JPS61218068A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS61218068A
JPS61218068A JP5804485A JP5804485A JPS61218068A JP S61218068 A JPS61218068 A JP S61218068A JP 5804485 A JP5804485 A JP 5804485A JP 5804485 A JP5804485 A JP 5804485A JP S61218068 A JPS61218068 A JP S61218068A
Authority
JP
Japan
Prior art keywords
lithium
battery
manganese dioxide
organic electrolyte
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5804485A
Other languages
Japanese (ja)
Other versions
JPH0763016B2 (en
Inventor
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Ebaredei KK
Original Assignee
Sony Ebaredei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Ebaredei KK filed Critical Sony Ebaredei KK
Priority to JP60058044A priority Critical patent/JPH0763016B2/en
Priority to EP86103796A priority patent/EP0196017B1/en
Priority to DE86103796T priority patent/DE3688533T2/en
Publication of JPS61218068A publication Critical patent/JPS61218068A/en
Priority to US07/138,347 priority patent/US4891282A/en
Publication of JPH0763016B2 publication Critical patent/JPH0763016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To decrease internal resistance and makes battery capacity constant by using lithium and aluminum in an anode of organic electrolyte battery, and limiting the amounts of lithium, manganese dioxide, and aluminum in a specified ratio. CONSTITUTION:Metallic lithium 3 having an aluminum foil 1 on its surface is used as anode active material. A manganese dioxide pellet 3 comprising electrolytic manganese dioxide is used as cathode active material. They are placed in an anode can 5 and a cathode can 6 with a separator 4 containing organic electrolyte interposed between them. When the thickness of lithium is t1 and that of aluminum is t2 and t2/t1 is indicated in X and the weight ratio of manganese dioxide to lithium (Li/MnO2) is indicated in Y, the amounts of Li, Al, and MnO2 are specified to meet the following relations; Y=0.2x+0.067, Y=0.2x+0.055, x>=0.03.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、陰極にLiを用い、陽極に二酸化マンガンを
用いるとともに、電解液に有機溶媒を用いた有機電解質
電池に関するものであり、さらに詳細には、この種の電
池の内部抵抗の改善に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an organic electrolyte battery using Li for the cathode, manganese dioxide for the anode, and an organic solvent for the electrolyte. relates to improving the internal resistance of this type of battery.

〔従来の技術〕[Conventional technology]

電気陰性度の大きい金属リチウムを負極活性物質として
使用し、陽極に二酸化マンガンを活物質とした有機電解
質電池は、上記金属リチウムの電極電位が極めて低いの
で約3Vと高い電池電圧を示すとともに、上記金属リチ
ウムの単位重量当たりの電気容量が大きいのでエネルギ
ー密度の高い電池の一つとして知られている。そして、
この種の電池では、電解液に有機溶媒、例えばプロピレ
ンカビボネートに過塩素酸リチウム等の電解質を溶かし
たものが使われ、この電解液中では金属リチウムも二酸
化マンガンも極めて安定なため、長期保存においても電
池容量の低下がなく、保存性の点でも非常に良好なもの
となっている。
An organic electrolyte battery that uses metallic lithium, which has high electronegativity, as a negative electrode active material and manganese dioxide as an anode active material exhibits a high battery voltage of about 3 V because the metallic lithium has an extremely low electrode potential, and also exhibits a high battery voltage of about 3 V. Metallic lithium has a large electrical capacity per unit weight, so it is known as one of the batteries with high energy density. and,
In this type of battery, an organic solvent such as propylene bicarbonate dissolved in an electrolyte such as lithium perchlorate is used for the electrolyte. Both lithium metal and manganese dioxide are extremely stable in this electrolyte, so they can be stored for long periods of time. However, there is no decrease in battery capacity, and the storage stability is also very good.

したがうて、近年、この有機電解質電池は、長期信頼性
を必要とする電子ウォッチやrcメモリーのバックアッ
プ電源として用途が広がりつつある。
Therefore, in recent years, organic electrolyte batteries have been increasingly used as backup power sources for electronic watches and RC memories that require long-term reliability.

ところで、上述の電池においては、従来、放電とともに
電池の内部抵抗が増加し、さらに、高温での保存によっ
ても同様に電池の内部抵抗が大きくなるという欠点があ
り、その改善が大きな課題となっている。上記電池の内
部抵抗の増加は、電池の有効利用の妨げとなり、例えば
放電末期に大きいパルス電流をとると、高内部抵抗のた
めに大きく電池電圧が下がり、大電流をパルスでとるよ
うな使用には、電池の持つ容量が最後まで有効に利用で
きない。
By the way, conventionally, the above-mentioned batteries have the disadvantage that the internal resistance of the battery increases with discharging, and furthermore, the internal resistance of the battery also increases with storage at high temperatures, and improvement of these problems has become a major issue. There is. The increase in the internal resistance of the battery mentioned above hinders the effective use of the battery. For example, if a large pulse current is taken at the end of discharge, the battery voltage will drop significantly due to the high internal resistance, making it difficult to use the battery to take a large current in pulses. In this case, the capacity of the battery cannot be used effectively until the end.

このような内部抵抗の増加の原因としては、先ず第一に
、一般に有機電解液中で金属リチウムは安定であるが、
非常に活性であるので、放電進行とともに、あるいは高
温下での保存中に、徐々にこの金属リチウム表面が有機
電解液と反応し、その表面に不活性な化合物被膜が生成
することが考えられる。
The reason for this increase in internal resistance is, first of all, that metallic lithium is generally stable in an organic electrolyte;
Because it is extremely active, it is thought that as discharge progresses or during storage at high temperatures, the surface of this metallic lithium gradually reacts with the organic electrolyte, forming an inactive compound film on its surface.

この場合、反応量は電池の容量の点ではぼとんど影響な
い程度のものであるが、生成したリチウム表面の被膜は
リチウムのアノード反応を大きく妨げる。このため、電
池の内部抵抗の増加をもたらす゛。
In this case, although the amount of reaction has almost no effect on the capacity of the battery, the formed film on the surface of lithium greatly impedes the anode reaction of lithium. This results in an increase in the internal resistance of the battery.

そこで、このような欠点を解消するために、例えば米国
特許第4002492号公報や米国特許第405688
5号公報にはリチウム・アルミニウム合金を使用するこ
とが提案されているが、これだけでは満足できる特性の
ものは得られていない。
Therefore, in order to eliminate such drawbacks, for example, US Patent No. 4002492 and US Patent No. 405688 are proposed.
Although Publication No. 5 proposes the use of a lithium-aluminum alloy, satisfactory characteristics have not been obtained with this alone.

一方、上記放電末期の内部抵抗の増加の原因としては、
陽極の二酸化マンガンも挙げられる。
On the other hand, the reasons for the increase in internal resistance at the end of discharge are as follows:
Also mentioned is manganese dioxide for the anode.

一般に、二酸化マンガンを正極活性物質とするリチウム
電池の放電反応は、 Mn  O,+L i−*L i”Mn  O。
Generally, the discharge reaction of a lithium battery using manganese dioxide as the positive electrode active material is MnO, +Li-*Li''MnO.

であると提唱されている。It is proposed that.

このようなリチウム電池においては、放電時、負極のリ
チウムが正極に移行する形態をとり、放電に伴い上記正
極には放電生成物が増加して内部抵抗が増大し、その結
果、電池の放電特性が放電末期において緩慢な電圧降下
を生ずる。これは、リチウム負極の容量を陽極二酸化マ
ンガンの容量以上に大とし、二酸化マンガンの利用効率
を高くするため正極支配としているためで、このような
電池を液晶、LSI等の電源として用いる場合、不都合
が生じる。すなわち、例えば液晶は、一般に約2.4v
以上で作動し、約1.8V以下で不動作域にある。そし
て、1.8V〜2.4vの間は、不安定な状態にあり、
誤動作を生じ易い。
In such a lithium battery, during discharge, lithium from the negative electrode migrates to the positive electrode, and as discharge occurs, discharge products increase at the positive electrode, increasing internal resistance, and as a result, the discharge characteristics of the battery change. causes a slow voltage drop at the end of discharge. This is because the capacity of the lithium negative electrode is larger than the capacity of the manganese dioxide anode, and the positive electrode is dominant in order to increase the utilization efficiency of manganese dioxide, which is inconvenient when using such a battery as a power source for liquid crystals, LSIs, etc. occurs. That is, for example, liquid crystals generally have a voltage of about 2.4v.
It operates at voltages above 1.8V and is in the non-operating range at voltages below approximately 1.8V. And between 1.8V and 2.4V, it is in an unstable state,
Easy to cause malfunction.

したがって、電池特性としては、放電末期に電池電圧が
急激に降下するものが望ましく、そのためには、負極リ
チウムの容量を陽極の容量より小さく、すなわちリチウ
ム負極支配として設計するのがよい。ここで、負極支配
の電池を設計するにあたっては、電池の中に入れる負極
活物質リチウムの重量と陽極活物質二酸化マンガンの重
量比が重要である。例えばリチウムの重量が多すぎると
電池容量が小さくなりすぎ、逆に二酸化マンガンの重量
が多すぎると放電末期に緩慢な電圧降下を示す放電特性
を示す。これに対して、リチウムと二酸化マンガンの重
量比を適正なものとすれば、放電末期の電圧から急激に
電圧が降下し、使用上好ましい。
Therefore, it is desirable that the battery characteristics be such that the battery voltage drops rapidly at the end of discharge, and for this purpose, the capacity of the negative electrode lithium is preferably smaller than the capacity of the anode, that is, the negative electrode is designed to be dominated by lithium. Here, in designing a negative electrode-dominated battery, the weight ratio of the negative electrode active material lithium and the positive electrode active material manganese dioxide contained in the battery is important. For example, if the weight of lithium is too large, the battery capacity will be too small, and conversely, if the weight of manganese dioxide is too large, the battery will exhibit discharge characteristics that show a slow voltage drop at the end of discharge. On the other hand, if the weight ratio of lithium and manganese dioxide is appropriate, the voltage will drop rapidly from the voltage at the end of discharge, which is preferable for use.

しかしながら、単にリチウムと二酸化マンガンの重量比
をコントロールしただけでは、上述のように末期に内部
抵抗が増加するのを抑えることはできない。
However, simply controlling the weight ratio of lithium and manganese dioxide cannot prevent the internal resistance from increasing in the final stage as described above.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、従来の有機電解質電池では、放電末期の内
部抵抗の増加は避けられず、誤動作や放電容量の低下等
の原因となっていた。
As described above, in conventional organic electrolyte batteries, an increase in internal resistance at the end of discharge is unavoidable, causing malfunctions and reductions in discharge capacity.

そこで本発明は、上述の従来の有機電解質電池の有する
欠点を解決するために提案されたものであって、放電末
期における内部抵抗の上昇を抑え、電池容量が大きく、
かつ最後まで電池電圧が安定で誤動作等の少ない有機電
解質電池を提供することを目的とする。
Therefore, the present invention was proposed to solve the above-mentioned drawbacks of the conventional organic electrolyte battery, and it suppresses the increase in internal resistance at the end of discharge, increases battery capacity,
Another object of the present invention is to provide an organic electrolyte battery in which the battery voltage is stable until the end and there are few malfunctions.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、有機電解質電池の抵抗特性を改善せんもの
と長期に亘り鋭意研究の結果、陰極にアルミニウムを含
むリチウムを用いることによって、表面の不活性化が抑
制され内部抵抗の増加が抑止され、さらに、これらリチ
ウム及びアルミニウムや陽極に使用する二酸化マンガン
の量を所定の範囲に設定することにより、電池容量を大
きなものとすることができることを見出すに至った。
As a result of long-term intensive research to improve the resistance characteristics of organic electrolyte batteries, the inventor of the present invention has found that by using lithium containing aluminum for the cathode, surface inactivation can be suppressed and an increase in internal resistance can be suppressed. Furthermore, the inventors have discovered that the battery capacity can be increased by setting the amounts of lithium and aluminum and manganese dioxide used in the anode within predetermined ranges.

本発明はこのような知見に基づいて完成されたものであ
って、Liを主体とじA1を含む陰極と二酸化マンガン
を主体とする陽極と有機電解液よりなり、上記陰極を構
成するLiとAIlの量の比をLiの厚さり、およびA
Nの厚さt2の比h/ltで表しこのt2/tl+をX
とし、Liに対する二酸化マンガンの重量比(L i 
/ M n Oz)をyとしたときに、 )’=0.2x+0.067 y = 0.2 x + 06055 X≧0.03 でかこまれる領域に含まれるようにLi、Alおよび二
酸化マンガンの量を選定したことを特徴とするものであ
る。
The present invention was completed based on such knowledge, and consists of a cathode mainly composed of Li and containing A1, an anode mainly composed of manganese dioxide, and an organic electrolyte, and consists of a cathode mainly composed of Li and A1, an anode mainly composed of manganese dioxide, and an organic electrolyte. The ratio of the amount to the thickness of Li and A
The thickness t2 of N is expressed as the ratio h/lt, and this t2/tl+ is expressed as
and the weight ratio of manganese dioxide to Li (L i
/MnOz) is y, then )'=0.2x+0.067 y = 0.2 x + 06055 It is characterized by the selection of

本発明の有機電解質電池は、例えば第1図に示すように
、表面にアルミニウム箔(1)を貼り付けた金属リチウ
ム(2)を陰極活性物質とし、電解二酸化マンガン等の
二酸化マンガンペレット(3)を陰極活性物質とすると
ともに、これらを有機電解液を含有するセパレータ(4
)を介して陰極罐(5)及び陽極罐(6)内に充填して
構成されるものである。有機電解液としては、一般に、
炭酸プロピレン、ブチロラクトン5テトラヒドロフラン
、1゜2−ジメトキシエタン、l、3−ジオキソラン等
の単独もしくは2種以上の混合溶媒に、過塩素酸リチウ
ムまたはホウフッ化リチウム等の電解質を溶解させたも
の等が使用される。
For example, as shown in FIG. 1, the organic electrolyte battery of the present invention uses metallic lithium (2) with aluminum foil (1) attached to the surface as the cathode active material, and manganese dioxide pellets (3) such as electrolytic manganese dioxide. is used as a cathode active material, and these are used as a separator (4) containing an organic electrolyte.
) is filled into the cathode can (5) and the anode can (6). Generally, organic electrolytes include:
Used is a solution in which an electrolyte such as lithium perchlorate or lithium fluoroborate is dissolved in a solvent such as propylene carbonate, butyrolactone 5-tetrahydrofuran, 1゜2-dimethoxyethane, 1,3-dioxolane, etc. alone or in a mixture of two or more. be done.

ここで、先ず、上記陰極活性物質においては、金属リチ
ウム(2)の量とアルミニウム箔(1)の量の比が重要
であって、金属リチウム(2)の厚さをLlp アルミ
ニウム箔(1)の厚さをttとしたときに、これらの比
t2/tl+ (以下、Xとする。)が0.03以上で
あることが好ましい。この値が0.03未満であると、
すなわちリチウムの量が多すぎると、内部抵抗の増加を
充分に抑制することができない。
First, in the cathode active material, the ratio between the amount of metallic lithium (2) and the amount of aluminum foil (1) is important, and the thickness of metallic lithium (2) is Llp.Aluminum foil (1) It is preferable that the ratio t2/tl+ (hereinafter referred to as X) is 0.03 or more, where tt is the thickness of . If this value is less than 0.03,
That is, if the amount of lithium is too large, an increase in internal resistance cannot be sufficiently suppressed.

また、上記Xの値が0.03以上であれば、放電末期に
おける内部抵抗が抑えられるが、あまり大きすぎると、
すなわちアルミニウムの量が多すぎると、電気容量が減
少する虞れがある。この原因については、その詳細は不
明であるが、金属リチウムが、このリチウムに貼り付け
たアルミニウム箔中に拡散し、アルミニウム箔がLi−
A2合金となり、電池反応に直接寄与できないLiが生
じるためと考えられる。したがって、実用的な範囲とし
ては、0.03≦x50.IQである。
In addition, if the value of X is 0.03 or more, the internal resistance at the final stage of discharge can be suppressed, but if it is too large,
That is, if the amount of aluminum is too large, there is a risk that the electric capacity will decrease. Although the details of the cause of this are unknown, metallic lithium diffuses into the aluminum foil attached to the lithium, and the aluminum foil becomes Li-
This is thought to be due to the formation of Li, which becomes an A2 alloy and cannot directly contribute to the battery reaction. Therefore, the practical range is 0.03≦x50. It is IQ.

なお、この例では金属リチウムの表面にアルミニウム箔
を貼り付けているが、アルミニウムはリチウム表面に合
金の状態で含まれていてもよい。
Note that in this example, aluminum foil is attached to the surface of metallic lithium, but aluminum may be included in the state of an alloy on the surface of lithium.

この場合にも、アルミニウムの量は、前述のような厚さ
の比に対応するような組成となっていればよい。
In this case as well, the amount of aluminum may have a composition that corresponds to the thickness ratio as described above.

一方、上述のように陰極活性物質である金属リチウムの
表面にアルミニウムを含有させると、電池反応に関与す
る実質的なリチウムの量が減少する。したがって、負極
リチウムの容量を陽極の容量より小さく、すなわち負極
支配として電池を設計し、放電特性を向上しかつ放電容
量を高くしようとすると、アルミニウムの含有量も考慮
してリチウムと二酸化マンガンの重量比を適正なものと
する必要がある。
On the other hand, when aluminum is contained on the surface of metallic lithium, which is the cathode active material, as described above, the substantial amount of lithium involved in the battery reaction is reduced. Therefore, if you design a battery so that the capacity of the negative electrode lithium is smaller than the capacity of the anode, that is, the negative electrode dominates, to improve the discharge characteristics and increase the discharge capacity, the weight of lithium and manganese dioxide, taking into account the aluminum content, will be reduced. It is necessary to make the ratio appropriate.

本発明者の実験によれば、上記リチウムとアルミニウム
の比Xと、リチウムと二酸化マンガンの重量比yとは相
関関係にあり、これらが次式、3’ = 0.2 x 
+ 0.064なる関係にあるときに、電池容量は最大
値を示すことがわかった。そして、リチウムと二酸化マ
ンガンの重量比yは、放電容量の点から、V = 0.
2 x + 0.055 よりも多く、また、放電特性の点から、y=0.2 x
+0.067 よりも少なければ、実用可能であることがねかった。な
お、ここで、上記二酸化マンガンの量は、市販の電解二
酸化マンガンを200〜400℃で熱処理して得たもの
の重量とする。
According to the inventor's experiments, there is a correlation between the ratio X of lithium and aluminum and the weight ratio y of lithium and manganese dioxide, which is expressed by the following formula, 3' = 0.2 x
It was found that the battery capacity shows the maximum value when the relationship is +0.064. From the viewpoint of discharge capacity, the weight ratio y of lithium and manganese dioxide is V = 0.
2 x + 0.055, and from the point of view of discharge characteristics, y=0.2 x
If it was less than +0.067, it would be practical. Here, the amount of manganese dioxide is the weight of commercially available electrolytic manganese dioxide obtained by heat-treating it at 200 to 400°C.

〔作用〕[Effect]

このように、有機電解質電池の陰極活性物質にアルミニ
ウムを含む金属リチウムを用いるとともに、これらアル
ミニウム量とリチウム量の比を所定の範囲に設定すると
ともに、リチウム量と陽極の二酸化マンガン量の比を上
記アルミニウム量とリチウム量の比に対応して所定の範
囲に設定することにより、陰極表面の不活性化が防止さ
れ内部抵抗の増加が抑制されるとともに、緩慢な電圧降
下が改善され、電池容量が確保される。
In this way, metallic lithium containing aluminum is used as the cathode active material of the organic electrolyte battery, and the ratio of the amount of aluminum to the amount of lithium is set within a predetermined range, and the ratio of the amount of lithium to the amount of manganese dioxide in the anode is set as above. By setting the ratio of aluminum to lithium within a predetermined range, inactivation of the cathode surface is prevented, an increase in internal resistance is suppressed, slow voltage drop is improved, and battery capacity is increased. Secured.

〔実施例〕〔Example〕

実験例1゜ 市販の電解二酸化マンガンを300℃で約5時間熱処理
したもの88゜9重量部に、9.3重量部のグラファイ
トを加え、さらに1.8重量部のテフロンをバインダと
して加えて陽極ミックスとし、これを直径15.5n+
n+、重量0.655 gの陽極ペレットを作製した。
Experimental Example 1 9.3 parts by weight of graphite was added to 88°9 parts by weight of commercially available electrolytic manganese dioxide heat-treated at 300°C for about 5 hours, and 1.8 parts by weight of Teflon was added as a binder to form an anode. Mix and make this into a diameter of 15.5n+
n+ anode pellets weighing 0.655 g were prepared.

次に、厚さ0゜40m−のリチウム箔を直径15.5I
I11に打ち抜き、アノードカップに貼り付け、さらに
このリチウム箔上に、厚さ0.007ma+から0.0
6au++の厚さのアルミニウム箔を同じ直径に打ち抜
いて押しつけ、貼り合わせリチウム陰極を形成した。
Next, a lithium foil with a thickness of 0°40m was placed in a diameter of 15.5I.
I11 is punched out, pasted on the anode cup, and then on this lithium foil with a thickness of 0.007ma+ to 0.0mm.
A 6au++ thick aluminum foil was punched out to the same diameter and pressed together to form a bonded lithium cathode.

さらに、このリチウム陰極上にセパレータを置き、プラ
スチックのガスケットをはめこみ、電解液としてI M
ol/ ItのLiC1o4を溶解したプロピレンカー
ボネートを注入し、先の陽極ペレットを入れてカソード
、カンをかぶせ、シールして第1図に示すような有機電
解質電池を組み立てた。
Furthermore, a separator is placed on top of this lithium cathode, a plastic gasket is fitted, and IM is used as an electrolyte.
Propylene carbonate in which LiC1o4 of ol/It was dissolved was injected, the anode pellet was put in, the cathode and the can were covered, and the organic electrolyte battery as shown in FIG. 1 was assembled by sealing.

ここで、A 1 / L iの厚さの比が0.0017
5のものを試料1,0.037のものを試料2.0.0
74のものを試料3,0.112のものを試料4゜Q、
 l 5 Qのものを試料5とした。
Here, the thickness ratio of A 1 / Li is 0.0017
5 for sample 1, 0.037 for sample 2.0.0
74 is sample 3, 0.112 is sample 4゜Q,
The one with l 5 Q was designated as sample 5.

また、アルミニウム箔を貼り合わせないで上記各試料と
同様の方法で有機電解質電池を組み立て、これを比較例
とした。
In addition, an organic electrolyte battery was assembled in the same manner as the above samples without bonding aluminum foil, and this was used as a comparative example.

上述の各試料及び比較例について、その内部抵抗の変化
を調べた。結果を第2図に示す。
Changes in internal resistance of each of the above-mentioned samples and comparative examples were investigated. The results are shown in Figure 2.

この第2図より、アルミニウム箔を貼り付けたリチウム
陰極の電池は、比較例に比べて非常に内部抵抗が低く、
放電中や保存中に内部抵抗の変化が少ない電池であるこ
とがわかった。
From this figure 2, the internal resistance of the battery with a lithium cathode pasted with aluminum foil is much lower than that of the comparative example.
It was found that the battery showed little change in internal resistance during discharge and storage.

この傾向をより明確なものとするために、AN/Liの
厚さの比と80%放電後の電池の内部抵抗の関係を第4
図に示す。この第4図より、Alの含有量を増やすのに
伴って、内部抵抗が急激に減少することがわかる。
In order to make this tendency more clear, we investigated the relationship between the AN/Li thickness ratio and the internal resistance of the battery after 80% discharge.
As shown in the figure. From FIG. 4, it can be seen that as the Al content increases, the internal resistance rapidly decreases.

しかしながら、これだけでは次のような不具合も発見さ
れた。すなわち、リチウムにアルミニウム箔を貼り付け
た電池においては、そのAN/Liの質さの比が増大す
るにつれ第2図に示すように内部抵抗の低い、かつ放電
中の抵抗変化の少ないものとなるが、第3図に示すよう
に電気容量は逆に減り、その減少する量はAl/L、i
の厚さの比が大きくなるほど大きい。
However, the following problems were also discovered. In other words, in a battery with aluminum foil attached to lithium, as the AN/Li quality ratio increases, the internal resistance becomes lower and the resistance changes less during discharging, as shown in Figure 2. However, as shown in Figure 3, the capacitance decreases, and the amount of decrease is Al/L, i
The larger the ratio of the thicknesses of the

したがって、アルミニウム箔を貼り付けたリチウム陰極
を設けた有機電解質電池では、Li/Mn0zの重量比
をAffiの含有量を考慮して求める必要がある。
Therefore, in an organic electrolyte battery provided with a lithium cathode to which aluminum foil is attached, the weight ratio of Li/Mn0z needs to be determined in consideration of the Affi content.

そこで、本発明者は、アルミニウム箔を貼り付けたリチ
ウム陰極を設けた有機電解質電池のLi/ M n O
□の適正な重量比を次のような実験によりもとめた。
Therefore, the present inventor developed an organic electrolyte battery with a lithium cathode attached with aluminum foil.
The appropriate weight ratio of □ was determined through the following experiment.

実験例2゜ 実験例1により、80%の放電時まで好ましい内部抵抗
値(15Ω以下)を示すのは、A6/Liの厚さの比が
0.03以上であることがわかった。
Experimental Example 2 According to Experimental Example 1, it was found that a preferable internal resistance value (15Ω or less) was exhibited up to 80% discharge when the A6/Li thickness ratio was 0.03 or more.

そこで、アノードカップに種々の厚さのアルミニウム箔
を貼り付け、A 1! / L iの厚さの比が0゜0
3から0.10となるものを用意した。
Therefore, aluminum foils of various thicknesses were attached to the anode cup, and A1! / Li thickness ratio is 0°0
3 to 0.10 was prepared.

さらに、陽極ペレットとして、種々の重量のMnO□(
300℃、4時間熱処理)を含むもの用意して、先の実
験例1と同様に第1図に示すような構成のを機雷解質電
池を組み立てた。ただし、電池の外径は20mm、高さ
が2.45 mmとなるようにした。
Furthermore, various weights of MnO□(
In the same manner as in Experimental Example 1, a mine decomposition battery having the configuration shown in FIG. 1 was assembled. However, the outer diameter of the battery was 20 mm and the height was 2.45 mm.

得られた各電池はA l / L iの厚さの比が0.
03から0゜10で、かつL i / M n Oz重
量比が0゜60から0.90のものでありた。
Each of the resulting cells had a thickness ratio of A l /L i of 0.
0.03 to 0.10, and the L i /M n Oz weight ratio was 0.60 to 0.90.

これら各電池を3にΩの定抵抗で放電させ、その容量を
測定した。結果を次表に示す。
Each of these batteries was discharged at a constant resistance of 3Ω, and the capacity was measured. The results are shown in the table below.

(以下余白) また、この表から、電池、容量が最大となるときのA 
l / L iの厚さの比XとLt/MnO,重量比y
の関係を求めたところ、第5図に示すように、? = 
0.2 x + 0.064 であることがわかった。
(Left below) Also, from this table, we can see that the battery has the maximum capacity A.
l/Li thickness ratio X and Lt/MnO, weight ratio y
As shown in Figure 5, we found the relationship between ? =
It was found that 0.2 x + 0.064.

さらに、電池サイズとしては、130mAH以上である
ことが望ましいことを考えれば、y=0.2x+0.0
67 y = 0.2 x + 00055 の範囲であればよいことがわかった。
Furthermore, considering that the battery size is preferably 130mAH or more, y=0.2x+0.0
It was found that the range of 67 y = 0.2 x + 00055 is sufficient.

もしも、この範囲を外れて電池を作製すると、125m
AH以下の容量となってしまう。また、表中、カッコで
示した数字は、放電特性より判断して、すなわち放電末
期の放電電圧の緩慢な電圧降下から判断して、正極支配
となっているため、実際の電池設計にあたっては、避け
ることが望ましい。
If you make a battery outside of this range, it will take 125m.
The capacity becomes less than AH. In addition, the numbers shown in parentheses in the table indicate that the positive electrode is dominant, judging from the discharge characteristics, that is, judging from the slow voltage drop in the discharge voltage at the end of discharge, so in actual battery design, It is advisable to avoid it.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明の有機電解質
電池においては、陰極にアルミニウムを含む金属リチウ
ムを用いるとともに、このリチウム量と陽極の二酸化マ
ンガン量を上記アルミニウムの含有量を考慮して設定し
ているので、内部抵抗が非常に小さくなっている。
As is clear from the above explanation, in the organic electrolyte battery of the present invention, metallic lithium containing aluminum is used for the cathode, and the amount of this lithium and the amount of manganese dioxide in the anode are set in consideration of the above aluminum content. Therefore, the internal resistance is extremely small.

また、本発明の有機電解質電池は、電池容量が大きく、
放電特性に優れ、誤動作が少ない信頼性の高いものとな
る。
Further, the organic electrolyte battery of the present invention has a large battery capacity,
It has excellent discharge characteristics and is highly reliable with few malfunctions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る有機電解質電池の断面図である。 第2図はA l / L iの厚さの比の変化に伴う放
電電圧カーブの変化を示す特性図、第3図は/1/Li
の厚さの比の変化に伴う内部抵抗変化を示す特性図であ
る。 第4図はA l / L iの厚さの比と80%放電時
の内部抵抗値の関係を示す特性図である。 第5図は電池容量および放電特性の点で好ましい範囲を
Af/Liの厚さの比(x)とLi/Mno□重量比(
y)の関係として示す特性図である。 1・・・アルミニウム箔 2・・・金属リチウム 3・・・二酸化マンガンペレット 4・・・セパレータ 特許出願人 ソニー・エバレディ株式会社代理人 弁理
士      小部  見回       円相 榮− 街イ特電解蔓電氾のM励記 $111 手続ネ甫正書(自発) 昭和60年4月30日 特許庁長官 志 賀  学 殴        リハ1
、事件の表示 昭和60年 特許願書58044号 2、発明の名称 有機電解質電池 3、補正をする者 事件との関係  特許出願人 住所 東京都渋谷区渋谷2丁目22番3号名称 ソニー
・エバレディ株式会社 代表者 仙 波  昂 4、代理人 住所 〒105東京都港区虎ノ門2丁目6番4号第11
森ビル11階↑t!L (50B)8266代自発 6.補正の対象 明細書の「発明の詳細な説明」の欄 7、補正の内容 明細書第5頁第18行目に「多すぎる」とある記載を「
少なすぎる」と訂正する。 明細書第5頁第20行目に「多すぎる」とある記載を「
少なすぎる」と訂正する。 (以上)
FIG. 1 is a sectional view of an organic electrolyte battery according to the present invention. Figure 2 is a characteristic diagram showing changes in the discharge voltage curve with changes in the thickness ratio of A l / Li;
FIG. 3 is a characteristic diagram showing changes in internal resistance due to changes in thickness ratio. FIG. 4 is a characteristic diagram showing the relationship between the thickness ratio of A l /L i and the internal resistance value at 80% discharge. Figure 5 shows the preferable ranges in terms of battery capacity and discharge characteristics between the Af/Li thickness ratio (x) and the Li/Mno weight ratio (x).
y); FIG. 1... Aluminum foil 2... Metallic lithium 3... Manganese dioxide pellets 4... Separator Patent applicant Sony Everady Co., Ltd. Representative Patent attorney Mimi Kobe Sakae Enso - Machii Toku Electrolyte Tsuden Flood M Encouragement $111 Procedural Neho Authorization (Spontaneous) April 30, 1985 Commissioner of the Patent Office Manabu Shiga Rehearsal 1
, Indication of the case 1985 Patent application No. 58044 2 Name of the invention Organic electrolyte battery 3 Relationship to the case by the person making the amendment Patent applicant address 2-22-3 Shibuya, Shibuya-ku, Tokyo Name Sony Everady Corporation Representative: Ko Senami 4, Agent address: 11, 2-6-4 Toranomon, Minato-ku, Tokyo 105
Mori Building 11th floor↑t! L (50B) 8266th volunteer 6. In column 7 of "Detailed Description of the Invention" of the specification subject to amendment, on page 5, line 18 of the specification of contents of the amendment, the statement "too many" has been changed to "
It's too little," he corrected. The statement “Too much” on page 5, line 20 of the specification has been changed to “
It's too little," he corrected. (that's all)

Claims (1)

【特許請求の範囲】  Liを主体としAlを含む陰極と二酸化マンガンを主
体とする陽極と有機電解液よりなり、上記陰極を構成す
るLiとAlの量の比をLiの厚さt_1およびAlの
厚さt_2の比t_2/t_1で表しこのt_2/t_
1をxとし、Liに対する二酸化マンガンの重量比(L
i/MnO_2)をyとしたときに、y=0.2x+0
.067 y=0.2x+0.055 x≧0.03 でかこまれる領域に含まれるようにLi、Alおよび二
酸化マンガンの量を選定したことを特徴とする有機電解
質電池。
[Claims] The cathode is composed of a cathode mainly composed of Li and containing Al, an anode mainly composed of manganese dioxide, and an organic electrolyte, and the ratio of the amounts of Li and Al constituting the cathode is determined by the thickness t_1 of Li and the thickness This t_2/t_ is expressed as the ratio t_2/t_1 of the thickness t_2.
1 is x, and the weight ratio of manganese dioxide to Li (L
When i/MnO_2) is y, y=0.2x+0
.. 067 y=0.2x+0.055 x≧0.03 An organic electrolyte battery characterized in that the amounts of Li, Al, and manganese dioxide are selected so as to be included in the region enclosed by 0.03.
JP60058044A 1985-03-22 1985-03-22 Organic electrolyte battery Expired - Lifetime JPH0763016B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60058044A JPH0763016B2 (en) 1985-03-22 1985-03-22 Organic electrolyte battery
EP86103796A EP0196017B1 (en) 1985-03-22 1986-03-20 Organic electrolyte cell
DE86103796T DE3688533T2 (en) 1985-03-22 1986-03-20 Cell with organic electrolyte.
US07/138,347 US4891282A (en) 1985-03-22 1987-12-28 Organic electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60058044A JPH0763016B2 (en) 1985-03-22 1985-03-22 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS61218068A true JPS61218068A (en) 1986-09-27
JPH0763016B2 JPH0763016B2 (en) 1995-07-05

Family

ID=13072931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60058044A Expired - Lifetime JPH0763016B2 (en) 1985-03-22 1985-03-22 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0763016B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170163A (en) * 1986-01-21 1987-07-27 Sony Corp Organic electrolyte battery
JPH01232661A (en) * 1988-03-11 1989-09-18 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
US7588860B2 (en) 2004-09-03 2009-09-15 Panasonic Corporation Lithium primary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5375434A (en) * 1976-12-15 1978-07-04 Exxon Research Engineering Co Method of manufacturing lithiummaluminum alloy electrode
JPS5549862A (en) * 1978-10-06 1980-04-10 Hitachi Ltd Nonaqueous electrolytic battery
JPS58111271A (en) * 1981-12-23 1983-07-02 Seiko Instr & Electronics Ltd Nonaqueous electrolyte battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5375434A (en) * 1976-12-15 1978-07-04 Exxon Research Engineering Co Method of manufacturing lithiummaluminum alloy electrode
JPS5549862A (en) * 1978-10-06 1980-04-10 Hitachi Ltd Nonaqueous electrolytic battery
JPS58111271A (en) * 1981-12-23 1983-07-02 Seiko Instr & Electronics Ltd Nonaqueous electrolyte battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170163A (en) * 1986-01-21 1987-07-27 Sony Corp Organic electrolyte battery
JPH0831318B2 (en) * 1986-01-21 1996-03-27 ソニー株式会社 Organic electrolyte battery
JPH01232661A (en) * 1988-03-11 1989-09-18 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
US7588860B2 (en) 2004-09-03 2009-09-15 Panasonic Corporation Lithium primary battery

Also Published As

Publication number Publication date
JPH0763016B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
JPS5949673B2 (en) A battery with a cathode made of a light metal, a nonaqueous electrolyte, and an anode
JPH07302597A (en) Lithium battery
JPS6149373A (en) Negative electrode active material for alkali dry cell
US4490449A (en) Cell solvent
US4399202A (en) Lithium battery
JPS61218068A (en) Organic electrolyte battery
US4891282A (en) Organic electrolyte cell
US4048403A (en) Non-aqueous lead dioxide cell having a unipotential discharge voltage
JP2001332250A (en) Alkaline dry cell
CA1043865A (en) Galvanic cell with anode of light metal, non-aqueous electrolyte, and cathode with pb3o4 as active material
US3708344A (en) Organic depolarizer
JPS62170163A (en) Organic electrolyte battery
JP2812943B2 (en) Organic electrolyte battery
JPS61294756A (en) Organic electrolyte battery
JP3014714B2 (en) Non-aqueous electrolyte for lithium secondary batteries and lithium secondary batteries
JPS63226881A (en) Nonaqueous electrolyte cell
JP2754563B2 (en) Non-aqueous electrolyte secondary battery
JP2521909B2 (en) Lithium / manganese dioxide secondary battery
JPH0254870A (en) Organic electrolyte battery
JP2980618B2 (en) Organic electrolyte primary battery
JPS61227365A (en) Organic electrolyte battery
JPS63114062A (en) Lithium-manganese dioxide secondary battery
JPS62126560A (en) Nonaqueous electrolyte battery
JP2000012044A (en) Nonaqueous electrolytic solution primary battery
JPS63121250A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term