JP3094299B2 - Superconducting accelerator - Google Patents

Superconducting accelerator

Info

Publication number
JP3094299B2
JP3094299B2 JP02126556A JP12655690A JP3094299B2 JP 3094299 B2 JP3094299 B2 JP 3094299B2 JP 02126556 A JP02126556 A JP 02126556A JP 12655690 A JP12655690 A JP 12655690A JP 3094299 B2 JP3094299 B2 JP 3094299B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting accelerator
refrigerator
cooled
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02126556A
Other languages
Japanese (ja)
Other versions
JPH0426100A (en
Inventor
英介 峰原
Original Assignee
日本原子力研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本原子力研究所 filed Critical 日本原子力研究所
Priority to JP02126556A priority Critical patent/JP3094299B2/en
Publication of JPH0426100A publication Critical patent/JPH0426100A/en
Application granted granted Critical
Publication of JP3094299B2 publication Critical patent/JP3094299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超電導加速装置に関する。詳しくは、本発明
は、電子等の荷電粒子を、液体ヘリウム温度、及びそれ
より遙かに高い温度で超電導状態となるところの低臨界
温度及び高臨界温度の超電導体で製作された空洞共振器
を利用して、加速を行う超電導加速装置に関する。
Description: TECHNICAL FIELD The present invention relates to a superconducting accelerator. More specifically, the present invention relates to a cavity resonator made of a superconductor having a low critical temperature and a high critical temperature in which charged particles such as electrons are brought into a superconducting state at liquid helium temperature and much higher temperature. The present invention relates to a superconducting accelerator for accelerating by using the method.

(従来の技術) 従来の超電導加速装置の空洞共振器は、使用する液体
ヘリウムを大型の液化冷凍機で作り、これを可搬型液体
ヘリウム容器又は真空断熱配管により移送し、空洞共振
器を収納している液体ヘリウム容器に溜め、液体ヘリウ
ムの蒸発潜熱によって冷却される。また、従来の超電導
加速装置の熱シールドは、使用する液体窒素を大型の液
体冷凍機で作り、これを可搬型液体窒素容器又は真空断
熱配管により移送し、熱シールドの液体窒素配管中を循
環させ、液体窒素の蒸発潜熱により冷却される。
(Prior art) A conventional cavity resonator of a superconducting accelerator uses liquid helium to be produced by a large-sized liquefied refrigerator, which is transported by a portable liquid helium container or vacuum adiabatic piping to house the cavity resonator. Is stored in the liquid helium container and cooled by the latent heat of vaporization of the liquid helium. In addition, the heat shield of the conventional superconducting accelerator creates liquid nitrogen to be used in a large liquid refrigerator, transfers it by a portable liquid nitrogen container or vacuum insulation pipe, and circulates through the liquid nitrogen pipe of the heat shield. The liquid nitrogen is cooled by latent heat of vaporization.

液体ヘリウムは、熱容量が小さく、断熱配管、バルブ
等による移送時の流入熱による移送損失が極めて大き
い。この移送損失の割合は、システムの規模や特性によ
っても異なるが、大体60%−90%である。また、液体及
び気体のヘリウムの連続した製造と移送は、その体積が
3桁異なることから、液体ヘリウム製造、気体液体ヘリ
ウム循環システムの設計製作は安全対策上、自動運転の
制御の点からも容易ではなく、高価で自動化し難い。
Liquid helium has a small heat capacity, and the transfer loss due to inflow heat during transfer by adiabatic piping, valves, etc. is extremely large. The rate of this transfer loss varies depending on the size and characteristics of the system, but is approximately 60% -90%. In addition, the continuous production and transfer of liquid and gaseous helium are three orders of magnitude different in volume, so the production of liquid helium and the design and manufacture of a gas-liquid helium circulation system are easy in terms of safety measures and control of automatic operation. Rather expensive and difficult to automate.

(発明が解決しようとする問題点) 本発明の目的は、このような問題点を解決して液体ヘ
リウム移送損失のない高効率で、安価で、安全な、自動
化可能な冷却を特徴とする超電導加速装置を提供するこ
とにある。
(Problems to be Solved by the Invention) An object of the present invention is to solve such problems and to provide a superconducting circuit characterized by high efficiency, low cost, safe, and automatable cooling without liquid helium transfer loss. An object of the present invention is to provide an acceleration device.

(問題点を解決するための手段) 本発明者は、このような問題の解決のため鋭意研究の
結果、移送損失の多い液体ヘリウム、液体窒素等の冷媒
の代わりに、超電導加速装置の中心部に組み込まれた冷
凍機を用いて、必要な冷却と流熱の除去を行う超電導加
速装置を構成することにより、液体ヘリウム移送損失が
ない高効率で、安価で、安全な自動化可能な冷却を特徴
とする超電導加速装置を実現し得ることに想到し、本願
発明の「電子等の荷電粒子を、液体ヘリウム温度、及び
それより遙かに高い温度で超電導状態となるところの低
臨界温度及び高臨界温度の超電導体で製作された空洞共
振器を利用して、加速する装置において、超電導状態を
実現するための冷却を、冷凍機の熱交換器が超電導加速
装置内の被冷却空洞共振器近傍に直接又は間接に固定
し、又は半固定し、或いは固定されずに、熱交換するこ
とを特徴とする超電導加速装置」を発生するに到った。
(Means for Solving the Problems) As a result of intensive studies to solve such problems, the present inventor has found that instead of a refrigerant such as liquid helium or liquid nitrogen having a large transfer loss, a central part of a superconducting accelerator is used. High-efficiency, low-cost, safe and automable cooling with no liquid helium transfer loss by configuring a superconducting accelerator that uses a refrigerator built in to perform the necessary cooling and heat removal It is conceived that a superconducting accelerator that can be realized can be realized by the present invention that “a charged particle such as an electron is brought into a superconducting state at a liquid helium temperature, and at a temperature much higher than that at a low critical temperature and a high critical temperature. In a device that accelerates using a cavity resonator made of a superconductor with a temperature, cooling to realize a superconducting state is performed by the heat exchanger of the refrigerator near the cavity to be cooled in the superconducting accelerator. Directly or A superconducting accelerator characterized by performing heat exchange indirectly fixed, semi-fixed, or not fixed has been developed.

次に、本発明の装置の構成を図面について具体的に説
明する。
Next, the configuration of the apparatus of the present invention will be specifically described with reference to the drawings.

第1図において、超電導材料からなる内表面を持つ超
伝導加速空洞1は、外部から導入された冷凍機の極低温
熱交換器2により、動作温度まで冷却される。熱シール
ド3、4は直接又は間接に冷却機の伝導冷却部5により
冷却される。
In FIG. 1, a superconducting accelerating cavity 1 having an inner surface made of a superconducting material is cooled to an operating temperature by a cryogenic heat exchanger 2 of a refrigerator introduced from the outside. The heat shields 3, 4 are cooled directly or indirectly by the conduction cooling section 5 of the cooler.

以上のようにして超電導加速空洞1は超電導臨界温度
以下に冷却され、熱シールド3、4は、内部への熱輻射
が十分に小さくなる温度まで冷却される。
As described above, the superconducting acceleration cavity 1 is cooled below the superconducting critical temperature, and the heat shields 3 and 4 are cooled to a temperature at which heat radiation to the inside is sufficiently reduced.

(実施例) 空洞共振器は、古典超伝導体であるNb系の材料を用い
て成型したもので製作し、収納する液体ヘリウム容器は
ステンレス系の材料を用いて、二重熱シールドは銅の薄
板材料を用いて製作した。
(Example) The cavity resonator is manufactured by molding using an Nb-based material which is a classical superconductor. The liquid helium container to be housed is made of a stainless-based material, and the double heat shield is made of copper. It was manufactured using a thin plate material.

二重熱シールドは、より外側の80K及び内側の40Kの各
々を冷却する専用冷凍機又は多段式冷凍機の80K及び40K
ステージを加速器の外側から直接導入して銅網組線等で
接続し熱伝導により冷却した。
The double heat shield is a special refrigerator or a multi-stage refrigerator that cools each of the outer 80K and inner 40K.
The stage was introduced directly from the outside of the accelerator, connected with a copper braid, etc., and cooled by heat conduction.

空洞共振器は、収納する液体ヘリウム容器の内部の空
洞共振器本体近傍にガスシールド方式断熱された多段式
冷凍機の4K熱交換器を固定又は半固定して、あるいは固
定せずに導入し、蒸発ヘリウムの容器内再凝縮により流
熱を除去し、冷却する。
The cavity resonator is introduced with a fixed or semi-fixed or non-fixed 4K heat exchanger of a multi-stage refrigerator insulated by a gas shield system in the vicinity of the cavity resonator body inside the liquid helium container to be stored, The heat of flow is removed by recondensing the evaporated helium in the vessel, and the helium is cooled.

この実施例では、移送を行なわないシステムであるた
め移送損失は存在せず、移送損失の問題は解決された。
In this embodiment, since the system does not perform the transfer, there is no transfer loss, and the problem of the transfer loss has been solved.

(発明の効果) 以上のごとく、本発明の低臨界温度及び高臨界温度の
超電導体で製作された空洞共振器を利用して荷電粒子を
加速する装置において、超電導状態を実現するための冷
却を、一つまたは複数の冷凍機の熱交換器が超電導加速
装置内の被冷却空洞共振器近傍、および単層又は複層の
熱シールドに直接又は間接に固定又は半固定され、ある
いは固定されず熱交換することを特徴とする超電導加速
装置は、超電導加速装置の中心部に組み込まれた冷凍機
を用いて、必要な冷却と流熱の除去を行う超電導加速装
置を構成することにより、移送損失の多い外部液化され
た液体ヘリウム、液体窒素等の冷媒を使用する従来の技
術では困難であったところの移送損失のない、高効率
で、安価、安全で、かつ本質的に静的(液化冷媒の移動
を必要としない)で容易に自動化が可能な冷却を特徴と
する超電導加速装置を実現することができる。
(Effect of the Invention) As described above, in a device for accelerating charged particles using a cavity resonator made of a superconductor having a low critical temperature and a high critical temperature according to the present invention, cooling for realizing a superconducting state is performed. The heat exchanger of one or more refrigerators is fixed or semi-fixed directly or indirectly to the cooled cavity resonator in the superconducting accelerator and to a single-layer or multi-layer heat shield, or heat is not fixed. The superconducting accelerator, which is characterized by replacement, uses a refrigerator built in the center of the superconducting accelerator, and configures the superconducting accelerator to perform necessary cooling and remove heat flow, thereby reducing the transfer loss. High efficiency, inexpensive, safe, and essentially static (no liquefied refrigerant) without transfer loss, which was difficult with the conventional technology using a large amount of external liquefied liquid helium, liquid nitrogen, etc. Need to move And a superconducting accelerator characterized by cooling that can be easily automated.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の超電導加速装置の横方向断面図であ
る。 図において 1……超電導加速空洞 2……冷凍機および極低温熱交換器 3……熱シールド1 4……熱シールド2 5……熱シールド用冷凍機および電導冷却部 6……超電導加速空洞クライオスタット 7……液体ヘリウム 8……液体ヘリウム容器 9……蒸発ヘリウムガス 第2図は、本発明の超電導加速装置の説明図である。 図において 1……超電導加速空洞 2……冷凍機および極低温熱交換器 3……熱シールド1 4……熱シールド2 5……熱シールド用冷凍機および電導冷却器 6……超電導加速空洞クライオスタット 7……高周波入力アンテナ
FIG. 1 is a transverse sectional view of a superconducting accelerator according to the present invention. In the figure, 1 ... superconducting acceleration cavity 2 ... refrigerator and cryogenic heat exchanger 3 ... heat shield 1 4 ... heat shield 2 5 ... refrigerator for heat shield and conduction cooling unit 6 ... superconduction acceleration cavity cryostat 7 Liquid helium 8 Liquid helium container 9 Evaporated helium gas FIG. 2 is an explanatory view of a superconducting accelerator according to the present invention. In the figure, 1 ... superconducting acceleration cavity 2 ... refrigerator and cryogenic heat exchanger 3 ... heat shield 1 4 ... heat shield 2 5 ... refrigerator for heat shield and conduction cooler 6 ... superconduction acceleration cavity cryostat 7. High frequency input antenna

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H05H 7/20 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) H05H 7/20

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電子等の荷電粒子を液体ヘリウム温度の、
及びそれより遙に高い温度で超伝導状態となるところの
低臨界温度及び高臨界温度の超伝導体で製作された空洞
共振器を利用して加速する方法において、超伝導状態を
実現するための冷却を、冷凍機の熱交換器が超伝導加速
装置の被冷却熱シールド内の被冷却空洞共振器に直接又
は間接に固定又は半固定して、あるいは固定されず熱交
換することを特徴とする超伝導加速装置。
1. The method according to claim 1, wherein charged particles such as electrons are converted to liquid helium temperature.
And a method of accelerating using a cavity made of a superconductor having a low critical temperature and a high critical temperature, which is in a superconducting state at a much higher temperature. The cooling is performed by directly or indirectly fixing or semi-fixing the heat exchanger of the refrigerator directly or indirectly to the cooled cavity resonator in the cooled heat shield of the superconducting accelerator, or performing heat exchange without fixing. Superconducting accelerator.
【請求項2】該冷凍機の熱交換器は、超伝導加速装置内
の単層又は複層の被冷却シールドに直接又は間接に固定
し、又は半固定し、或いは固定されずに、熱交換するこ
とを特徴とする超伝導加速装置。
2. The heat exchanger of the refrigerator is directly or indirectly fixed, semi-fixed, or not fixed to a single-layer or multi-layer shield to be cooled in a superconducting accelerator. A superconducting accelerator.
【請求項3】該冷凍機の熱交換は、動作流体として、水
素、ヘリウム、及びこれらの単体元素の同位体又はそれ
らの混合物、並びにその他の低沸点の気体、液体及び固
体素子を用いることを特徴とする第1項に記載の超伝導
加速装置。
3. The heat exchange of the refrigerator uses hydrogen, helium, isotopes of these elemental elements or a mixture thereof, and other low-boiling gas, liquid and solid elements as a working fluid. 2. The superconducting accelerator according to claim 1, wherein
JP02126556A 1990-05-18 1990-05-18 Superconducting accelerator Expired - Fee Related JP3094299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02126556A JP3094299B2 (en) 1990-05-18 1990-05-18 Superconducting accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02126556A JP3094299B2 (en) 1990-05-18 1990-05-18 Superconducting accelerator

Publications (2)

Publication Number Publication Date
JPH0426100A JPH0426100A (en) 1992-01-29
JP3094299B2 true JP3094299B2 (en) 2000-10-03

Family

ID=14938089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02126556A Expired - Fee Related JP3094299B2 (en) 1990-05-18 1990-05-18 Superconducting accelerator

Country Status (1)

Country Link
JP (1) JP3094299B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4009734B2 (en) * 2001-06-01 2007-11-21 独立行政法人 日本原子力研究開発機構 Bent method of superconducting accelerator
CN113593768B (en) * 2021-08-05 2022-11-01 中国科学院近代物理研究所 Superconducting cavity solid conduction cooling structure

Also Published As

Publication number Publication date
JPH0426100A (en) 1992-01-29

Similar Documents

Publication Publication Date Title
US20230042894A1 (en) Cryogen-free cooling apparatus
US4926647A (en) Cryogenic precooler and cryocooler cold head interface receptacle
US3878691A (en) Method and apparatus for the cooling of an object
CN113035486A (en) Refrigerating system of low-temperature superconducting magnet
US4209657A (en) Apparatus for immersion-cooling superconductor
EP0523871B1 (en) Vacuum vessel having a cooled member
JPH0626459A (en) Cryogenic cooling device and cooling method thereon
Hollister et al. A large millikelvin platform at Fermilab for quantum computing applications
JP3094299B2 (en) Superconducting accelerator
US5347819A (en) Method and apparatus for manufacturing superfluidity helium
JPS6290910A (en) Cryogenic device
US4077231A (en) Multistation refrigeration system
WO2014203826A1 (en) Nmr system
CN111667969B (en) Cooling system and cooling method of liquid helium-free superconducting magnet
JPH1026427A (en) Cooler
JPS60104899A (en) Low temperature vessel connected to refrigerator
JPS61116250A (en) Superconductive device and cooling method thereof
JP2893210B2 (en) Cryostat for high temperature superconducting magnetic shield
Agapov et al. Nuclotron cryogenic system: status and recent development
Peterson et al. ILC cryogenic systems reference design
Gistau Baguer et al. Examples of Various Plants
Niinikoski et al. Large dilution refrigerators
Weisend et al. Cryogenics in particle accelerators and fusion reactors
CN114137461A (en) Online cooling circulation system of high-temperature superconducting radio frequency coil
JPH09106906A (en) Conductive cooling superconducting magnet

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees