JPS6121964A - Alumina sintered body and manufacture - Google Patents

Alumina sintered body and manufacture

Info

Publication number
JPS6121964A
JPS6121964A JP59144795A JP14479584A JPS6121964A JP S6121964 A JPS6121964 A JP S6121964A JP 59144795 A JP59144795 A JP 59144795A JP 14479584 A JP14479584 A JP 14479584A JP S6121964 A JPS6121964 A JP S6121964A
Authority
JP
Japan
Prior art keywords
alumina
sintered body
silicon carbide
particle size
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59144795A
Other languages
Japanese (ja)
Inventor
山内 英俊
横山 隆夫
犬井 敬司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP59144795A priority Critical patent/JPS6121964A/en
Publication of JPS6121964A publication Critical patent/JPS6121964A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主成分が炭化ケイ素とアルミナ微粉の均質な
組成か−ろ成るアルミナ質焼結体およびその製造方法で
あって、特に破かいしん性が優れており半導体パッケー
ジ、耐熱性IC基板および各種の機械部品などに好適の
アルミナ質焼結体およびその製造方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to an alumina sintered body whose main components are silicon carbide and alumina fine powder with a homogeneous composition, and a method for producing the same. The present invention relates to an alumina sintered body that has excellent properties and is suitable for semiconductor packages, heat-resistant IC boards, various mechanical parts, etc., and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

アルミナ質結体は、一般に常温強度、耐熱性、硬度、化
学的安定性及び電気的絶縁性に優れた材料であり、耐蝕
耐摩耗部品、電子工業用部品、点火栓用部品などに広く
使用されている。なかでもアルミナ焼結体は、高温部品
として注目されているが、高温下における強度、硬度、
クリ−1特性、破かいしん性、さらに耐熱衝撃性が十分
でなく、また電子工業用部品としては高速・高密度化に
より熱伝導率(λ)が高い基板が要求されているにも拘
らずλは低く放熱性が劣っている。
Alumina aggregates are generally materials with excellent room-temperature strength, heat resistance, hardness, chemical stability, and electrical insulation, and are widely used in corrosion-resistant and wear-resistant parts, electronic industry parts, spark plug parts, etc. ing. Among these, alumina sintered bodies are attracting attention as high-temperature parts, but their strength, hardness, and
Cree-1 characteristics, fracture resistance, and thermal shock resistance are insufficient, and even though substrates with high thermal conductivity (λ) are required for electronic industrial parts due to high speed and high density, λ is low and has poor heat dissipation.

そこで上記問題点を解決すべく高純度のアルミナ粉末を
高温高圧下で焼結するホットプレス法によるアルミナ焼
結体、アルミナ単結晶製品などが検討されている。
Therefore, in order to solve the above-mentioned problems, alumina sintered bodies and alumina single crystal products produced by a hot press method in which high-purity alumina powder is sintered under high temperature and pressure are being considered.

しかしながら、前記ホットプレス法くよる高純度アルミ
ナ焼結体は熱伝導性は向上するものの高温強度、破かい
しん性が今−歩十分でなく割れ易い。また前記単結晶製
品は熱伝導率、高温強度は改善されるがコストが極めて
高くなる。
However, although the high-purity alumina sintered body produced by the hot pressing method has improved thermal conductivity, its high-temperature strength and fracture resistance are insufficient and it is easily broken. Further, although the single crystal product has improved thermal conductivity and high temperature strength, it is extremely expensive.

他方、アルミナにジルコニアを添加した複合焼結体又は
アルミナにウィスカーを混入した複合焼結体が提案され
ているが、前者の焼結体は放射性元素が共存し易いので
電子部品としての用途には適さず、後者の焼結体はライ
・νf入による方向性があり物性面で不利でありコスト
も高くなる。
On the other hand, composite sintered bodies in which zirconia is added to alumina or composite sintered bodies in which whiskers are mixed in alumina have been proposed, but the former sintered bodies tend to contain radioactive elements, so they are not suitable for use as electronic components. The latter sintered body is unsuitable, and the latter sintered body has directionality due to lie/vf inclusion, which is disadvantageous in terms of physical properties and increases cost.

このようなことを考慮して水出願人は、先く「炭化珪素
が重量比て0,6〜40%含有され、残部がアルミナを
主成分とする混合組成分で構成された炭化珪素含有のア
ルミナ質焼結体」に係る先行発明を提案している、そし
て上記炭化珪素含有のアルミナ質焼結体は主として常圧
焼結によりSiC粒子をAIto3中に均一に含有させ
て強度、硬度、熱伝導率及び#熱衝撃性などを向上させ
ることを目的とする発明である。
Taking these things into consideration, the applicant previously proposed that ``a silicon carbide-containing material containing 0.6 to 40% by weight of silicon carbide and a mixed composition with the remainder being alumina as a main component. The above-mentioned silicon carbide-containing alumina sintered body is produced by uniformly containing SiC particles in AIto3 mainly by pressureless sintering to improve strength, hardness, and heat resistance. This invention aims to improve conductivity, #thermal shock resistance, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、前記従来技術の欠点を除去・改善し、さらに
先行発明により得られる炭化珪素含有のアルミナ質焼結
体の物性、殊に破かいしん性(KIC)を一段と向上さ
せることを主目的として、半導体パッケージ、IC基板
及び機械部品などに好適のアルミナ質焼結体を前記特許
請求の範囲に記載の発明によって提案しようとするもの
である。
The main purpose of the present invention is to eliminate and improve the drawbacks of the prior art, and further improve the physical properties, especially the fracture resistance (KIC), of the silicon carbide-containing alumina sintered body obtained by the prior invention. The present invention attempts to propose an alumina sintered body suitable for semiconductor packages, IC boards, mechanical parts, etc., by the invention described in the claims.

次に、本発明のアルミナ質焼結体について具体的に説明
する。
Next, the alumina sintered body of the present invention will be specifically explained.

〔問題点を解決すべき手段およびその作用〕本発明によ
れば炭化ケイ素が重量比で0.6〜40%含有されてお
り、残部がアルミナを主成分とする混合組成物で構成さ
れた炭化ケイ素含有のアルミナ質焼結体において、アル
ミナの粒径が10/Jm以下である均質な組成であり、
破かいしん性(KIC)が特に優れていることを特徴と
するアルミナ質焼結体を提供することができる。
[Means for solving the problems and their effects] According to the present invention, a carbonized carbonaceous material containing silicon carbide in a weight ratio of 0.6 to 40% and the balance being a mixed composition mainly composed of alumina. The silicon-containing alumina sintered body has a homogeneous composition in which the alumina particle size is 10/Jm or less,
It is possible to provide an alumina sintered body characterized by particularly excellent fracture resistance (KIC).

すなわち、まず本発明によれば、アルミナ質常圧焼結体
に含まれる炭化珪素は重量比で0.5〜40%の範囲で
あることが必要である。炭化珪素が0.5%より少ない
と炭化珪素を含んだことに基づく硬度、強度、破壊しん
性及び熱伝導率の改善が十分でなく、40%より多いと
アルミナと炭化珪素の焼結性が困難となり高密度のアル
ミナ質常圧焼結体が得られにくく、仮に、高密度の焼結
体が得られても炭化珪素粒子とアルミナ粒子の粒子間に
おける不均一部分が極めて多くなり機械的性質と熱的性
質を大幅に低下せしめるからであり、なかでも、炭化珪
素が0.5〜20%の範囲であるととが最吃好適な結果
が得られる。
That is, first, according to the present invention, silicon carbide contained in the alumina pressureless sintered body needs to be in the range of 0.5 to 40% by weight. If the silicon carbide content is less than 0.5%, improvements in hardness, strength, fracture resistance, and thermal conductivity due to the inclusion of silicon carbide will not be sufficient, and if it is more than 40%, the sinterability of alumina and silicon carbide will be reduced. This makes it difficult to obtain a high-density alumina pressureless sintered body, and even if a high-density sintered body is obtained, there will be extremely large amounts of unevenness between the silicon carbide particles and the alumina particles, resulting in poor mechanical properties. This is because silicon carbide significantly reduces the thermal properties, and among these, the most preferable result is obtained when the silicon carbide content is in the range of 0.5 to 20%.

次に1本発明によれば残部、実質的にアルミナの粒径が
10μffl −0,,1μmである均質な組成であっ
て、前記炭化ケイ素以外の主成分をなすものであること
が必要である。アルミナの平均粒径が10μmJ″シ大
きいと粒界破かい面積が小さくなり、表面エネルギー(
r+ )が小さくなる。
Next, according to the present invention, the remainder must have a homogeneous composition in which the particle size of alumina is substantially 10 μffl −0, 1 μm, and must be a main component other than the silicon carbide. . When the average grain size of alumina is 10 μmJ'' larger, the grain boundary fracture area becomes smaller and the surface energy (
r+) becomes smaller.

一方、アルミナの平均粒径が10μmより小さいと、ア
ルミナとアルミナとの粒界面の接触面積が大きくなるた
め、表面エネルギー(ri)は大きくなる。それゆえ、
本発明のアルミナ質焼結体の破がいしん性が向上するも
°のと考えられる。それは表面エネルギー、すなわち塑
性変形による吸収エネルギー及び破かいの際放出される
エネルギー或いは相変態に伴うエネルギーなどとKIC
とは比例関係にあるからである。したがって本発明のア
ルミナ質焼結体のように破かいしん性の優れた焼結体を
得るには、アルミナの粒径をできるだけ小さくしかも均
一に分布させ粒間の気孔率を小さくすると共に、原則と
して結晶の選択配向をなくすることがKtcを向上させ
ることになる。
On the other hand, if the average particle size of alumina is smaller than 10 μm, the contact area of grain boundaries between alumina and alumina becomes large, and thus the surface energy (ri) becomes large. therefore,
It is believed that the fracture resistance of the alumina sintered body of the present invention is improved. It is surface energy, that is, absorbed energy due to plastic deformation, energy released during fracture, or energy associated with phase transformation, and KIC.
This is because they are in a proportional relationship. Therefore, in order to obtain a sintered body with excellent fracture resistance, such as the alumina sintered body of the present invention, the particle size of alumina must be made as small as possible and uniformly distributed to reduce the porosity between the grains. Eliminating preferential orientation of crystals improves Ktc.

つまり、アルミナとアルミナ又はアルミナと炭化ケイ素
の粒界に不連続層が形成されると粒界の破かいが起り易
くなることも考えられる。
In other words, if a discontinuous layer is formed at the grain boundaries between alumina and alumina or between alumina and silicon carbide, cracking of the grain boundaries may be likely to occur.

一方1.アルミナの粒径が0,1μmより小さいと十分
に密度が高いアルミナ質焼結体が得られにくい。
On the other hand 1. If the particle size of alumina is smaller than 0.1 μm, it is difficult to obtain an alumina sintered body with a sufficiently high density.

