1997-12-25 2001-05-29 Canon Kabushiki Kaisha Electrophotographic photosensitive member
US6406824B1 (en) 1998-11-27 2002-06-18 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus having the photosensitive member
US6586149B2 (en) 2000-03-16 2003-07-01 Canon Kabushiki Kaisha Light-receiving member, image-forming apparatus, and image-forming method
US7060406B2 (en) 2000-03-16 2006-06-13 Canon Kabushiki Kaisha Light-receiving member, image-forming apparatus, and image-forming method
US7498110B2 (en) 2004-03-16 2009-03-03 Canon Kabushiki Kaisha Electrophotographic photosensitive member
JP2009185336A (en) * 2008-02-06 2009-08-20 Yamaguchi Prefecture Amorphous carbon film and method for forming the same

Similar Documents

Publication Publication Date Title
JPH0233146B2 (en)
JPS62211659A (en) Electrophotographic sensitive body
JPS61219961A (en) Electrophotographic sensitive body
JPS61219962A (en) Electrophotographic sensitive body
US4833055A (en) Electrophotographic photoreceptor comprising amorphous silicon and amorphous carbon buffer layer
JPS61159657A (en) Photosensitive body
JPS61250655A (en) Electrophotographic sensitive body
JPS61223749A (en) Electrophotographic sensitive body
JPS62272275A (en) Electrophotographic sensitive body
JPS61278859A (en) Manufacture of electrophotographic sensitive body
JPS62149873A (en) Production of electrophotographic sensitive body
JPS62141564A (en) Electrophotographic sensitive body
JPS61223748A (en) Electrophotographic sensitive body
JPS61160751A (en) Electrophotographic sensitive body
JPH01214871A (en) Electrophotographic sensitive body
JPH0511305B2 (en)
JPS6228759A (en) Photosensitive body
JPS6228764A (en) Photosensitive body
JPS62113155A (en) Electrophotographic sensitive body
JPH02154274A (en) Electrophotographic sensitive body, manufacture of the same, and electrophotographic recorder using the same
JPS6228763A (en) Photosensitive body
JPH01214870A (en) Electrophotographic sensitive body
JPS5967543A (en) Recording body
JPH01130165A (en) Electrophotographic sensitive body
JPH02275466A (en) Electrophotographic sensitive body