JPS61217657A - Cryogenic liquefying refrigerator - Google Patents

Cryogenic liquefying refrigerator

Info

Publication number
JPS61217657A
JPS61217657A JP5582585A JP5582585A JPS61217657A JP S61217657 A JPS61217657 A JP S61217657A JP 5582585 A JP5582585 A JP 5582585A JP 5582585 A JP5582585 A JP 5582585A JP S61217657 A JPS61217657 A JP S61217657A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant gas
low
pressure
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5582585A
Other languages
Japanese (ja)
Inventor
松田 紀元
典英 佐保
進 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5582585A priority Critical patent/JPS61217657A/en
Publication of JPS61217657A publication Critical patent/JPS61217657A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 木光明は極低温液化冷凍機に係り、特に小型の液化冷凍
taに好適な極低温液化冷凍Ilc関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] Kikomei relates to cryogenic liquefaction refrigerators, and particularly to cryogenic liquefaction refrigerators Ilc suitable for small-sized liquefaction refrigerators TA.

〔発明の背景〕[Background of the invention]

従来の装置は冷媒ガスを液化する機能のみで。 Conventional equipment only has the function of liquefying refrigerant gas.

液化された冷媒ガスは気液分離器で分離さn、液化冷媒
ガスはトランスファチューブで別に設置さnたデユワ−
に移送さj、て貯蔵さrL、必要に応じてさらにトラン
スファチューブで被冷却体(例えば超電導マグネット、
クライオパネル等)入び被冷却体を収納したクライオス
タット等に移送されていた。
The liquefied refrigerant gas is separated in a gas-liquid separator, and the liquefied refrigerant gas is separated in a separate dewar using a transfer tube.
If necessary, transfer tubes are used to transfer objects to be cooled (e.g. superconducting magnets,
It was transferred to a cryostat, etc., which housed the object to be cooled (cryopanel, etc.).

しかしながら、この従来方式の極低温液化冷凍機の場會
、極低温液化冷凍機とは別にデユワ−を設置しなければ
ならないという不経済な問題があった。
However, this conventional cryogenic liquefaction refrigerator has an uneconomical problem in that a dewar must be installed separately from the cryogenic liquefaction refrigerator.

特に液体ヘリウムのデユワ−は外からの熱侵入による蒸
発損失を極力低減させるために通常スーパーインシュレ
ーションと呼ばれる真空多層断熱を施すなどしており、
高価につくばかりでなく、ふく射熱侵入を低減する目的
で液体窒素で冷却さrたシールドを有することが多く、
この場合tこけ定期的な液体窒素の補給が必要になるな
ど、取扱いが煩11kになるなどの問題もあった。
In particular, liquid helium dewars are usually equipped with vacuum multilayer insulation called super insulation in order to minimize evaporation loss due to heat intrusion from the outside.
Not only are they expensive, but they often have a shield cooled with liquid nitrogen to reduce radiation heat intrusion.
In this case, there were problems such as the need for periodic replenishment of liquid nitrogen, which made handling cumbersome.

なお、この種の装置として関連するものtこは例えば、
特公昭58−21186号公報および特開昭59−10
9751号公報等が挙げられる。
In addition, related devices of this type include, for example,
Japanese Patent Publication No. 58-21186 and Japanese Patent Publication No. 59-10
Publication No. 9751 and the like can be mentioned.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、デユワ−を真空保冷槽内に収納して、
真空保冷槽外部に設ける補語ななくしコンパクトで経済
的な極低温液化冷凍機を提供することにある。
The object of the present invention is to store the dewar in a vacuum cold storage tank,
An object of the present invention is to provide a compact and economical cryogenic liquefaction refrigerator that does not require a complement provided outside a vacuum cold storage tank.

〔発明の概要〕[Summary of the invention]

本発明は、常温、低圧の冷媒ガスを高圧の冷媒ガスにす
る圧縮機と、高圧の冷媒ガスを膨張させて寒冷を発生さ
せる膨張機と、Wi記正圧縮機ら吐出される側の高圧の
冷媒ガスと前記圧縮機へ戻る側の低圧の冷媒ガスとを熱
交換させる熱交換器と、低温、高圧の冷媒ガスを膨張さ
せてジュールトムソン効果によって液化させる膨張弁と
、餌記膨張機、熱交換器および膨張弁のそれら低温部分
な収納する真空保冷槽と、前記真空保冷槽内に設けられ
!l′i前記液化した冷媒ガスを貯蔵するデユワ−と、
l!ff記真空保冷槽内の周囲を囲む熱交換器およびシ
ールド板とかあ構成したことを特徴とし、デュクーを真
空保冷槽内?こ収納して、真空保冷槽外部に設ける補語
ななくしコンパクトで経済的にしたものである。
The present invention includes a compressor that converts refrigerant gas at room temperature and low pressure into high-pressure refrigerant gas, an expander that expands the high-pressure refrigerant gas to generate cold air, and a high-pressure compressor on the side discharged from the normal compressor. a heat exchanger that exchanges heat between the refrigerant gas and the low-pressure refrigerant gas returning to the compressor; an expansion valve that expands the low-temperature, high-pressure refrigerant gas and liquefies it by the Joule-Thomson effect; A vacuum cold storage tank for storing the low temperature parts of the exchanger and the expansion valve, and a vacuum cold storage tank provided within the vacuum cold storage tank! a dewar for storing the liquefied refrigerant gas;
l! It is characterized by a heat exchanger and a shield plate surrounding the inside of the vacuum cold storage tank. By storing this, there is no supplement provided outside the vacuum cold storage tank, making it compact and economical.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図と第2図とにより説明する。 An embodiment of the present invention will be described with reference to FIGS. 1 and 2.

lは高圧のヘリウムガスを生成する圧縮機、2は高圧配
管19と低圧シェル20とから成り、真空保冷槽17の
内周囲を囲む第1熱又換器、3は第2熱交換器、4は第
3熱交換器、5は$4熱交換器、6は第5熱交換器、7
は第1膨張機、8は第2膨張機、9は高圧ライン、10
は第1膨張機7で膨張した後の中圧ヘリウムガスが流れ
る中圧ライン、11は膨張弁、12は膨張弁11を通過
して低圧になったヘリウムガスが流n、る低圧ライン。
1 is a compressor that generates high-pressure helium gas; 2 is a first heat exchanger that is composed of a high-pressure pipe 19 and a low-pressure shell 20 and surrounds the inner periphery of the vacuum cold storage tank 17; 3 is a second heat exchanger; 4 is the third heat exchanger, 5 is the $4 heat exchanger, 6 is the fifth heat exchanger, 7
is the first expander, 8 is the second expander, 9 is the high pressure line, 10
11 is an expansion valve, and 12 is a low-pressure line through which low-pressure helium gas flows after passing through the expansion valve 11.

13は液体ヘリウムを貯蔵するテ゛ユワー、14はデユ
ワ−13から液体ヘリウムを出入れでする導管、15.
16は第1熱交換器2によって冷却さnl、より低温に
なる機器へのふく射熱をシールドするシールド板、18
は真空排気弁、19は配管19aとフィン19bとから
成る@1熱交換a2の高圧配管、21は第1熱交換器2
から出た高圧配管である。
13 is a tower for storing liquid helium; 14 is a conduit for taking liquid helium in and out from the tower 13; 15.
16 is a shield plate 18 that is cooled by the first heat exchanger 2 and shields radiated heat to equipment that becomes lower temperature;
19 is a vacuum exhaust valve, 19 is a high pressure pipe of @1 heat exchange a2 consisting of a pipe 19a and a fin 19b, and 21 is a first heat exchanger 2.
This is the high pressure piping that came out of the.

次に作用について説明すると、圧縮機1から吐出さnた
高圧、常温のヘリウムガスは第1熱交換器2の高圧配管
19に入り、ここで対向して第1熱交換器2の低圧シェ
ル20を流れる低圧ヘリウムガスによって冷却された後
、一部は第1膨張機7c送らn5、残りは第2熱交換器
3の高圧ライン9に入る。第1膨張機71C送ちれた高
圧ヘリウムガスは膨張して中圧、低温のヘリウムガスと
なり、第3熱交換器4.中圧ライン】0を通って第2膨
張機8c入る。一方、高圧ライン9に入った残りのヘリ
ウムガスは第2熱交換器3〜第5熱交換器6を通過する
過程でさらに冷却さrl、最終的tこは10に以下の高
圧、低温ヘリウムガスとなって膨張弁11に入る。膨張
弁11を通る際に高圧ヘリウムガスは断熱膨張し、ジュ
ールトムソン効果によって低mK−なり、一部は液化す
る。液化した後の液内ヘリウムはデユワ−J3の中にた
まり、残りの低圧、低温ヘリウムガスは第5熱交換器6
の低圧ライン12に戻る。その後、第4熱交換器5〜!
g1熱交換器2の低圧ライン12を通って対向して流r
、る高圧ヘリウムガスを冷却しつつ、自身の温度を上昇
させ、低圧、常温のヘリウムガスとなって圧縮機】に戻
る。
Next, to explain the operation, the high-pressure, room-temperature helium gas discharged from the compressor 1 enters the high-pressure pipe 19 of the first heat exchanger 2, where it is opposed to the low-pressure shell 20 of the first heat exchanger 2. After being cooled by the low-pressure helium gas flowing through, a portion is sent to the first expander 7c n5, and the rest enters the high-pressure line 9 of the second heat exchanger 3. The high-pressure helium gas sent to the first expander 71C is expanded to become medium-pressure, low-temperature helium gas, and is then transferred to the third heat exchanger 4. Medium pressure line] 0 and enters the second expander 8c. On the other hand, the remaining helium gas that has entered the high pressure line 9 is further cooled in the process of passing through the second heat exchanger 3 to the fifth heat exchanger 6, and the final temperature is reduced to 10 or less, which is the high pressure, low temperature helium gas. and enters the expansion valve 11. When passing through the expansion valve 11, the high-pressure helium gas expands adiabatically, becomes low mK- due to the Joule-Thomson effect, and a portion of it liquefies. The liquefied helium is stored in the dewar J3, and the remaining low-pressure, low-temperature helium gas is transferred to the fifth heat exchanger 6.
to the low pressure line 12. After that, the fourth heat exchanger 5~!
g1 Opposed flow r through the low pressure line 12 of the heat exchanger 2
While cooling the high-pressure helium gas, it raises its own temperature and returns to the compressor as low-pressure, room-temperature helium gas.

第2m34A機8?こ送らnた中圧、低温のヘリウムガ
スは膨張して低圧、低温のヘリウムガスとなり第4熱又
換器5と第5熱交換器6の間の低圧ライン12C含流す
る。
2nd m34A aircraft 8? The medium-pressure, low-temperature helium gas thus sent expands to become low-pressure, low-temperature helium gas, which flows into the low-pressure line 12C between the fourth heat exchanger 5 and the fifth heat exchanger 6.

シールド板15.16は第1熱交換器2の低圧シェル2
0に接続さn、70〜】OOK餌後に冷却されてより低
温部分へのふく射熱侵入を低減する。4914はデユワ
−13の中の液体ヘリウムを取出して被冷却体を収納し
たタライオスタット(図示せず)Vこ移送するのに使用
さ几、ここにトランスファチューブを挿入す1ばよい。
The shield plates 15 and 16 are the low pressure shell 2 of the first heat exchanger 2.
Connected to 0 n, 70 ~ ]OOK Cooled after feeding to reduce radiation heat intrusion into lower temperature areas. 4914 is used to take out the liquid helium in the dewar 13 and transfer it to the taliostat (not shown) that houses the object to be cooled, and a transfer tube can be inserted here.

また真空保冷槽17の中は第1熱交換@2反びシールド
板15.16への熱侵入を極力低減するために真空排気
弁18を介して真空どンプ(図示せず)で排気されてい
る。
In addition, the inside of the vacuum cold storage tank 17 is evacuated by a vacuum pump (not shown) via a vacuum exhaust valve 18 in order to reduce the heat intrusion into the first heat exchanger @2 warp shield plate 15 and 16 as much as possible. There is.

第1熱交換器2及びシールド板15.16の外側を多層
断熱材で被覆すればより一層、熱侵入を低減できる。
Heat infiltration can be further reduced by covering the outside of the first heat exchanger 2 and the shield plates 15, 16 with a multilayer heat insulating material.

本実施例−こよれば、液体ヘリウムを貯蔵するデユワ−
】3が真空保冷槽17の中に設けられているので、液化
機と別にデユワ−を設ける必要がなく全体のシステムが
簡単になり、またデユワ−13が低温の第1熱交換器2
及びシールド板15゜16で囲まれているので液体窒素
で冷却する必要もなくなるという効果がある。
This embodiment - according to this example, a dewar for storing liquid helium.
3 is provided in the vacuum cold storage tank 17, there is no need to provide a separate dewar from the liquefaction machine, simplifying the entire system.
Since it is surrounded by shield plates 15 and 16, there is no need for cooling with liquid nitrogen.

本実施例の変形例としてシールド板15と第1熱交換器
2を出た高圧配管21を熱的に接触させることによって
シールド板15をさらに均一に冷却する方法がある。そ
の場費、シールド板15がより確実に冷却されるのでデ
ユワ−13への熱41入量をさらに低減でと、したがっ
て液体ヘリウムの蒸発量を減少させることができるとい
う効果がある。
As a modification of this embodiment, there is a method in which the shield plate 15 is brought into thermal contact with the high pressure pipe 21 exiting the first heat exchanger 2, thereby cooling the shield plate 15 more uniformly. Since the shield plate 15 is cooled more reliably, the amount of heat 41 input to the dewar 13 can be further reduced, and therefore the amount of evaporation of liquid helium can be reduced.

未発明の他の実施例を第3図により説明する。Another embodiment which has not yet been invented will be explained with reference to FIG.

同図tこおいて、面記−実施例と同一符号は同一部材を
示す。22は液体窒素槽、23は冷却コイル。
In the same figure, the same reference numerals as in the surface-illustrated embodiments indicate the same members. 22 is a liquid nitrogen tank, and 23 is a cooling coil.

24は液体窒素を供給するための導入管である。24 is an introduction pipe for supplying liquid nitrogen.

この実施例では液化機の運転開始前に液体窒素槽22#
こ液体窒素を供給することによって第1熱交換器2、皮
び冷却コイル23を予冷することができ、クールダウン
時間を短縮できるという効果がある。また運転中におい
ては、ヘリウムガスが冷えているので、液体窒素槽22
内に液体窒素を充満させておいても気化せず、従来のよ
うに運転中にも補充しなければならないという必要がな
い。
In this embodiment, the liquid nitrogen tank 22# is
By supplying this liquid nitrogen, the first heat exchanger 2 and the skin cooling coil 23 can be pre-cooled, which has the effect of shortening the cool-down time. Also, during operation, since the helium gas is cold, the liquid nitrogen tank 22
Even if the inside is filled with liquid nitrogen, it will not vaporize, and there is no need to replenish it during operation as in the conventional case.

定期保守等においては、液化機の運転を停止しており、
その間でも液体窒素槽22C液体窒素を供給しておけば
、デユワ−13への熱侵入はさほど増大しないので、液
体ヘリウムの蒸発を押えることができるという効果があ
る。またこれにより、次の運転の時のクールダウン時間
を大幅に短縮できるといへ効果がある。
During periodic maintenance, etc., the operation of the liquefier is stopped.
If liquid nitrogen is supplied to the liquid nitrogen tank 22C during this time, the heat intrusion into the dewar 13 will not increase so much, so there is an effect that evaporation of liquid helium can be suppressed. This also has the effect of greatly shortening the cool-down time for the next drive.

〔発明の効果〕。〔Effect of the invention〕.

本発明によr、ば、デユワ−を真空保冷槽内に収納して
、真空保冷槽外部に設ける補語をなくすことができ、コ
ンパクトで経済的な極低温液化冷凍機を得ることができ
るという効果がある。
According to the present invention, the r, b, dewar can be housed in the vacuum cold storage tank, and the complement provided outside the vacuum cold storage tank can be eliminated, and a compact and economical cryogenic liquefaction refrigerator can be obtained. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である極低温液化冷凍機を示
す断面図、第2図は第1図のA部詳細図第3図は本発明
の他の実施例である極低温液化冷凍機を示す断面図であ
る。 1・・・・・・圧縮機、2〜6・・・・・・熱交換器、
7.8・・・・・・膨張機、11・・・・・・膨張弁、
13・・・・・・デユワ−115,16・・・・・・シ
ールド板、】7・・・・・・真空保冷槽。 オ1口
Fig. 1 is a sectional view showing a cryogenic liquefaction refrigerator which is an embodiment of the present invention, Fig. 2 is a detailed view of part A in Fig. 1, and Fig. 3 is a cryogenic liquefaction refrigerator which is another embodiment of the present invention. It is a sectional view showing a refrigerator. 1...Compressor, 2-6...Heat exchanger,
7.8...Expansion machine, 11...Expansion valve,
13... Dewar-115, 16... Shield plate, ]7... Vacuum cold storage tank. 1 mouthful

Claims (1)

【特許請求の範囲】[Claims] 1、常温、低圧の冷媒ガスを高圧の冷媒ガスにする圧縮
機と、高圧の冷媒ガスを膨張させて寒冷を発生させる膨
張機と、前記圧縮機から吐出される側の高圧の冷媒ガス
と前記圧縮機へ戻る側の低圧の冷媒ガスとを熱交換させ
る熱交換器と、低温、高圧の冷媒ガスを膨張させてジュ
ールトムソン効果によつて液化させる膨張弁と、前記膨
張機、熱交換器および膨張弁のそれら低温部分を収納す
る真空保冷槽と、前記真空保冷槽内に設けられ前記液化
した冷媒ガスを貯蔵するデユワーと、前記真空保冷槽内
の周囲を囲む熱交換器およびシールド板とから構成した
ことを特徴とする極低温液化冷凍機。
1. A compressor that converts refrigerant gas at room temperature and low pressure into high-pressure refrigerant gas; an expander that expands the high-pressure refrigerant gas to generate cold; a high-pressure refrigerant gas discharged from the compressor; a heat exchanger that exchanges heat with a low-pressure refrigerant gas returning to the compressor; an expansion valve that expands the low-temperature, high-pressure refrigerant gas and liquefies it by the Joule-Thomson effect; the expander, the heat exchanger, and A vacuum cold storage tank that stores the low-temperature parts of the expansion valve, a dewar that is provided in the vacuum cold storage tank and stores the liquefied refrigerant gas, and a heat exchanger and a shield plate that surround the inside of the vacuum cold storage tank. A cryogenic liquefaction refrigerator characterized by the following configuration.
JP5582585A 1985-03-22 1985-03-22 Cryogenic liquefying refrigerator Pending JPS61217657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5582585A JPS61217657A (en) 1985-03-22 1985-03-22 Cryogenic liquefying refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5582585A JPS61217657A (en) 1985-03-22 1985-03-22 Cryogenic liquefying refrigerator

Publications (1)

Publication Number Publication Date
JPS61217657A true JPS61217657A (en) 1986-09-27

Family

ID=13009735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5582585A Pending JPS61217657A (en) 1985-03-22 1985-03-22 Cryogenic liquefying refrigerator

Country Status (1)

Country Link
JP (1) JPS61217657A (en)

Similar Documents

Publication Publication Date Title
US4432216A (en) Cryogenic cooling apparatus
CA1285781C (en) Cryogenic recondenser with remote cold box
US6430938B1 (en) Cryogenic vessel system with pulse tube refrigeration
JPH0424617B2 (en)
JPH08222429A (en) Device for cooling to extremely low temperature
JPH0515764A (en) Vacuum container with cooling device
JPS61217657A (en) Cryogenic liquefying refrigerator
JPH1026427A (en) Cooler
US11977139B2 (en) Accelerated cooldown of low-cryogen magnetic resonance imaging (MRI) magnets
JPH09113052A (en) Freezer
JPS59214280A (en) Cryostat
JPS60178260A (en) Cryogenic refrigerator
JPS61116250A (en) Superconductive device and cooling method thereof
JPH04186B2 (en)
JPS6266067A (en) Helium cooling device
JPS62261868A (en) Helium cooling device
JP2600728B2 (en) Aircraft refrigeration equipment
JPS60117059A (en) Method of preventing heat intrusion of he liquefying refrigerator
JP3094299B2 (en) Superconducting accelerator
JPS5951155B2 (en) superconducting device
JP2893210B2 (en) Cryostat for high temperature superconducting magnetic shield
JPS6317360A (en) Cryogenic refrigerating method
JPH09106906A (en) Conductive cooling superconducting magnet
JPH0471137B2 (en)
JPS6069462A (en) Method of cooling cryogenic cooling device