なお、本発明によれば前記アルミナ粉体の結晶構造はα
型アルミナであることが望ましい。その理由は、α型ア
ルミナは高温における安定性が優れているからである。
According to the present invention, the crystal structure of the alumina powder is α
Type alumina is preferred. The reason is that α-type alumina has excellent stability at high temperatures.

また、本発明によれば炭化ケイ素は主としてβ型結晶構
造をしているものであることが必要である。その理由は
β潤度化珪素は結晶系が立方晶系であることから粒子の
物理的性質忙おいて異方性を示さないことから安定した
ミクロ構造を有するアルミナ質焼結体が得られるからで
ある。また、アルミナの結晶構造はα型アルミナである
ことが好ましい。その理由はα型アルミナは高温におけ
る安定性が優れているからである。
Furthermore, according to the present invention, silicon carbide must primarily have a β-type crystal structure. The reason for this is that β-hydrated silicon has a cubic crystal system and does not show anisotropy due to the physical properties of the particles, so an alumina sintered body with a stable microstructure can be obtained. It is. Further, the crystal structure of alumina is preferably α-type alumina. The reason is that α-type alumina has excellent stability at high temperatures.

本発明によれば、前記炭化ケイ素の平均粒径は0.1〜
2.0μmであることが望ましい。
According to the present invention, the average particle size of the silicon carbide is from 0.1 to
The thickness is preferably 2.0 μm.

また、炭化ケイ素の粒径が0.1μmより小さいと凝集
性が極めて強くなり原料混合時における分散性が低くな
る。一方、膨化ケイ素の粒径が2.0μmより大きいと
炭化ケイ素粒子とアルミナ粒子との粒子間における不均
一な部分が大きくなり、いわゆるミスマツチが起こり焼
結体の機械的及び熱的性質が劣化することになる。
Furthermore, if the particle size of silicon carbide is smaller than 0.1 μm, the cohesiveness becomes extremely strong and the dispersibility during mixing of raw materials becomes low. On the other hand, if the particle size of the expanded silicon is larger than 2.0 μm, the non-uniformity between the silicon carbide particles and the alumina particles becomes large, resulting in so-called mismatch, which deteriorates the mechanical and thermal properties of the sintered body. It turns out.

また本発明によれば、前記炭化ケイ素の含有量は特に0
.5〜5.0重量%であることが好ましい。
Further, according to the present invention, the content of silicon carbide is particularly 0.
.. It is preferably 5 to 5.0% by weight.

0.5重量%以下であると、アルミナの粒成長の制御が
しにくくなるため、粒界破かいが起こりにくい。
When the amount is 0.5% by weight or less, it becomes difficult to control grain growth of alumina, so grain boundary fracture is less likely to occur.

一方、炭化ケイ素の含有量が5.0重量%以上であると
不連続層が増大し破かいしん性が低下することになる。
On the other hand, if the content of silicon carbide is 5.0% by weight or more, the number of discontinuous layers increases and the fracture resistance decreases.

また、本発明によれば、炭化珪素はアルミナ質焼結体に
均一に分散されていることが好ましい。
Further, according to the present invention, silicon carbide is preferably uniformly dispersed in the alumina sintered body.

その理由は、炭化珪素が均一に分散していないと、アル
ミナ質焼結体の物性が不均一となり、さらに、均一性が
著しく悪いとアルミナ質焼結体に未焼結部分が生じ、ア
ルミナ質常圧焼結体の機械的性質及び熱的性質に著しい
劣化を示すからである。
The reason for this is that if silicon carbide is not uniformly dispersed, the physical properties of the alumina sintered body will be non-uniform, and if the uniformity is extremely poor, unsintered areas will occur in the alumina sintered body, and the alumina This is because the mechanical properties and thermal properties of the pressureless sintered body show significant deterioration.

本発明によれば、炭化珪素を含むアルミナ質焼結体の嵩
密度は、理論密度の95%、好ましくは97%以上であ
ることが好ましい。その理由は、理論密度が95%より
少ないと前記焼結体の内部に気孔部分が多く存在するこ
とになり、熱伝導率が低下するからである。
According to the present invention, the bulk density of the alumina sintered body containing silicon carbide is preferably 95% or more of the theoretical density, preferably 97% or more. The reason for this is that if the theoretical density is less than 95%, there will be many pores inside the sintered body, resulting in a decrease in thermal conductivity.

以上のように1本発明によれば炭化ケイ素を重量比で0
.5〜40%含有したアルミナ質焼結体くおいて、特に
α型アルミナの粒径を10μm以下とし、β型炭化ケイ
素の粒径をQ、 l−2,0μmの微粉を均質混合した
原料を使用することにより、炭化ケイ素は本質的に極め
て硬い材料であることから炭化ケイ素を含んだアルミナ
質焼結体の硬度は向上し、その炭化ケイ素が細かい粒子
として均一に分散していることからアルミナ質常圧焼結
体の強度も向上する。また、炭化ケイ素とアルミナは化
学的組成と結晶構造その他の諸性質が異なる為にミクロ
的な炭化ケイ素粒子とアルミナ質粒子の間においては組
成的及び構造的不均一部分が生じ、これに基づいて破壊
のクラックが伝播したときにその伝播エネルギーを消費
してクラックの進展を防止することから破壊しん性が向
上する。さらK、炭化ケイ累は熱伝導率に優れた材料で
あることから炭化ケイ素を均一に含んだアルミナ質焼結
体の熱伝導率が改蕾される。
As described above, according to the present invention, the weight ratio of silicon carbide is 0.
.. In the alumina sintered body containing 5 to 40%, in particular, the particle size of α-type alumina is set to 10 μm or less, the particle size of β-type silicon carbide is Q, and a raw material is homogeneously mixed with fine powder of 1-2.0 μm. By using silicon carbide, the hardness of the alumina sintered body containing silicon carbide improves, since silicon carbide is essentially an extremely hard material, and because the silicon carbide is uniformly dispersed as fine particles, alumina The strength of the pressureless sintered body is also improved. In addition, because silicon carbide and alumina have different chemical compositions, crystal structures, and other properties, compositional and structural nonuniformities occur between microscopic silicon carbide particles and alumina particles. When a fracture crack propagates, the propagation energy is consumed to prevent the crack from progressing, which improves fracture resistance. Furthermore, since silicon carbide is a material with excellent thermal conductivity, the thermal conductivity of an alumina sintered body uniformly containing silicon carbide is improved.

次に本発明のアルミナ質焼結体の製造方法について説明
する。
Next, a method for producing an alumina sintered body according to the present invention will be explained.

本発明によれば炭化ケイ素粉末0.5〜40重量%と残
部が粒径10μm以下のアルミナ粉末を主成分とする組
成物を均一に混合し、このようKして得られる均一混合
の組成物を所望の形状にした後、該成形体を1300〜
1900℃の温度で常圧焼結することを必要とする。
According to the present invention, a uniformly mixed composition obtained by uniformly mixing a composition whose main components are 0.5 to 40% by weight of silicon carbide powder and the remainder being alumina powder with a particle size of 10 μm or less, and performing K in this manner. After shaping into a desired shape, the molded body was heated to 1300~
It requires pressureless sintering at a temperature of 1900°C.

炭化ケイ素粉を0.6〜40重量%混入する理由、並び
にア/l/ミナ粉末の粒径を10μm以下にする理由は
、炭化珪素粉体の平均粒径が0.01μmより小さいと
凝集性が極めて強く混合における分散性が低いからであ
り、2.0μmより大きいと炭化珪素粒子とアルミナ質
粒子の粒子間における不均一部分が大きくなりアルミナ
質常圧焼結体の機械的性質及び熱的性質が劣化するから
である。
The reason for mixing 0.6 to 40% by weight of silicon carbide powder and the reason for setting the particle size of A/L/Mina powder to 10 μm or less is that if the average particle size of silicon carbide powder is smaller than 0.01 μm, it tends to coagulate. This is because the dispersibility during mixing is extremely strong and the dispersibility during mixing is low.If the diameter is larger than 2.0 μm, the non-uniformity between the silicon carbide particles and the alumina particles becomes large, which deteriorates the mechanical properties and thermal properties of the alumina pressureless sintered body. This is because the properties deteriorate.

本発明によれば、炭化珪素はアルミナ質焼結体に均一に
分散されていることが好ましい。その理由は、炭化珪素
が均一に分散していないと、アルミナ質焼結体の物性が
不均一となり、さらに、均一性が著しく悪いとアルミナ
質焼結体に未焼結部分が生じ、アルミナ質常圧焼結体の
機械的性質及炭化珪素を含んだアルミナ質常圧焼結体が
得られる。
According to the present invention, silicon carbide is preferably uniformly dispersed in the alumina sintered body. The reason for this is that if silicon carbide is not uniformly dispersed, the physical properties of the alumina sintered body will be non-uniform, and if the uniformity is extremely poor, unsintered areas will occur in the alumina sintered body, and the alumina Mechanical properties of a pressureless sintered body and an alumina pressureless sintered body containing silicon carbide are obtained.

このようにして得られる均一混合の組成物に水又はベン
ゼン、アセトン、アルコール、トリクロルエチレン、ト
ルエン、キンレンなどの有m 溶剤と必要により分散剤
を添加し、ボールミル、アトライター、ホモミキサー、
振動ミμ、コロイドミル1ヘンシエルミキサー、高速ミ
キサーなどの1種又は2種以上の混合機を用いて均一に
混合することが重要である。さらに、混合の初期又は途
中の段階で成形助剤たとえばポリエチレングリコール、
ポリビニールアルコール、メチルセルローズ、グリセリ
ン、澱粉、アラビアゴム、フェノール樹脂、カーポワ、
ソクス、ステアリン酸、パラフィンエマルシコンなどを
添加すると成形性が向上する。
To the homogeneously mixed composition thus obtained, water or a solvent such as benzene, acetone, alcohol, trichloroethylene, toluene, quintylene, etc., and a dispersant if necessary are added, and the mixture is processed using a ball mill, attritor, homomixer, etc.
It is important to mix uniformly using one or more types of mixers such as a vibrating Miμ, a Colloid Mill 1 Henschel mixer, or a high-speed mixer. Furthermore, forming aids such as polyethylene glycol may be added at the initial or intermediate stage of mixing.
Polyvinyl alcohol, methylcellulose, glycerin, starch, gum arabic, phenolic resin, Capois,
Addition of sox, stearic acid, paraffin emulsion, etc. improves moldability.

成形はたとえば、金型による加圧成形、ラバー成形、イ
ンジェクション成形、押出し成形、鋳込み成形、ドクタ
ーブレード法、カレンダー法、ベーパーディッピング法
などによって行なわれ、所望の成形体が得られる。
Molding is carried out by, for example, pressure molding using a mold, rubber molding, injection molding, extrusion molding, casting molding, a doctor blade method, a calendar method, a vapor dipping method, etc. to obtain a desired molded product.

また本発明によれば、前記成形体は水素、加湿水素、窒
素、アルゴン、ヘリウムの1種又は2種以上のガスを含
む雰囲気で常圧焼成することができるが、加湿水素中が
最も好ましい。また、前記雰囲気中にAI!o、”5i
O1coの1種又は2種以上のガスを含むことが好まし
い。その理由は、SiC+AhOs→340キA1zO
+COの反応によりstcとAl2O5が反応するが、
雰囲気中にAl5o、5iO1COなどのガス分圧が存
在するとSiCとA1101の反応が抑制され緻密なS
iCを含んだアルミナ質常圧焼結体が得られるからであ
る。また、前記成形体を重量比で炭化珪素0.5〜28
.2%とアルミナ71.8〜99.596の混合物中に
埋め込んで焼成することが可能である。その理由は焼成
時に前記炭化珪素とアルミナとの混合物中で炭化珪素と
アルミナとの反応が生じ、AhOlSin、COのガス
が発生して前記成形体中におけるSiCとAhOsとの
反応が抑制され緻密なSICが容易に、かつ安価に得ら
れるからである。
Further, according to the present invention, the molded body can be fired at normal pressure in an atmosphere containing one or more gases of hydrogen, humidified hydrogen, nitrogen, argon, and helium, but humidified hydrogen is most preferred. Also, AI in the atmosphere! o,”5i
It is preferable that one or more types of O1co gases are included. The reason is that SiC + AhOs → 340K A1zO
stc and Al2O5 react due to +CO reaction,
When a partial pressure of a gas such as Al5o or 5iO1CO exists in the atmosphere, the reaction between SiC and A1101 is suppressed and the dense S
This is because an alumina pressureless sintered body containing iC can be obtained. In addition, the molded body has a weight ratio of silicon carbide of 0.5 to 28
.. It is possible to embed it in a mixture of 2% and 71.8-99.596 alumina and sinter it. The reason for this is that during firing, a reaction between silicon carbide and alumina occurs in the mixture of silicon carbide and alumina, gases of AhOlSin and CO are generated, and the reaction between SiC and AhOs in the compact is suppressed, resulting in a dense structure. This is because SIC can be obtained easily and at low cost.

そして本発明によれば、′補記成形体’i 1110〜
1900℃の温度範囲において常圧焼結することが好ま
しい。その理由は1300℃より低いとアルミナ粉体と
炭化珪素粉体の焼結性が低く十分に緻密な焼結体が得ら
れず、また、1900°Cより高いと炭化珪素の粒子内
に不純物が拡散してアルミナ質常圧焼結体の熱伝導率が
大きく低下するからであり、最も好ましくは1400〜
1600″Cの温度範囲である。
According to the present invention, 'supplementary molded body' i 1110~
Pressureless sintering is preferably performed in a temperature range of 1900°C. The reason for this is that if the temperature is lower than 1300°C, the sinterability of the alumina powder and silicon carbide powder is low and a sufficiently dense sintered body cannot be obtained. This is because the thermal conductivity of the alumina pressureless sintered body decreases greatly due to diffusion, and the most preferable range is 1400~
The temperature range is 1600″C.

本発明によれば前記炭化ケイ素粉体は主としてβ型結晶
構造をしており、その平均粒径が0.01〜2.0μ′
mであって、残部が平均粒径0.06〜10μmのα型
結晶構造のアルミナを主成分とする組成物を出発原料と
することが特に好ましい。
According to the present invention, the silicon carbide powder mainly has a β-type crystal structure and has an average particle size of 0.01 to 2.0 μ'.
It is particularly preferable to use as a starting material a composition whose main component is alumina having an α-type crystal structure with an average particle diameter of 0.06 to 10 μm.

このようにして得られるアルミナ質焼結体はその嵩密度
が理論密度の95%以上、特に好ましくは98%以上で
あって、破かいじん性(Krc)が8−5 MPa 1
1山以上であることを特徴とするものである。
The alumina sintered body thus obtained has a bulk density of 95% or more, particularly preferably 98% or more of the theoretical density, and a fracture toughness (Krc) of 8-5 MPa 1
It is characterized by having one or more mountains.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例1 平均粒径0.8μmのβ型炭化珪素を重量比で0〜20
%と平均粒径0.4μmのα型アルミナを重量比で78
〜98%及び平均粒径2.0μmの5102を重量比で
2%の配合物1に5種類用意し、各配合物100gに対
し、水を10of添加し、ポリエチレングリコ−A/I
Fとポリビニ−μアルコーIVzy及びステアリン酸を
0.6g添加してボールミμ中で24時間聞易した。前
記混合物をスプレードフイヤにて乾燥造粒し、金型成形
法により1.5 t/dの成形圧φ40 X 5 tの
成形体を得た。前記成形体を管状炉に挿入し、加湿水素
気流中において1600°Cの温度で1時間焼成してア
ルミナ質常圧焼結体を得た。
Example 1 β-type silicon carbide with an average particle size of 0.8 μm in a weight ratio of 0 to 20
% and α-type alumina with an average particle size of 0.4 μm in weight ratio of 78
Five types of 5102 with a weight ratio of 2% and an average particle size of 2.0 μm were prepared in Formulation 1, and 10 of water was added to 100g of each formulation.
F, polyviny-μ alcohol IVzy and 0.6 g of stearic acid were added, and the mixture was incubated in a ball milli μ for 24 hours. The mixture was dried and granulated using a spray fire, and a molded body having a molding pressure of 1.5 t/d and a molding pressure of φ40×5 t was obtained by a molding method. The compact was inserted into a tubular furnace and fired in a humidified hydrogen stream at a temperature of 1600° C. for 1 hour to obtain an alumina atmospheric pressure sintered compact.

このようにして得られた焼結体の嵩密度、マイクロビッ
カース硬度計による硬度、インデンテーシ目ン法による
KIc及びレーザフラッシュ法による熱伝導率を測定し
た結果を第1表に示した。また、得られた焼結体をX線
粉末回析したところ全ての実施例にβ型炭化珪素の含ま
れていることがみとめられた。
Table 1 shows the results of measuring the bulk density of the sintered body thus obtained, the hardness by a micro Vickers hardness tester, the KIc by an indentation method, and the thermal conductivity by a laser flash method. Further, when the obtained sintered bodies were subjected to X-ray powder diffraction, it was found that β-type silicon carbide was contained in all the examples.

比較例1 平均粒径0.8μmのβ型炭化珪素を重量比で50%と
平均粒径0.4μmのα型アルミナを重量比で48%及
び平均粒径2.0μmの5i02を重量比で2%の配合
物を用意し、実施例1と同様の方法で常圧焼結を行なっ
た結果を第1表に示した。
Comparative Example 1 50% by weight of β-type silicon carbide with an average particle size of 0.8 μm, 48% by weight of α-type alumina with an average particle size of 0.4 μm, and 5i02 with an average particle size of 2.0 μm by weight. A 2% blend was prepared and pressureless sintered in the same manner as in Example 1. The results are shown in Table 1.

実施例2 平均粒径が0.8μmの15炭化珪素を重量比で5%と
平均粒径が0.4μmのα型アルミナを重量比で90%
又は95%及び平均粒径的2.0μmの5iOi、Mn
O又はMg、Of、それぞれ重量比で5%の配合物を4
種類用意し、実施例1と同様の方法で混合し乾燥し成形
した後、加湿水素気流中で1500℃の温度で2時間焼
成してアルミナ質常圧焼結体が得られた。このようにし
て得られた焼結体の物性を第2表に示す。
Example 2 5% by weight of 15 silicon carbide with an average particle size of 0.8 μm and 90% by weight of α-type alumina with an average particle size of 0.4 μm
or 95% and 5iOi, Mn with an average particle size of 2.0 μm
O or Mg, Of, each 5% by weight formulation 4
Various types were prepared, mixed, dried and molded in the same manner as in Example 1, and then fired in a humidified hydrogen stream at a temperature of 1500° C. for 2 hours to obtain an alumina atmospheric pressure sintered body. Table 2 shows the physical properties of the sintered body thus obtained.

実施例8 炭化珪素の平均粒径と結晶構造、アルミナの平均粒径を
変化させてアルミナ質常圧焼結体を得た場合の結果を第
8表に示した。なお、炭化珪素、アルミナ及び5iOz
の組成−重量比でそれぞれ2%、96%及び296と一
定であり、配合物の配合、成形、焼成は実施例2と同様
に行なった。
Example 8 Table 8 shows the results when an alumina pressureless sintered body was obtained by changing the average grain size and crystal structure of silicon carbide and the average grain size of alumina. In addition, silicon carbide, alumina and 5iOz
The composition-to-weight ratios were constant at 2%, 96%, and 296, respectively, and the compounding, molding, and baking were performed in the same manner as in Example 2.

比較例2 平均粒径が10μmのα型炭化珪素と平均粒径が0.4
μmのα型アルミナを用いて焼結したアルミナ質常圧焼
結体の物性を第8表に示す。
Comparative Example 2 α-type silicon carbide with an average particle size of 10 μm and an average particle size of 0.4
Table 8 shows the physical properties of an alumina pressureless sintered body sintered using μm α-type alumina.

実施例4 平均粒径が0.8μmのβFjj1次化珪素を重量比で
896と平均粒径0.4μmのα型アルミナを重量比で
9496及び平均粒径2.0μmの5i02t1″重量
比で8%の配合物を用意し、実施例1と同様の方法で混
合し成形した後、加湿水素気流中にて1500″C又は
1600℃で1時間焼成して得たアルミナ質常圧焼結体
の物性を第4表に示す。
Example 4 βFjj primary silicon with an average particle size of 0.8 μm in a weight ratio of 896, α-type alumina with an average particle size of 0.4 μm in a weight ratio of 9496, and 5i02t1″ with an average particle size of 2.0 μm in a weight ratio of 8 % mixture was prepared, mixed and molded in the same manner as in Example 1, and then calcined in a humidified hydrogen stream at 1500''C or 1600℃ for 1 hour to obtain an alumina atmospheric pressure sintered body. The physical properties are shown in Table 4.

比較例8 実施例4と同一の成形体を加湿水素気流中にて1260
°C又は2000°Cの温度で1時間焼成した結果を第
4表に示す。
Comparative Example 8 The same molded body as in Example 4 was heated at 1260 °C in a humidified hydrogen stream.
Table 4 shows the results of firing for 1 hour at a temperature of 2000°C or 2000°C.

実施例5 平均粒径が0.8μmのβ型炭化珪素を重量比で2%と
平均粒径が0.4μmのα型アルミナを96重量%と平
均粒径2μmの5i02を重量比で2%の配合物を実施
例1と同様の方法で混合、成形した後、窒素、アルゴン
、加湿水素気流及びアルミナと炭化珪素混合物中に成形
体を埋めた場合について焼成した結果を第5表に示す。
Example 5 2% by weight of β-type silicon carbide with an average particle size of 0.8 μm, 96% by weight of α-type alumina with an average particle size of 0.4 μm, and 2% by weight of 5i02 with an average particle size of 2 μm. Table 5 shows the results of mixing and molding the mixture in the same manner as in Example 1, and then sintering the molded body in a nitrogen, argon, humidified hydrogen stream, and a mixture of alumina and silicon carbide.

比較例4 実施例5と同一の方法で成形体を得た後、酸素気流中で
焼成した結果を第5表に示す。
Comparative Example 4 A molded body was obtained in the same manner as in Example 5, and then fired in an oxygen stream. Table 5 shows the results.

第1表 (It)  Kxa=破壊しん性    (焼成温度1
600℃  加湿水素気流中)第2表 (焼成条件1500℃ 加湿水素気流中)第8表 (焼成条件1600℃ 加湿水素気流中)第4表 第5表 上記の実施例の結果から本明らかなように、従来のアル
ミナ質結体の破かいじん性は8.0 MPa fi”2
位であるのに対し、本発明のアルミナ焼結体の破かいし
ん性は8.8〜8.9 M P a m 号と向上する
ことになる。
Table 1 (It) Kxa = Fracture resistance (Sintering temperature 1
As is clear from the results of the above examples The fracture toughness of conventional alumina solids is 8.0 MPa fi”2
In contrast, the fracture resistance of the alumina sintered body of the present invention is improved to 8.8 to 8.9 MPam.

以上の結果からも明らかなように、本発明によれば、ア
ルミナ質焼結体中に炭化珪素を均一に分散させた常圧焼
結法により得られる焼結体は、特に機械的強度、熱伝導
性、電気絶縁性などが優れ、アルミナ質焼結体の優れた
電気的特性と炭化珪素質焼結体の優れた熱伝導性とが組
み合せられ、特に優れた破かいしん性と機械的強度を併
有するものである。
As is clear from the above results, according to the present invention, the sintered body obtained by the pressureless sintering method in which silicon carbide is uniformly dispersed in the alumina sintered body has excellent mechanical strength and heat resistance. It has excellent conductivity and electrical insulation, and combines the excellent electrical properties of the alumina sintered body with the excellent thermal conductivity of the silicon carbide sintered body, resulting in particularly excellent fracture resistance and mechanical strength. It is held together.

Claims (1)

【特許請求の範囲】 1、炭化ケイ素が重量比で0.5〜40%含有されてお
り、残部がアルミナを主成分とする混合組成物で構成さ
れた炭化ケイ素含有のアルミナ質焼結体において、アル
ミナの粒径が10μm以下である均質な組成であって破
かいじん性(K_I_C)が特に優れていることを特徴
とするアルミナ質焼結体。 2、嵩密度が理論密度の95%以上、特に好ましくは9
7%であって、破かいじん性(K_I_C)が3.5M
Pam^1^/^2以上であることを特徴とする特許請
求の範囲第1項記載のアルミナ質焼結体。 8、前記炭化ケイ素は主としてβ型結晶構造をしており
、その平均粒径は0.1〜2.0μmであり、0.5〜
5%含有されるものであって、残部が平均粒径0.1〜
10μmのα型結晶構造のアルミナを主成分とする組成
物から構成されていることを特徴とする特許請求の範囲
第1項又は第2項記載のアルミナ質焼結体。 4、炭化ケイ素粉末0.5〜40重量%と残部が粒径1
0μm以下のアルミナ粉末を主成分とする組成物を均一
に混合し、このようにして得られる均一混合の組成物を
所望の形状に成形した後、該成形体を1300〜190
0℃の温度で常圧焼結することを特徴とするアルミナ質
焼結体の製造方法。 5、前記炭化ケイ素粉体は主としてβ型結晶構造をして
おり、その平均粒径が0.01〜2.0μmであり、0
.5〜5%含有されるものであって、残部が平均粒径0
.05〜10μmのα型結晶構造のアルミナを主成分と
する組成物を出発原料とすることを特徴とする特許請求
の範囲第4項記載の製造方法。 6、前記常圧焼結によって得られるアルミナ質焼結体は
その嵩密度が理論密度の95%以上、特に好ましくは9
7%以上であって、破かいじん性(K_I_C)が3.
5MPam^1^/^2以上であることを特徴とする特
許請求の範囲第4項又は第5項記載の製造方法。
[Claims] 1. In a silicon carbide-containing alumina sintered body composed of a mixed composition containing 0.5 to 40% by weight of silicon carbide and the remainder being alumina as a main component. An alumina sintered body characterized by having a homogeneous composition in which the particle size of alumina is 10 μm or less and having particularly excellent fracture toughness (K_I_C). 2. Bulk density is 95% or more of the theoretical density, particularly preferably 9
7%, and the cracking toughness (K_I_C) is 3.5M.
The alumina sintered body according to claim 1, characterized in that Pam^1^/^2 or more. 8. The silicon carbide mainly has a β-type crystal structure, and its average particle size is 0.1 to 2.0 μm, and 0.5 to 2.0 μm.
It contains 5%, and the remainder has an average particle size of 0.1~
3. The alumina-based sintered body according to claim 1 or 2, characterized in that the alumina-based sintered body is composed of a composition whose main component is alumina having a 10 μm α-type crystal structure. 4. Silicon carbide powder 0.5 to 40% by weight and the remainder having a particle size of 1
After uniformly mixing a composition mainly composed of alumina powder of 0 μm or less and molding the uniformly mixed composition thus obtained into a desired shape, the molded body was heated to a temperature of 1300 to 190
A method for producing an alumina sintered body, characterized by sintering under normal pressure at a temperature of 0°C. 5. The silicon carbide powder mainly has a β-type crystal structure, and its average particle size is 0.01 to 2.0 μm.
.. It contains 5 to 5%, and the remainder has an average particle size of 0.
.. 5. The manufacturing method according to claim 4, wherein the starting material is a composition containing alumina having an α-type crystal structure of 05 to 10 μm as a main component. 6. The alumina sintered body obtained by the pressureless sintering has a bulk density of 95% or more of the theoretical density, particularly preferably 9.
7% or more, and the cracking toughness (K_I_C) is 3.
5. The manufacturing method according to claim 4 or 5, characterized in that it is 5 MPam^1^/^2 or more.
JP59144795A 1984-07-11 1984-07-11 Alumina sintered body and manufacture Pending JPS6121964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59144795A JPS6121964A (en) 1984-07-11 1984-07-11 Alumina sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59144795A JPS6121964A (en) 1984-07-11 1984-07-11 Alumina sintered body and manufacture

Publications (1)

Publication Number Publication Date
JPS6121964A true JPS6121964A (en) 1986-01-30

Family

ID=15370628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59144795A Pending JPS6121964A (en) 1984-07-11 1984-07-11 Alumina sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS6121964A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487552A (en) * 1987-09-30 1989-03-31 Koichi Niihara Sic-al2o3 composite sintered body and its production thereof
US4889835A (en) * 1987-09-30 1989-12-26 Ngk Insulators, Ltd. SiC-Al2 O3 composite sintered bodies and method of producing the same
JP2007111745A (en) * 2005-10-20 2007-05-10 Denso Corp Method and device for discriminating and evaluating abnormality of welding workpiece
WO2017131159A1 (en) * 2016-01-27 2017-08-03 住友大阪セメント株式会社 Ceramic material and electrostatic chuck apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487552A (en) * 1987-09-30 1989-03-31 Koichi Niihara Sic-al2o3 composite sintered body and its production thereof
EP0311289A1 (en) * 1987-09-30 1989-04-12 Ngk Insulators, Ltd. SiC-Al2O3 composite sintered bodies and method of producing the same
US4889834A (en) * 1987-09-30 1989-12-26 Ngk Insulators, Ltd. SiC-Al2 O3 composite sintered bodies and method of producing the same
US4889835A (en) * 1987-09-30 1989-12-26 Ngk Insulators, Ltd. SiC-Al2 O3 composite sintered bodies and method of producing the same
JP2507480B2 (en) * 1987-09-30 1996-06-12 晧一 新原 SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP2007111745A (en) * 2005-10-20 2007-05-10 Denso Corp Method and device for discriminating and evaluating abnormality of welding workpiece
WO2017131159A1 (en) * 2016-01-27 2017-08-03 住友大阪セメント株式会社 Ceramic material and electrostatic chuck apparatus
JP2017206436A (en) * 2016-01-27 2017-11-24 住友大阪セメント株式会社 Ceramic material, and electrostatic chuck device
JP6237954B1 (en) * 2016-01-27 2017-11-29 住友大阪セメント株式会社 Ceramic materials, electrostatic chuck device
US11387132B2 (en) 2016-01-27 2022-07-12 Sumitomo Osaka Cement Co., Ltd. Ceramic material and electrostatic chuck device

Similar Documents

Publication Publication Date Title
JPS6121964A (en) Alumina sintered body and manufacture
JPS6077174A (en) Manufacture of silicon nitride sintered body
JP4758617B2 (en) High-density silicon carbide ceramics and method for producing the same
JP2002053376A (en) Method for sintering silicon nitride ceramics
JPS6121965A (en) Alumina sintered body and manufacture
JPS60210571A (en) Silicon carbide-containing alumina sintered body and manufacture
JP3177650B2 (en) High-strength alumina sintered body and method for producing the same
JP3564165B2 (en) Method for producing silicon nitride reaction sintered body
KR101090275B1 (en) Ceramic compositions for mullite-bonded silicon carbide body, sintered body and its preparing method
JP2738596B2 (en) Ceramic composite sintered body and its manufacturing method
JP2652046B2 (en) Fiber reinforced composite sintered body
JPH0678195B2 (en) Aluminum nitride sintered body
JPS6344713B2 (en)
KR920006112B1 (en) Making method for high p carbide si sintering parts
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JPH0733286B2 (en) Method for manufacturing silicon carbide sintered body
JPH09268062A (en) Silicon carbide sintered compact and its production
JPH06247771A (en) Boron nitride composite material and its production
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPH05238829A (en) Sintered silicone nitride ceramic
JPS6059190B2 (en) Manufacturing method of alumina ceramics
JPS63117962A (en) Silicon carbide base sintered body and manufacture
JPH0575716B2 (en)
JPH01294581A (en) Production of sialon-nonoxide sintered form
JPH0627038B2 (en) Ceramics sintered body and manufacturing method thereof