JPS61212448A - Method and apparatus for producing thick-walled hollow billet - Google Patents

Method and apparatus for producing thick-walled hollow billet

Info

Publication number
JPS61212448A
JPS61212448A JP5204985A JP5204985A JPS61212448A JP S61212448 A JPS61212448 A JP S61212448A JP 5204985 A JP5204985 A JP 5204985A JP 5204985 A JP5204985 A JP 5204985A JP S61212448 A JPS61212448 A JP S61212448A
Authority
JP
Japan
Prior art keywords
water
cooled
core
cooled core
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5204985A
Other languages
Japanese (ja)
Other versions
JPH0513023B2 (en
Inventor
Susumu Nawata
名和田 進
Katsuzo Ichikawa
市川 勝三
Eikichi Sagisaka
栄吉 鷺坂
Nobuo Nagayama
永山 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP5204985A priority Critical patent/JPS61212448A/en
Publication of JPS61212448A publication Critical patent/JPS61212448A/en
Publication of JPH0513023B2 publication Critical patent/JPH0513023B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/006Continuous casting of metals, i.e. casting in indefinite lengths of tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To make possible the continuous casting of a thick-walled hollow billet without defects by covering the part of a water-cooled core upper than the casting surface with a refractory heat insulating material to lower the solidification initiation points on the water-cooled core side so as to position the same on the casting surface of a water-cooled metallic mold lower than the refractory heat insulating material. CONSTITUTION:A molten metal 15 is supplied into the spacing between the water-cooled casting mold 10 and the water-cooled core 1 and a receiving base 12 is so lowered as to maintain the solidification initiation points P1 and P2 in the positions shown in the figure. The point P2 is forcibly pushed down onto the casting surface 1a by the refractory heat insulating material 2 and the lowermost point 15a of the sump is brought to the position near the casting surface 1a of the water-cooled core 1 by the combination of the cooling from the mold 10 and the cooling from the core 1 positioned relatively below. The substantial sump depth is therefore the depth shown by a code H1 and the substantial sump depth H1 which the cause for the cracking arising from shrinkage on solidification is extremely diminished. The thorough prevention of the cracking is thus made possible.

Description

【発明の詳細な説明】 弦五圀団 本発明は中空ビレットの製造方法およびその装置に係わ
り、肉厚が100mm、好ましくは2゜Ommもしくは
それ以上であるような特に厚肉の中空ビレットを割れ等
の欠陥を生じること無く連続的に鋳造できるようになす
方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hollow billet manufacturing method and an apparatus for producing a hollow billet, particularly for cracking a thick hollow billet having a wall thickness of 100 mm, preferably 2° Omm or more. It relates to a method and apparatus that enable continuous casting without causing defects such as.

鵞】11度 中空状の例えばアルミニウムのような金属製ビレットを
連続的に製造する装置として、一般に第2図に示すよう
な鋳造装置が提供されている。この装置は玉章解放され
ている水冷鋳型1o、この中央部に配備された水冷中子
11、および水冷鋳型lOと水冷中子11との間の空間
部の底部を閉鎖でき且つその位置から降下できる受け台
12を有して構成されている。水冷鋳型10は内周面1
0aが鋳造面を形成しており、内周側の下端付近に冷却
水の排出口10bが適当な間隔で形成されている。一方
水冷中子11は外周面11aが鋳造面を形成しており、
その下端付近に冷却水の排出口11bが適当な間隔で形
成されている。何れも適当な冷却水供給装置(図示せず
)に接′1ft(水冷中子11は上部中央の管11Cを
介して接続される)されており、供給された冷却水はそ
れぞれの排出口10bおよびllbから図示したように
斜め下方へ向けて放出される(それぞれ符号13および
14で示す)ようになっている。受け台12は当初は水
冷鋳型10と水冷中子11との間の空間部の底部を閉鎖
する位置に保持され、該空間部内に供給された金属溶湯
15が冷却されて凝固を開始した後(凝固部分は符号1
5°で示される)、凝固開始面Aを所定位置に維持する
(縁における凝固開始点P+ 、Pgを水冷鋳型10お
よび水冷中子11のそれぞれの鋳造面の所定位置に維持
する)ように制御されて降下される。このようにして、
連続的に凝固部分15゛が下方へ引き出されて中空状の
ビレットが製造されるようになっている。尚、符号16
は溶湯供給のために水冷鋳型10と水冷中子11との間
に配備されたフロート、そして符号17はこのフロート
17と組合わされたディップチューブをそれぞれ示して
いる。
2. Description of the Related Art Generally, a casting apparatus as shown in FIG. 2 is provided as an apparatus for continuously producing an 11 degree hollow billet made of metal such as aluminum. This device can close the open water-cooled mold 1o, the water-cooled core 11 disposed in the center, and the bottom of the space between the water-cooled mold 10 and the water-cooled core 11, and can be lowered from that position. It is configured with a cradle 12 that can be used. The water-cooled mold 10 has an inner peripheral surface 1
0a forms a casting surface, and cooling water discharge ports 10b are formed at appropriate intervals near the lower end on the inner peripheral side. On the other hand, the outer peripheral surface 11a of the water-cooled core 11 forms a casting surface,
Cooling water discharge ports 11b are formed near the lower end at appropriate intervals. Each of them is connected to a suitable cooling water supply device (not shown) by 1ft (the water cooling core 11 is connected via a pipe 11C at the center of the upper part), and the supplied cooling water is discharged from each outlet 10b. and llb (indicated by reference numerals 13 and 14, respectively) diagonally downward as shown in the figure. The pedestal 12 is initially held in a position that closes the bottom of the space between the water-cooled mold 10 and the water-cooled core 11, and after the molten metal 15 supplied into the space has cooled and started solidifying ( The solidified part is code 1
5°), the solidification start surface A is maintained at a predetermined position (the solidification start point P+ at the edge, Pg is maintained at a predetermined position on each casting surface of the water-cooled mold 10 and the water-cooled core 11). and descended. In this way,
The solidified portion 15' is continuously pulled downward to produce a hollow billet. In addition, code 16
1 shows a float placed between the water-cooled mold 10 and the water-cooled core 11 for supplying molten metal, and 17 shows a dip tube combined with this float 17, respectively.

l米茨丘曵皿塁点 しかしながら上述した従来技術においては、例えば外径
が250mmを超え肉厚が100mmを越えるような厚
肉の中空ビレットを製造すると、熱間割れ感受性の大き
い合金によっては(例えば6000系、5000系等の
Ai!合金)鋳造割れが発生したり著しい発汗が生じ、
ひどい場合にはこの発汗部を通してメタル漏れが起こる
(特に3000系のAIV合金)等、安定した鋳造が実
際問題として実行できなかった。
However, with the above-mentioned conventional technology, if a thick hollow billet with an outer diameter of more than 250 mm and a wall thickness of more than 100 mm is manufactured, depending on the alloy with high hot cracking susceptibility, For example, Ai! alloys such as 6000 series and 5000 series) may cause casting cracks or significant sweating.
In severe cases, metal leakage occurs through this sweating part (particularly in 3000 series AIV alloys), making stable casting impossible as a practical matter.

この理由は次のように説明される。即ち、供給された溶
湯15は水冷鋳型10および水冷中子11によって内外
両側から大体同じ高さ位置で冷却されるようになってい
たために、凝固開始面Aは中空ビレットの壁部の縦断面
において中央付近が下方へ凹んだ形状を呈することにな
る。このため、任意の横断面における凝固の推移につい
て考えれば、その内外両端から溶湯15のサンプ最下点
15aに垂直な位置へ向けて次第に凝固が進むことにな
る。従って先行して凝固した内周側および外周側の部分
がそれより内部の凝固収縮を拘束するように作用し、こ
の作用は凝固が進行するにつれて大きくなり、この凝固
収縮の拘束により発生する内部応力が材料の強度を越え
た時に割れが発生するものと思われる。このような割れ
は製造する中空ビレットの肉厚が厚くなるほど発生し易
くなるのであり、このことが厚肉の中空ビレットの製造
を困難にしていたのである。また、このような割れは実
際には内周シェルにまで伝播し、また中心に向かう形で
発生することが認められている。
The reason for this is explained as follows. That is, since the supplied molten metal 15 was cooled at approximately the same height from both the inside and outside sides by the water-cooled mold 10 and the water-cooled core 11, the solidification start surface A is located at the longitudinal section of the wall of the hollow billet. The shape is concave downward near the center. Therefore, if we consider the progress of solidification in an arbitrary cross section, solidification will gradually proceed from both the inner and outer ends of the molten metal 15 toward a position perpendicular to the lowest point 15a of the sump. Therefore, the inner and outer circumferential parts that solidified earlier act to restrain the solidification contraction inside them, and this effect increases as solidification progresses, and the internal stress generated by the restraint of this solidification contraction. It is thought that cracks occur when the strength of the material exceeds the strength of the material. Such cracks are more likely to occur as the thickness of the hollow billet to be manufactured increases, and this has made it difficult to manufacture thick hollow billets. Furthermore, it has been recognized that such cracks actually propagate to the inner peripheral shell and also occur toward the center.

更にまた、第2図では同じ高さ寸法として水冷鋳型10
および水冷中子11を示したが、構成上一般に水冷中子
の冷却能力の方が弱くなるとともに、フロート16が鋳
込まれてしまうのを防止するために、水冷中子11の高
さは水冷鋳型10よりも鋳込み方向に長くされる。この
ような水冷中子11の鋳造面11aは、溶湯の凝固収縮
により噛まれて中空ビレットの引き出しとともに下方へ
持ち去られるのを防止するために、通常は下方へ向けて
細くなるテーパー面とされている。このために実際には
凝固開始点P8より下方の凝固部分は水冷中子11の鋳
造面11aと僅かな間隙を形成する。この間隙の形成さ
れる高さ範囲は水冷中子11の高さ寸法が長くなった分
だけ長くなり、このために排出口11bからの冷却水で
直接に冷却されるまでの時間が長くなる。このことは、
一旦凝固された内周側の凝固シェルが溶湯15からの伝
達熱で再び溶融されてしまう事態、即ち発汗の発生を容
易に生せしめることになるのである。
Furthermore, in FIG. 2, the water-cooled mold 10 has the same height dimension.
and water-cooled core 11 are shown, but the cooling capacity of the water-cooled core is generally weaker due to the structure, and in order to prevent the float 16 from being cast, the height of the water-cooled core 11 is It is made longer than the mold 10 in the casting direction. The casting surface 11a of such a water-cooled core 11 is normally made into a tapered surface that tapers downward in order to prevent it from being bitten by the solidification contraction of the molten metal and being carried away downward when the hollow billet is pulled out. There is. Therefore, in reality, the solidified portion below the solidification start point P8 forms a slight gap with the casting surface 11a of the water-cooled core 11. The height range in which this gap is formed becomes longer as the height dimension of the water-cooled core 11 becomes longer, and therefore the time until it is directly cooled by the cooling water from the discharge port 11b becomes longer. This means that
The solidified shell on the inner peripheral side, which has been solidified once, is easily melted again by the heat transferred from the molten metal 15, that is, sweating easily occurs.

著しい場合には、この再溶融によって該間隙を通して溶
湯が漏れる危険を生じるのである。
In severe cases, this remelting creates a risk of leakage of the molten metal through the gap.

又ユ五亘煎 本発明の目的は上述に鑑み、割れや表面欠陥のない良好
な、肉厚の厚い中空ビレットをできるだけ容易に製造可
能とする方法および装置を提供することである。
In view of the above, it is an object of the present invention to provide a method and apparatus that make it possible to manufacture thick-walled hollow billets without cracks or surface defects as easily as possible.

m口1! このために本発明は、上下が解放された金属製の水冷鋳
型の中央部に金属製の水冷中子を配備し、前記水冷鋳型
と水冷中子との間に形成された空間部に熱溶融された材
料を供給するとともに、当初は前記空間部の底部を閉鎖
している受け台を、供給された前記材料が1!固を開始
する位置(′a固開開始点を前記空間部内に維持させる
状態で降下させ、これによって前記空間部内で凝固され
た中空ビレットを連続的に引き出して製造する場合にお
いて、前記水冷中子における前記材料の冷却開始点を前
記水冷鋳型における冷却開始点よりも相対的に低下させ
、該強固開始点と凝固開始面における最下点との間の実
質的なサンプ深さを、鋳造条件(中空ビレットの肉厚、
受け台の降下速度、金属溶湯の温度、冷却能力等)に応
じて定められ得る製品の割れが生じない許容深さ以下に
調整するようにしたことを特徴とする 特に本発明の好ましい構成としては、水冷中子の鋳造面
の上側部分を耐火断熱材で覆い、これにより水冷中子側
の凝固開始点が該耐火断熱材より下方の水冷金型鋳造面
に位置するように強制的に低下させたことを特徴とする
のである。
m mouth 1! To this end, the present invention provides a metal water-cooled core in the center of a metal water-cooled mold with open top and bottom, and heat melts in the space formed between the water-cooled mold and the water-cooled core. At the same time, the supplied material fills the cradle which initially closes the bottom of the space, and the supplied material is 1! In the case where the hollow billet solidified in the space is produced by lowering the solidification start point ('a) while maintaining the solidification start point within the space, the water-cooled core is The cooling start point of the material in is relatively lower than the cooling start point in the water-cooled mold, and the substantial sump depth between the solid start point and the lowest point on the solidification start surface is adjusted according to the casting conditions ( Thickness of hollow billet,
A particularly preferred configuration of the present invention is that the depth is adjusted to below a permissible depth that does not cause cracking of the product, which can be determined depending on the descending speed of the pedestal, the temperature of the molten metal, cooling capacity, etc.) , the upper part of the casting surface of the water-cooled core is covered with a refractory insulation material, thereby forcibly lowering the solidification start point of the water-cooled core side so that it is located on the casting surface of the water-cooled mold below the refractory insulation material. It is characterized by the following.

以下に第1図を参照して本発明を実施するための一実施
例を参照して更に詳しく説明する。
An embodiment of the present invention will be described in more detail below with reference to FIG.

に只す   の  な1日 第1図に示す実施例において、水冷鋳型10は第1図に
示したのと実質的に相違しないので、同一符号で示して
いる。また、受け台12も形状は第1図に示したのと相
違する(水冷鋳型と水冷中子との形状に応じて相違する
)が、機能的には全く同一であるので同一符号で示して
いる。これに対し、水冷中子は本発明の特徴とするもの
であり、ここでは符号1で示す。
In the embodiment shown in FIG. 1, the water-cooled mold 10 is not substantially different from that shown in FIG. 1 and is designated by the same reference numerals. The shape of the pedestal 12 is also different from that shown in FIG. 1 (depending on the shapes of the water-cooled mold and the water-cooled core), but since they are functionally the same, they are designated by the same reference numerals. There is. On the other hand, the water-cooled core is a feature of the present invention, and is designated by the reference numeral 1 here.

この水冷中子1は、上側部分に耐火断熱材2がその外周
面に沿って取付けられている。鋳造面laは耐火断熱材
2の下側に位置するように形成され、また鋳造面1aの
下端に沿って前述と同様に冷却水の排出口1bが、そし
て上部中央に冷却水の供給のための管1cがそれぞれ備
えられている。
This water-cooled core 1 has a refractory heat insulating material 2 attached to its upper portion along its outer peripheral surface. The casting surface la is formed to be located below the refractory heat insulating material 2, and the cooling water outlet 1b is provided along the lower end of the casting surface 1a as described above, and at the center of the upper part for supplying cooling water. The tubes 1c are respectively provided.

即ち、水冷中子側の凝固開始点Pオが実際に位置される
水冷鋳型lOの鋳造面10aの凝固開始点P、よりも相
対的に下方に位置され、耐火断熱材2はその表面で凝固
が起こらずにその下方の鋳造面1aで起こるように、凝
固開始点P8を強制的に低下させる働き意図されている
のである。ここで、耐火断熱材2の内周面が鋳造面1a
よりも張り出して図示されているが、これは水冷中子1
が鋳込まれて下方へ持ち去られてしまうのを積極的に防
止することを意図されているのであり、望まれるならば
張り出しを無(して同一面に形成することもできる。
That is, the solidification start point P on the water-cooled core side is located relatively lower than the solidification start point P on the casting surface 10a of the water-cooled mold 1O where it is actually located, and the refractory insulation material 2 solidifies on that surface. This is intended to forcibly lower the solidification start point P8 so that solidification does not occur and instead occurs on the casting surface 1a below. Here, the inner circumferential surface of the refractory heat insulating material 2 is the casting surface 1a.
Although it is shown more protruding than the figure, this is water-cooled core 1.
It is intended to actively prevent the mold from being carried away downwards, and can be formed flush with no overhang if desired.

このような構成によれば、前述したように金属溶湯15
を水冷鋳型10と水冷中子1との間の空間部内へ供給し
、凝固開始点P+およびP2を図示位置に維持するよう
に受け台12を降下させて連続鋳造する場合、冷却開始
面Aは第1図に示すようにそのサンプ最下点15aが水
冷中子lの鋳造画1aに近い位置となる。即ち、耐火断
熱材2によって凝固開始点P2が強制的に鋳造面la上
に押し下げられ、水冷鋳型10からの冷却と、相対的に
下方に位置せる水冷中子1からの冷却との兼ね合いから
、サンプ最下点15aがこのように位置決めされること
になる。一般に耐火断熱材2によって凝固開始点P!を
強制的に押し下げると、凝固開始点P、は耐火断熱材2
と鋳造面1aとの接合点に位置される傾向を示す。従っ
てこのために特に水冷中子1の冷却能力を制御する必要
性はないが、全体的な冷却作用の兼ね合い等から適当に
水冷中子1の冷却能力を変更することはでき、またもし
鋳造面1aの例えば中間部の何れかの位置に凝固開始点
Pgを位置させたい場合にはそれ相応に冷却能力を制御
すれば良い。このような凝固開始点PIおよびP!の位
置に応じて形成された凝固開始面Aによれば、任意の断
面における凝固の進行を考えると、先ず外周側から凝固
が開始されて凝固シェルを形成することになるが、内周
側の凝固が開始するまではこの凝固シェルは拘束するシ
ェルとなり得ず、内周側からの凝固が開始されて始めて
内外両側の凝固シェルが拘束シェルとして作用すること
になる。従って実質的なサンプ深さは符号H1で示す深
さとなり、前述した凝固収縮にもとづく割れの原因とな
る実質的なサンプ深さHlが極めて小さいものとされる
のである。
According to such a configuration, as described above, the molten metal 15
When continuous casting is performed by supplying water into the space between the water-cooled mold 10 and the water-cooled core 1 and lowering the pedestal 12 to maintain the solidification start points P+ and P2 at the positions shown in the figure, the cooling start surface A is As shown in FIG. 1, the lowest point 15a of the sump is located close to the casting image 1a of the water-cooled core 1. That is, the solidification start point P2 is forcibly pushed down onto the casting surface la by the refractory heat insulating material 2, and due to the balance between cooling from the water-cooled mold 10 and cooling from the water-cooled core 1 located relatively below, The lowest point 15a of the sump is thus positioned. Generally, the solidification start point P! When pressed down forcibly, the solidification starting point P is the fireproof insulation material 2
and the casting surface 1a tend to be located at the junction. Therefore, it is not necessary to particularly control the cooling capacity of the water-cooled core 1 for this purpose, but it is possible to change the cooling capacity of the water-cooled core 1 appropriately from the viewpoint of the overall cooling effect, and if the casting surface If it is desired to locate the solidification start point Pg somewhere in the intermediate portion of 1a, the cooling capacity may be controlled accordingly. Such solidification initiation points PI and P! According to the solidification start surface A formed according to the position of This solidified shell cannot act as a restraining shell until solidification begins, and only after solidification starts from the inner circumference side do both the inner and outer solidified shells act as a restraining shell. Therefore, the substantial sump depth is the depth indicated by the symbol H1, and the substantial sump depth H1, which causes cracking due to the solidification shrinkage described above, is extremely small.

従って割れを完全に防止することが可能となる。Therefore, it is possible to completely prevent cracking.

ここで、割れは材料の強度に関係し、またサンプ深さH
,およびサンプ最下点15aの位置は水冷鋳型10およ
び水冷中子1のそれぞれの冷却能力、相対的な高さ位置
、中空ビレットの引き出し速度等によって変化する。従
ってこれらの選定に応じてそれぞれ許容できるサンプ深
さH,を得るようにすれば良いのである。このような許
容できるサンプ深さH,は同等な鋳造実験により求める
ことができ、或いは中実ビレットによる鋳造実験や適当
な強度計算等により推定できる。幾多の実験によれば、
サンプ深さHlが大体100mmを超えない程度とすれ
ば良いことが見出された。従って中空ビレットの外径お
よび肉厚が増大する場合にはHが増大するが、実質的な
サンプ深さH3(第1図でH+ = H+ h −Hz
 )が100mmを超えない程度にH2を調整すれば良
いことが判る。
Here, the cracking is related to the strength of the material and the sump depth H
, and the position of the lowest point 15a of the sump vary depending on the respective cooling capacities of the water-cooled mold 10 and the water-cooled core 1, relative height positions, drawing speed of the hollow billet, etc. Therefore, it is only necessary to obtain an allowable sump depth H depending on these selections. Such an allowable sump depth H can be determined by equivalent casting experiments, or can be estimated by casting experiments using solid billets, appropriate strength calculations, etc. According to numerous experiments,
It has been found that the sump depth Hl should be approximately not more than 100 mm. Therefore, when the outer diameter and wall thickness of the hollow billet increase, H increases, but the effective sump depth H3 (H+ = H+ h - Hz in Figure 1)
It can be seen that it is sufficient to adjust H2 to such an extent that ) does not exceed 100 mm.

ここで、Hは溶湯15の表面からサンプ最下点15aの
位置迄の高さ寸法、hは溶湯15の表面から耐火断熱材
2の上面迄の高さ寸法、そしてHtは溶湯15の表面か
ら凝固開始点P2迄の高さ寸法をそれぞれ示している。
Here, H is the height dimension from the surface of the molten metal 15 to the position of the lowest point 15a of the sump, h is the height dimension from the surface of the molten metal 15 to the top surface of the refractory insulation material 2, and Ht is the height dimension from the surface of the molten metal 15 to the top surface of the refractory insulation material 2. The height dimension up to the solidification start point P2 is shown.

また、水冷中子1の鋳造面1aは下方に位置されること
になるがその鋳込み方向の長さを長くする必要はなくな
るので、前述した発汗や溶湯漏れをも完全に防止できる
のである。
Further, although the casting surface 1a of the water-cooled core 1 is positioned downward, it is not necessary to increase its length in the casting direction, so that the sweating and molten metal leakage mentioned above can be completely prevented.

1里鬼羞果 ■ 本発明により肉厚の厚い中空ビレットの製造が可能
になる。
1 りきしか■ The present invention makes it possible to manufacture thick-walled hollow billets.

■ 本発明による装置は構造が簡単で、冷却能力や引き
出し速度を特別に制御する必要はない。
- The device according to the present invention has a simple structure, and there is no need to specially control the cooling capacity or drawing speed.

■ 発汗やメタル漏れの危険を完全に且つ容易に防止で
きる。
■ The risk of sweating and metal leakage can be completely and easily prevented.

■ 既存の装置に容易に適用できる。■ Can be easily applied to existing equipment.

スm 水冷鋳型lOとして内径1020mm、高さ89mmの
アルミニウム製の水冷鋳型を使用した。
As the water-cooled mold IO, an aluminum water-cooled mold with an inner diameter of 1020 mm and a height of 89 mm was used.

水冷中子lとして、上部に外径380mmで高さくHt
 )が50mm、 100mm、 150mm。
As a water-cooled core l, the outer diameter is 380 mm and the height is Ht.
) is 50mm, 100mm, 150mm.

または200mmの寸法の耐火断熱材(ジョンマンビル
社製マリナイト)をそれぞれ有し、鋳造面1aの上端外
径が357mmで高さくH3)が45mm、また該鋳造
面1aが下方へ向けて先細の9″のテーパー面とされて
いる4種の水冷中子と、比較のために耐火断熱材が配備
されておらず、鋳造面の上端外径が357 mm、高さ
が80mmで下方へ向けて先細の9″のテーパー面とさ
れている1種の水冷中子との合計5種の水冷中子を使用
した。これらを第1図(耐火断熱材の無い場合は第2図
)に示すようにそれぞれ配置し、6061系AI合金を
鋳造材料とし、鋳造温度680〜690℃、冷却水量1
000m!/分(水冷鋳型)および3001/分(水冷
中子)、そして中空ビレットの引き出し速度45mm/
分、の条件のもとで連続鋳造を実施した。この結果を第
1表に示す。
or a fireproof insulating material (Marinite manufactured by John Manville) with a dimension of 200 mm, the outer diameter of the upper end of the casting surface 1a is 357 mm, the height H3) is 45 mm, and the casting surface 1a is tapered downward. Four types of water-cooled cores have a 9" tapered surface, and for comparison, no refractory insulation material is provided, and the outer diameter of the upper end of the casting surface is 357 mm, the height is 80 mm, and the core is facing downward. A total of five types of water-cooled cores were used, including one type of water-cooled core with a tapered surface of 9''. These are arranged as shown in Figure 1 (Figure 2 if there is no fireproof insulation material), 6061 series AI alloy is used as the casting material, the casting temperature is 680-690℃, and the amount of cooling water is 1.
000m! /min (water-cooled mold) and 3001/min (water-cooled core), and hollow billet withdrawal speed 45mm/min.
Continuous casting was carried out under conditions of . The results are shown in Table 1.

第1表において、アルファベットは第1図に示した部分
の寸法を示している。
In Table 1, letters indicate the dimensions of the portions shown in FIG.

この結果から、本発明により耐火断熱材を使用した場合
、特にこれによって実質的な溶湯のサンプ深さH,を大
体100mm以下に抑えれば、割れの発生を防止でき、
内面の状態も良好となることが確認されたのである。こ
れに対し、従来法による耐火断熱材を使用しない、即ち
内周側の凝固開始点Ptが強制的に低下されていない場
合には、溶湯のサンプ深さHlが180mmとなって割
れが発生するとともに内面も不良であることが見られた
From this result, when using the fireproof insulation material according to the present invention, it is possible to prevent the occurrence of cracks, especially if the actual molten metal sump depth H, is kept to approximately 100 mm or less.
It was confirmed that the condition of the inner surface was also improved. On the other hand, if the fireproof insulation material of the conventional method is not used, that is, if the solidification start point Pt on the inner peripheral side is not forcibly lowered, the sump depth Hl of the molten metal will be 180 mm and cracks will occur. It was also found that the inner surface was also defective.

ス1111 水冷鋳型10として内径510mm、高さ80mmのア
ルミニウム類の水冷鋳型を使用した。
S1111 As the water-cooled mold 10, an aluminum water-cooled mold with an inner diameter of 510 mm and a height of 80 mm was used.

水冷中子1として、上部に外径130mmで高さくHz
 )が150mmの寸法の耐火断熱材(ジッンマンビル
社製マリナイト)を有し、鋳造面1aの上端外径力月1
0mmで高さくHl)が30mm、また該鋳造面1aが
下方へ向けて先細の7@のテーパー面とされているアル
ミニウム類の水冷中子を使用した。これらを第1図に示
すようにそれぞれ配置し、5956系AI合金を鋳造材
料とし、鋳造温度680〜690℃、冷却水量5OOt
y分(水冷鋳型)および901/分(水冷中子)、そし
て中空ビレットの引き出し速度60mmZ分、の条件の
もとで連続鋳造を実施した。
As water-cooled core 1, the outer diameter is 130 mm and the height is Hz.
) has a fireproof insulation material (marinite manufactured by Zinman Building) with a dimension of 150 mm, and the outer diameter of the upper end of the casting surface 1a is 1.
A water-cooled aluminum core having a height (Hl) of 30 mm at 0 mm and a casting surface 1a having a downwardly tapered 7@ was used. These were arranged as shown in Figure 1, 5956 series AI alloy was used as the casting material, the casting temperature was 680-690°C, and the amount of cooling water was 5OOt.
Continuous casting was carried out under the following conditions: y min (water-cooled mold) and 901 min (water-cooled core), and a hollow billet withdrawal speed of 60 mm Z min.

この結果、実質的なサンプ深さは大体50mmとなり、
作られた中空とレットは内面に割れが無く、健全なもの
が得られることが確認された。
As a result, the actual sump depth is approximately 50mm,
It was confirmed that the hollows and rets that were made had no cracks on their inner surfaces and were sound.

比較のため、外径110mm、高さ80mmの従来のア
ルミニウム類の水冷中子を第2図に示すように配置して
、同じ材料を同じ条件で連続鋳造した。これにより得ら
れた中空ビレットは内面に著しい凹凸が確認され、また
肉厚の中央付近から内周面へ至る割れが多数発生してい
るのが確認され、鋳造製品として実用に供し得るものと
は認められなかった。
For comparison, a conventional aluminum water-cooled core with an outer diameter of 110 mm and a height of 80 mm was arranged as shown in FIG. 2, and the same material was continuously cast under the same conditions. The hollow billet thus obtained was confirmed to have significant unevenness on its inner surface, and many cracks extending from the center of the wall thickness to the inner circumferential surface were confirmed, making it difficult to find a product that could be put to practical use as a cast product. I was not able to admit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するための本発明による装
置の好ましい実施例を示す全体的な概略断面図。 第2図は従来の中空ビレットの連続鋳造装置の全体的な
概略断面図。 A・・・・・・凝固開始面 P+、Pt ・・凝固開始点 1・・・・・・水冷中子 1a・・・・・鋳造面 lb・・・・・冷却水の排出口 lc・・・・・冷却水の供給管 2・・・・・・耐火断熱材 10・・・・・・水冷鋳型 10a・・・・・鋳造面 10b・・・・・冷却水の排出口 12・・・・・・受け台 13.14・・・冷却水 15・・・・・・溶湯 15° ・・・・・凝固部分 16・・・・・・フロート
FIG. 1 is an overall schematic sectional view of a preferred embodiment of the apparatus according to the invention for carrying out the method of the invention. FIG. 2 is an overall schematic sectional view of a conventional continuous casting apparatus for hollow billets. A...Solidification start surface P+, Pt...Solidification start point 1...Water-cooled core 1a...Casting surface lb...Cooling water outlet lc... ... Cooling water supply pipe 2 ... Fireproof insulation material 10 ... Water-cooled mold 10a ... Casting surface 10b ... Cooling water outlet 12 ... ...Scraper 13.14 ...Cooling water 15 ... Molten metal 15° ... Solidification part 16 ... Float

Claims (5)

【特許請求の範囲】[Claims] (1)上下が解放された金属製の水冷鋳型の中央部に金
属製の水冷中子を配備し、前記水冷鋳型と水冷中子との
間に形成された空間部に熱溶融された材料を供給すると
ともに、当初は前記空間部の底部を閉鎖している受け台
を、供給された前記材料が凝固を開始する位置(凝固開
始点)を前記空間部内に維持させる状態で降下させ、こ
れによって前記空間部内で凝固された中空ビレットを連
続的に引き出して製造する方法であって、 前記水冷中子における前記材料の冷却開始点を前記水冷
鋳型における冷却開始点よりも相対的に低下させ、該凝
固開始点と凝固開始面における最下点との間の実質的な
サンプ深さを、鋳造条件に応じて定められ得る製品の割
れが生じない許容深さ以下に調整する、 ことを特徴とする厚肉中空ビレットの製造方法。
(1) A metal water-cooled core is placed in the center of a metal water-cooled mold with open top and bottom, and the thermally fused material is placed in the space formed between the water-cooled mold and the water-cooled core. At the same time as supplying the material, the pedestal that initially closes the bottom of the space is lowered in a state where the position where the supplied material starts solidifying (solidification start point) is maintained within the space, thereby A method of manufacturing by continuously drawing out a hollow billet solidified within the space, the method comprising: lowering a cooling start point of the material in the water-cooled core relatively than a cooling start point of the material in the water-cooling mold; The actual sump depth between the solidification start point and the lowest point on the solidification start surface is adjusted to be below a permissible depth that does not cause cracking of the product, which can be determined according to casting conditions. A method for manufacturing thick-walled hollow billets.
(2)前記実質的なサンプ深さを100mm以内に調整
することを特徴とする特許請求の範囲第1項記載の厚肉
中空ビレットの製造方法。
(2) The method for manufacturing a thick-walled hollow billet according to claim 1, characterized in that the substantial sump depth is adjusted to within 100 mm.
(3)前記水冷中子の鋳造面の上側範囲を耐火断熱材で
覆い、この範囲で凝固が開始しないようにしたことを特
徴とする特許請求の範囲第1項記載の厚肉中空ビレット
の製造方法。
(3) Production of a thick-walled hollow billet according to claim 1, characterized in that the upper range of the casting surface of the water-cooled core is covered with a fireproof heat insulating material to prevent solidification from starting in this range. Method.
(4)上下が解放された金属製の水冷鋳型の中央部に金
属製の水冷中子を配備し、前記水冷鋳型と水冷中子との
間に形成された空間部に熱溶融された材料を供給すると
ともに、当初は前記空間部の底部を閉鎖している受け台
を、供給された前記材料が凝固を開始する位置(凝固開
始点)を前記空間部内に維持させる状態で降下させ、こ
れによって前記空間部内で凝固した中空ビレットを連続
的に引き出して製造する装置において、 前記水冷中子における凝固開始点を実質的に低下させる
ために、該水冷中子の鋳造面の上側部分に耐火断熱材が
配備されている、 ことを特徴とする厚肉中空ビレットの製造装置。
(4) A metal water-cooled core is placed in the center of a metal water-cooled mold with open top and bottom, and the thermally fused material is placed in the space formed between the water-cooled mold and the water-cooled core. At the same time as supplying the material, the pedestal that initially closes the bottom of the space is lowered in a state where the position where the supplied material starts solidifying (solidification start point) is maintained within the space, thereby In an apparatus for manufacturing by continuously drawing out a hollow billet solidified in the space, a refractory heat insulating material is provided on the upper part of the casting surface of the water-cooled core in order to substantially lower the solidification start point in the water-cooled core. A thick-walled hollow billet manufacturing device characterized by:
(5)前記耐火断熱材が水冷中子の鋳造面よりも前記空
間部内へ張り出していることを特徴とする特許請求の範
囲第4項記載の厚肉中空ビレットの製造装置。
(5) The apparatus for manufacturing a thick-walled hollow billet according to claim 4, wherein the refractory heat insulating material protrudes into the space beyond the casting surface of the water-cooled core.
JP5204985A 1985-03-15 1985-03-15 Method and apparatus for producing thick-walled hollow billet Granted JPS61212448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5204985A JPS61212448A (en) 1985-03-15 1985-03-15 Method and apparatus for producing thick-walled hollow billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5204985A JPS61212448A (en) 1985-03-15 1985-03-15 Method and apparatus for producing thick-walled hollow billet

Publications (2)

Publication Number Publication Date
JPS61212448A true JPS61212448A (en) 1986-09-20
JPH0513023B2 JPH0513023B2 (en) 1993-02-19

Family

ID=12903956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5204985A Granted JPS61212448A (en) 1985-03-15 1985-03-15 Method and apparatus for producing thick-walled hollow billet

Country Status (1)

Country Link
JP (1) JPS61212448A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430577A (en) * 1987-07-02 1989-02-01 Eastman Kodak Co Apparatus for sensing mass in tank

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430577A (en) * 1987-07-02 1989-02-01 Eastman Kodak Co Apparatus for sensing mass in tank

Also Published As

Publication number Publication date
JPH0513023B2 (en) 1993-02-19

Similar Documents

Publication Publication Date Title
RU2460607C2 (en) Device and method for subsequent casting of metals having equal or similar shrinkage factors
US3780789A (en) Apparatus for the vertical multiple continuous casting of aluminum and aluminum alloys
US3206808A (en) Composite-ingot casting system
US8056608B2 (en) Method of mitigating against thermal contraction induced cracking during casting of a super Ni alloy
US2515284A (en) Differential cooling in casting metals
RU2141883C1 (en) Apparatus for horizontal direct metal casting to metal mold or permanent mold, metal mold or permanent mold
EP0293601B1 (en) Method of manufacturing hollow billet and apparatus therefor
US3151366A (en) Method and apparatus for the casting of fusible materials
US4865116A (en) Continuous metal tube casting method and apparatus
JPH06320252A (en) Manufacture of forming die having heating and cooling water line
US1892044A (en) Method of casting ingots
JPS61212448A (en) Method and apparatus for producing thick-walled hollow billet
US4205716A (en) Continuous casting process and apparatus for production of metallic hollow ingot
JPS6056448A (en) Continuous casting device for metallic pipe
JPS61135452A (en) Continuous casting device of hollow billet
KR200337464Y1 (en) Non-Turbulent Mold Casting M/C
US3438424A (en) Method of direct casting of steel slabs and billets
EP0110854A1 (en) Method for casting ingots and apparatus for carrying out the method
US3916985A (en) Apparatus for continuous casting of metal strips
KR100568765B1 (en) Non-turbulent mold casting method
JPH0255141B2 (en)
JPH07227653A (en) Method and device for reducing shrinkage hole in continuous casting
JPH0938751A (en) Mold device for continuous casting
FI69972B (en) METAL CONTAINER CONTAINER
JPS63230260A (en) Method for continuously casting hollow cast billet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees