JPS61209013A - Preparation of separation membrane - Google Patents

Preparation of separation membrane

Info

Publication number
JPS61209013A
JPS61209013A JP5007985A JP5007985A JPS61209013A JP S61209013 A JPS61209013 A JP S61209013A JP 5007985 A JP5007985 A JP 5007985A JP 5007985 A JP5007985 A JP 5007985A JP S61209013 A JPS61209013 A JP S61209013A
Authority
JP
Japan
Prior art keywords
phase
glass
pores
porous body
glass layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5007985A
Other languages
Japanese (ja)
Inventor
Fumio Abe
文夫 安部
Yasushi Fujita
藤田 恭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5007985A priority Critical patent/JPS61209013A/en
Priority to US06/832,218 priority patent/US4689150A/en
Priority to DE8686301512T priority patent/DE3675961D1/en
Priority to EP86301512A priority patent/EP0195549B1/en
Publication of JPS61209013A publication Critical patent/JPS61209013A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a gas separation membrane excellent in heat resistance and chemical resistance, by eluting a glass phase rich in alkali from a phase splittable glass layer after phase splitting and forming a membrane having fine pores to the surface of the treated glass layer. CONSTITUTION:Phase splittable glass such as Na2O3-B2O3-SiO2 type glass is used. The mol ratio of Na2O/B2O3 is set in the vicinity of 1/5 in order to make phase splitting easy and 50% or more of SiO2 is contained in order to hold strength. A glass layer 3 is applied to the surface of a ceramic porous body 2 having open pores 1 with a pore size of 0.5-30mum in a thickness of 10-500mum. After phase splitting treatment such that heat treatment is performed at 150-800 deg.C for 0.5hr more is performed, elution treatment is performed at 90 deg.C or more by hot water,m hydrochloric acid or sulfuric acid. The glass layer 3 comes to a porous body 7 rich in silica having fine pores 6 with a pore size of 10-5,000Angstrom and a metal or ceramic membrane 8 is formed to the surface thereof by a gaseous phase method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガス分離をはじめ、精密濾過、限界濾過、逆浸
透法等の広範な用途に用いられる分離膜の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a separation membrane used in a wide range of applications such as gas separation, precision filtration, ultrafiltration, and reverse osmosis.

(従来の技術) 混合ガスから特定ガスをガス拡散法によって分離するガ
ス分離等の分野においては、ガス分子の平均自由行程よ
りもはるかに小さい孔径数十〜敗百人の細孔を持つ分離
膜が用いられている。従来のこの種の分離膜としては通
常は有機高分子膜が使用されているが、100℃以上の
温度で使用することができないうえに耐薬品性、耐久性
に劣り、実用上に種々の問題が残されている。一方、耐
熱性を向上させる目的で金属粉末やセラミック粉末を焼
結して多孔質の分離膜を製造する方法も知られているが
、この方法による分離膜は強度上の問題からl+m以下
の膜厚とすることは困難であり、可能な限り膜厚を薄く
して分離効率を向上させることが望まれるガス分離用の
分離膜としてはやはり実用性に欠ける面があった。そこ
で、特開昭59−59223号公報に示されるように、
セラミック焼結体のような多孔体に溶液状のアルミニウ
ムアルコラード又はアルミニウムキレート等の隔膜形成
成分を含浸させ、加水分解後に乾燥、焼成して多層の多
孔質体よりなる隔膜を得る試みもなされているが、この
方法では溶液中の水分や有機バインダーが飛散する際に
隔膜中にクランクや気泡を残し易く、隔膜中の細孔を孔
径数十〜数百人にコントロールしてもクラックによる数
十μの貫通孔を通って大部分のガスが拡散してしまい、
望ましいガス分離を行わせ難い欠点があった。
(Prior art) In the field of gas separation, which separates a specific gas from a mixed gas by the gas diffusion method, separation membranes with pores of several tens to hundreds of pores are much smaller than the mean free path of gas molecules. It is used. Organic polymer membranes are usually used as conventional separation membranes of this type, but they cannot be used at temperatures above 100°C, have poor chemical resistance and durability, and have various practical problems. is left behind. On the other hand, a method of manufacturing porous separation membranes by sintering metal powder or ceramic powder is also known for the purpose of improving heat resistance, but separation membranes made by this method are thinner than l+m due to strength issues. It is difficult to increase the thickness, and as a separation membrane for gas separation, where it is desired to improve separation efficiency by reducing the membrane thickness as much as possible, it is still impractical. Therefore, as shown in Japanese Patent Application Laid-Open No. 59-59223,
Attempts have also been made to impregnate a porous body such as a ceramic sintered body with a diaphragm-forming component such as aluminum alcoholade or aluminum chelate in the form of a solution, and then dry and sinter it after hydrolysis to obtain a diaphragm made of a multilayered porous body. However, this method tends to leave cracks and bubbles in the diaphragm when the water in the solution and the organic binder scatter, and even if the pores in the diaphragm are controlled to have a pore size of several tens to hundreds of pores, the number of cracks in the diaphragm will be several dozen. Most of the gas diffuses through the μ through-hole,
There was a drawback that it was difficult to perform the desired gas separation.

(発明が解決しようとする問題点) 本発明はこのような従来の問題点を解決して、耐熱性、
耐薬品性、耐久性に優れ、ガス分離に適した孔径が5〜
2000人の均一な多数の細孔を備えた分離膜をクラン
クを生ずることなく製造することができる分離膜の製造
方法を目的として完成されたものである。
(Problems to be solved by the invention) The present invention solves these conventional problems and improves heat resistance,
Excellent chemical resistance and durability, and pore size of 5~ suitable for gas separation
It was completed with the aim of creating a method for manufacturing a separation membrane that can manufacture a separation membrane with a large number of 2,000 uniform pores without producing a crank.

(問題点を解決するための手段) 本発明はガラス層を分相処理してシリカリッチなガラス
相とアルカリリッチなガラス相とに分相させたうえ、ア
ルカリリッチなガラス相を溶出処理して網状細孔を持つ
ガラス質の多孔体とし、その表面に気相法によって孔径
5〜2000人の多数の細孔を持つ薄膜を形成すること
を特徴とするものである。 ガラスの分相はガラス相の
内部に2種類以上のガラスを分離させたものであって、
−a的にはシリカリッチなガラス相とアルカリリッチな
ガラス相との分離を利用する。分相可能なガラスとして
はNatO−BtOz −3i Ox系、NazO−B
103−3 i Ox −重金属酸化物系、N a 2
0  Btus  Ce 01  ・3 N bz○3
系、NatOPzOs  S i Ox系、Na2O−
BfO、−3in、−Ge○、系等のガラスが用いられ
る0代表的なN a to  BzOz −5i OX
系のガラスは均質な硼珪酸塩ガラスの内部に熱処理によ
ってほとんどS i Ozのみからなるシリカガラス相
と、N a ! OB t Oxを主成分とするガラス
相とを数十人のオーダーで分相させるもので、分相し易
いようにN a z O/ B t Os はモル比で
115の近傍とし、また溶出処理後の強度保持上、5i
Otを50%以上含有させておくことが望ましい、この
ような分相可能なガラスは加熱溶融されて薄板や円筒等
の任意形状のガラス層に成形される、この場合にはハン
ドリングのために十分な強度を得るために0.5日以上
の厚さを持たせることが好ましい、なお、実用的には第
1図に模式的に示すように0.5〜30μの孔径の連続
孔Tl+を持つアルミナ、ムライト、コージライトのよ
うなセラミック多孔体(2)の表面に分相可能なガラス
層(3)をlO〜500μの厚さに被覆したものとして
、ガラス層(mのみのものよりも更に大きい強度を持た
せることが好ましい0次に、このようなガラス層(3)
を分相処理して、第2図に示されるようにガラス層(m
をシリカリフチなガラス相(4)とアルカリリッチなガ
ラス相(5)とに分相させる。分相処理は一般的には1
50〜800℃で0.5時間以上、分相可能なガラスと
してN ato−Rhoz −3i O2系のガラスを
用いた場合には400〜700℃で行われる。低温で短
時間の分権処理を行うと分権は微細であり、高温で長時
間となるほど分相が進行するので、アルカリリッチなガ
ラス相(5)の断面積が10〜5000人となるように
分相処理の条件を設定する0次に、このように分相させ
たガラス層(3)に対して90℃以上の熱水あるいは6
0〜lOO℃の0.O1〜0.I Nの塩酸、硫酸、硝
酸等を用いて溶出処理を行えば、第3図に示すようにア
ルカリリッチなガラス相(5)は溶出して、ガラス層(
3)は10〜5000人の孔径の網状細孔(6)を持つ
ガラス質の多孔体(7)となる、このようにして得られ
た多孔体(7)の表面に、次に第4図に示されるように
金属質又はセラミックス質の薄膜(8)が気相法により
形成される。気相法は薄膜を形成させようとする物質も
しくはその原材料からなる物質に熱又は運動量を加えて
原子、分子又は集合体に分解したうえ、別の場所の基体
上に結合あるいは凝縮させる方法として定義され、化学
反応法(CVD法)と物理蒸着法(PVD法)とに大別
される。化学反応法は狭義の化学反応法、化学輸送法、
基板反応法、スプレー法等に更に分類されるが、いずれ
も1llltlとなる素材を気化し易い化合物に変え、
気相を通して運搬したうえで基板表面で化学反応を行わ
せて膜を形成する方法である。また、物理蒸着法は真空
蒸着法、イオンブレーティング法、スパンタリング法、
プラズマ法のような真空中で素材に物理的なエネルギを
加えて蒸発させたうえ基板上へ蒸着させて膜を形成する
方法である。これらの気相法により多孔体(7)上に生
成される薄膜(8)は基板となるガラス質の多孔体(7
)の温度及び雰囲気圧等を適当な値に制御しつつ処理を
行えば、生成過程における核成長あるいは自己陰影効果
によって多孔性の柱状構造を待ち、5〜2000人の孔
径の均一な細孔を持つ薄膜(8)となる。孔径が5人未
満であるとガスの透過速度が小さくなって実用性が失わ
れ、2000人を試すとガスの分離性能の低下が生ずる
ので、孔径が5〜2000人となるように制御を行うも
のとする。その膜厚は10Å〜100μが適当であり、
またその材質としては酸化物、炭化物、窒化物のほか金
属、金属間化合物等の任意のものを用いることもできる
(Means for Solving the Problems) The present invention performs phase separation treatment on a glass layer to separate it into a silica-rich glass phase and an alkali-rich glass phase, and then performs an elution treatment on the alkali-rich glass phase. It is characterized in that it is a glassy porous body with net-like pores, and a thin film having many pores with a pore diameter of 5 to 2,000 is formed on its surface by a vapor phase method. Glass phase separation is the separation of two or more types of glass inside the glass phase,
-A, the separation between a silica-rich glass phase and an alkali-rich glass phase is utilized. Glasses capable of phase separation include NatO-BtOz -3i Ox system, NazO-B
103-3 i Ox - heavy metal oxide system, Na 2
0 Btus Ce 01 ・3 N bz○3
system, NatOPzOs Si Ox system, Na2O-
0 Typical Na to BzOz -5i OX in which glasses such as BfO, -3in, -Ge○, etc. are used
This type of glass has a silica glass phase consisting almost only of SiOz and Na! by heat treatment inside the homogeneous borosilicate glass. The glass phase whose main component is OB t Ox is phase-separated on the order of several dozen people, and the molar ratio of N a z O / B t Os is set around 115 to facilitate phase separation, and the elution treatment is To maintain strength later, 5i
It is desirable to contain 50% or more of Ot. Such a phase-separable glass is heated and melted and formed into a glass layer of any shape such as a thin plate or cylinder. In order to obtain sufficient strength, it is preferable to have a thickness of 0.5 days or more, and in practical terms, as schematically shown in Fig. 1, continuous pores Tl+ with a pore diameter of 0.5 to 30μ are used. The surface of a ceramic porous body (2) such as alumina, mullite, or cordierite is coated with a phase-separable glass layer (3) to a thickness of 10 to 500μ. Such a glass layer (3) preferably has a large strength.
is subjected to phase separation treatment to form a glass layer (m
is separated into a silica-rich glass phase (4) and an alkali-rich glass phase (5). Phase separation treatment is generally 1
It is carried out at 50 to 800°C for 0.5 hours or more, and when Nato-Rhoz-3iO2 glass is used as the phase-separable glass, it is carried out at 400 to 700°C. If decentralization is carried out for a short time at low temperature, the decentralization will be fine, and the longer the time at high temperature, the more phase separation will occur. Next, the phase-separated glass layer (3) is heated with hot water of 90°C or higher or
0~lOO℃0. O1~0. If elution treatment is performed using IN hydrochloric acid, sulfuric acid, nitric acid, etc., the alkali-rich glass phase (5) will be eluted and the glass layer (
3) becomes a glassy porous body (7) having network pores (6) with a pore diameter of 10 to 5,000. Next, on the surface of the porous body (7) obtained in this way, As shown in , a metallic or ceramic thin film (8) is formed by a vapor phase method. The gas phase method is defined as a method in which the substance to be formed into a thin film or its raw material is decomposed into atoms, molecules, or aggregates by applying heat or momentum, and then bonded or condensed on a substrate in another location. It is broadly divided into chemical reaction method (CVD method) and physical vapor deposition method (PVD method). Chemical reaction method is chemical reaction method in a narrow sense, chemical transport method,
It is further classified into substrate reaction method, spray method, etc., but in both cases, the material that becomes 1lllltl is changed to a compound that easily vaporizes.
This is a method in which a film is formed by transporting the material through a gas phase and causing a chemical reaction on the surface of the substrate. In addition, physical vapor deposition methods include vacuum evaporation method, ion brating method, sputtering method,
This is a method similar to a plasma method in which physical energy is applied to a material in a vacuum to evaporate it, and then the material is vapor-deposited onto a substrate to form a film. The thin film (8) produced on the porous body (7) by these vapor phase methods is applied to the glassy porous body (7) which becomes the substrate.
) If the temperature and atmospheric pressure are controlled to appropriate values, a porous columnar structure will develop due to nuclear growth or self-shading effect during the formation process, and uniform pores with a pore size of 5 to 2,000 pores will be formed. A thin film (8) is formed. If the pore diameter is less than 5, the gas permeation rate will be low and practicality will be lost, and if 2000 pores are tested, the gas separation performance will decrease, so the pore size should be controlled to be between 5 and 2000 pores. shall be taken as a thing. The appropriate film thickness is 10 Å to 100 μ;
Further, as the material, any material such as oxide, carbide, nitride, metal, intermetallic compound, etc. can be used.

このように、本発明においてはアルカリリッチなガラス
相が溶出処理されてほとんどSing のみからなる物
理的、化学的に安定なシリカリッチなガラス質の多孔体
(7)の表面に気相法により薄膜(8)が形成されるの
で、薄膜(8)は均一かつ安定した状態で生長し、シリ
カリッチなガラス質の多孔体(7)との間の接着強度を
大きくすることができる。なお、気相法のうち化学反応
法(CVD法)を採用すれば、多孔体(7)の網状細孔
(6)の内部にまで反応性ガスを拡散することができる
ので、薄膜(8)の膜厚を大とすることができる利点が
ある。
In this way, in the present invention, the alkali-rich glass phase is eluted and a thin film is formed by a vapor phase method on the surface of the physically and chemically stable silica-rich glassy porous body (7) consisting almost exclusively of Sing. (8) is formed, the thin film (8) grows uniformly and stably, and the adhesive strength between the thin film (8) and the silica-rich glassy porous body (7) can be increased. In addition, if a chemical reaction method (CVD method) is adopted among the gas phase methods, the reactive gas can be diffused into the inside of the network pores (6) of the porous body (7). It has the advantage that the film thickness can be increased.

(作用) このように本発明においてはほとんどS i Otのみ
からなる物理的、化学的に安定なガラス質の多孔体(7
)の表面に気相法による薄膜形成が行われるので、ガス
分離に適した孔径5〜2000人の微小な細孔を持つ薄
膜(8)を均一かつ安定に形成させることができる。本
発明によれば、10〜5000人の網状細孔(6)を持
つガス透過性の高い多孔体(7)の表面に均一かつ微小
な細孔を持つW11! +sを形成した分離膜を安定し
て製造することができ、また、気相法による薄膜形成条
件や分権処理条件の調整によって任意の孔径及び膜厚の
分IIIWlを製造することができる。本発明の方法に
より得られた分離膜は従来の有機高分子膜とは異なり、
ガラス質とセラミック質あるいは金属質からなるもので
あるので耐熱性、耐薬品性、耐久性に優れ、また従来の
セラミック焼結体等にアルミニウムアルコラード等を含
浸させ加水分解後に乾燥して得られた多層の多孔体のよ
うにクランクが存在することもなく、効率良くガス分離
を行わせるに適したものである。
(Function) As described above, in the present invention, a physically and chemically stable glassy porous body (7
), a thin film (8) having minute pores of 5 to 2,000 pores in diameter suitable for gas separation can be uniformly and stably formed. According to the present invention, W11 has uniform and minute pores on the surface of the highly gas permeable porous body (7) having 10 to 5,000 network pores (6)! It is possible to stably produce a separation membrane in which +s has been formed, and it is also possible to produce IIIWl with any pore size and film thickness by adjusting the thin film formation conditions and decentralized processing conditions using the vapor phase method. The separation membrane obtained by the method of the present invention is different from conventional organic polymer membranes,
Since it is made of glass, ceramic, or metal, it has excellent heat resistance, chemical resistance, and durability, and it can also be obtained by impregnating a conventional ceramic sintered body with aluminum Alcolade, etc., hydrolyzing it, and then drying it. Unlike multilayer porous bodies, there is no crank, and it is suitable for efficient gas separation.

(実施例) 実施例1 Nato−BtOs −3ioz系の分相可能なガラス
を溶融して厚さ1fiの平板を成形したうえ、500℃
、12時間の分相処理を行った0次に90℃、0.IN
の塩酸により溶出処理を行い、分相したガラス層を平均
細孔径2000人の網状細孔を持つ多孔体とした。この
多孔体の表面に反応管中で気相化学反応法によりAlx
Os賞からなる平均細孔径200人の細孔を持つ膜厚l
Oμの薄膜を形成した。原料ガスはAlCl3、HIO
であり、キャリアガスはAr、oxで反応温度は900
℃とした。この結果、ガラス質の多孔体の表面に気相法
による膜厚10μの薄膜が形成された分離膜が得られた
(Example) Example 1 A flat plate with a thickness of 1fi was formed by melting Nato-BtOs -3ioz glass that can be phase separated, and then heated at 500°C.
, 90°C, 0.0°C after 12 hours of phase separation treatment. IN
Elution treatment was carried out with hydrochloric acid, and the phase-separated glass layer was made into a porous body having network pores with an average pore diameter of 2,000 pores. Alx was applied to the surface of this porous body by a gas phase chemical reaction method in a reaction tube.
Film thickness l with average pore diameter of 200 pores
A thin film of Oμ was formed. Raw material gas is AlCl3, HIO
The carrier gas was Ar, ox, and the reaction temperature was 900℃.
℃. As a result, a separation membrane was obtained in which a thin film having a thickness of 10 μm was formed on the surface of a glassy porous body by a vapor phase method.

実施例2 N a go  BzOs −S i 02系の分相可
能なガラスを溶融して厚さlaの平板を成形したうえ、
400℃10時間の分相処理を行った0次に90℃、O
,lNの塩酸により溶出処理を行い、分相したガラス層
を平均細孔径1000人の網状細孔を持つガラス質の多
孔体とした。これを反応管中で   −真空蒸着法によ
り分権処理したガラスの表面に平均細孔径50人の細孔
を持つ膜厚2μのAltoz質の薄膜を形成した。蒸発
源はAI、雰囲気は02、圧力は10−’torrであ
り、分相したガラスからなる平板の温度を400℃に保
った。この結果、ガラス質の多孔体の表面に気相法によ
る膜厚2μの薄膜が形成された分離膜が得られた。
Example 2 N a go BzOs - S i 02 type phase-separable glass was melted to form a flat plate with a thickness of la,
After phase separation treatment at 400°C for 10 hours, 90°C, O
, IN hydrochloric acid, and the phase-separated glass layer was made into a glassy porous body having network pores with an average pore diameter of 1,000 pores. A thin Altoz film having a thickness of 2 μm and having an average pore diameter of 50 pores was formed on the surface of the decentralized glass using the vacuum evaporation method in a reaction tube. The evaporation source was AI, the atmosphere was 02, the pressure was 10-'torr, and the temperature of the flat plate made of phase-separated glass was maintained at 400°C. As a result, a separation membrane was obtained in which a thin film having a thickness of 2 μm was formed on the surface of a glassy porous body by a vapor phase method.

実施例3 アルミナ質の粒状体を焼成して平均細孔径1μ、厚さ1
日のセラミック多孔体よりなる平板上にN a go 
 BzOs   S i Ot系の分相可能なガラスを
厚さ300μになるように加熱溶融後、これを500℃
12時間分相処理を行った。次に90’e、0.INの
塩酸により溶出処理を行い、分相したガラス層を平均細
孔径2ooo人の網状細孔を持つ多孔体とした。次に反
応管中でスパッタリング法により分相したガラス層の表
面に平均細孔径100人の細孔を持つ膜厚0.1 μの
AINの薄膜を形成した。陰極材料はAIで、Ar5X
10”torr、Nz  2X10−3torrの雰囲
気下で、平板温度200℃として放電させた。この結果
、アルミナ賞の多孔体の表面に被覆されたガラス質の多
孔体の表面に気相法による膜厚0.1 μの薄膜が形成
された分離膜が得られた。
Example 3 Alumina granules were fired to have an average pore diameter of 1 μm and a thickness of 1 μm.
N a go on a flat plate made of a ceramic porous body.
After heating and melting BzOs Si Ot-based phase-separable glass to a thickness of 300μ, this was heated to 500°C.
Phase separation treatment was performed for 12 hours. Then 90'e, 0. Elution treatment was performed with IN hydrochloric acid, and the phase-separated glass layer was made into a porous body having network pores with an average pore diameter of 200 mm. Next, a thin film of AIN having an average pore diameter of 100 pores and a thickness of 0.1 μm was formed on the surface of the phase-separated glass layer by sputtering in a reaction tube. The cathode material is AI, Ar5X
The discharge was carried out in an atmosphere of 10" torr, Nz 2X10-3 torr, and a flat plate temperature of 200°C. As a result, the surface of the glassy porous body coated on the surface of the alumina prize porous body was coated with a film thickness by vapor phase method. A separation membrane with a thin film of 0.1 μm was obtained.

上記の実施例1〜3の分離膜のほか、比較例としてガラ
スを分相処理して得られた厚さIN、平均細孔径50人
のガラス質の多孔体のみからなる分離膜を作成し、流通
式ガス分離装置を用いてH2SO(体積)%、Nt50
%の混合ガスの分離テストを行った。供給側圧力5.O
k+r/cII!、流出側圧力1 kg / d、温度
300℃の条件でテストした結果、次表のとおりの結果
が得られた。
In addition to the separation membranes of Examples 1 to 3 above, as a comparative example, a separation membrane consisting only of a glassy porous material with a thickness IN and an average pore diameter of 50 mm obtained by phase separation treatment of glass was created. H2SO (volume)%, Nt50 using a flow-through gas separation device
% mixed gas separation test was conducted. Supply side pressure5. O
k+r/cII! As a result of testing under the conditions of , outlet pressure of 1 kg/d, and temperature of 300°C, the results shown in the following table were obtained.

(発明の効果) 本発明は以上の説明からも明らかなように、はとんどS
iO□のみからなる物理的、化学的に安定した多孔体の
表面に気相法により孔径5〜2000人の均一かつ微小
な細孔を持つ薄膜を形成することによって、ガス分離に
適した細孔を持つ薄膜と、ガス透過性の高い多孔体とか
らなる分離膜を安定して得ることができるものである0
本発明の方法により得られた分離膜は、細孔の均一性、
耐熱性、耐薬品性、耐久性、機械的強度に優れたもので
、特に図示の例のようにガラス質の多孔体をセラミック
多孔体の表面に被覆形成したものは実用的に優れた強度
を示すものである。また本発明の方法により得られた分
離膜は任意の膜厚や細孔径のものを製造することができ
るうえに、クランクのないものであるから、特に効率良
くガス分離を行わせるに好適なものである。このように
本発明により得られた分離膜は製鉄所の副生ガスからの
It回収、CI化学における合成ガス(C0−Hz)の
混合比調整、天然ガスからのl(eの濃縮等のガス分離
の分野に有益であるが、水溶液やを機溶媒の濾過、酵母
やかび頬の濾過、細菌やウィルスの濾過のような精密濾
過の分野、およびタンパク賞の濃縮、回収、精製、ワク
チン、酵素、ビールス、核酸等の生理活性物質の濃縮、
回収、精製等の限界濾過の分野のほか、海水、塩水等の
淡水化、純水、無菌水の製造等の逆浸透法の分野にも有
効に利用することができるものである。よって本発明は
従来のこの種分離膜製造上の問題点を一掃したものとし
て、産業の発展に寄与するところは極めて大である。
(Effect of the invention) As is clear from the above description, the present invention
By forming a thin film with uniform and minute pores of 5 to 2,000 pores in diameter using a vapor phase method on the surface of a physically and chemically stable porous material made only of iO□, we can create pores suitable for gas separation. It is possible to stably obtain a separation membrane consisting of a thin film with a high gas permeability and a porous body with high gas permeability.
The separation membrane obtained by the method of the present invention has pore uniformity,
It has excellent heat resistance, chemical resistance, durability, and mechanical strength. In particular, a porous ceramic material coated with a glassy porous material as shown in the figure has excellent strength for practical purposes. It shows. In addition, the separation membrane obtained by the method of the present invention can be manufactured to any thickness and pore size, and does not have a crank, so it is particularly suitable for efficient gas separation. It is. The separation membrane obtained according to the present invention is useful for recovering It from by-product gas in steel plants, adjusting the mixing ratio of synthesis gas (C0-Hz) in CI chemistry, and concentrating l(e) from natural gas. It is useful in the fields of separation, microfiltration such as filtration of aqueous solutions and organic solvents, filtration of yeast and mold cheeks, filtration of bacteria and viruses, and concentration, recovery, purification of proteins, vaccines, enzymes. , concentration of physiologically active substances such as viruses and nucleic acids,
In addition to the field of ultrafiltration such as recovery and purification, it can also be effectively used in the field of reverse osmosis, such as desalination of seawater, salt water, etc., and production of pure water and sterile water. Therefore, the present invention can greatly contribute to the development of industry by eliminating the problems associated with the production of conventional separation membranes of this type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の分#膜の製造工程を模式的に
示す部分拡大断面図である。 (3)ニガラス層、(6):網状細孔、(7):多孔体
、(8):aI膜。
1 to 4 are partially enlarged cross-sectional views schematically showing the manufacturing process of the membrane of the present invention. (3) Nigarasu layer, (6): network pores, (7): porous body, (8): aI membrane.

Claims (1)

【特許請求の範囲】 1、ガラス層を分相処理してシリカリッチなガラス相と
アルカリリッチなガラス相とに分相させたうえ、アルカ
リリッチなガラス相を溶出処理して網状細孔を持つガラ
ス質の多孔体とし、その表面に気相法によって孔径5〜
2000Åの多数の細孔を持つ薄膜を形成することを特
徴とする分離膜の製造方法。 2、ガラス層がセラミック多孔体上に10〜500μの
厚さに被覆されたものである特許請求の範囲第1項記載
の分離膜の製造方法。 3、薄膜を10Å〜100μの厚さに形成する特許請求
の範囲第1項又は第2項記載の分離膜の製造方法。
[Claims] 1. A glass layer is phase-separated into a silica-rich glass phase and an alkali-rich glass phase, and the alkali-rich glass phase is eluted to form reticular pores. It is made into a glassy porous body, and the pore size of 5 to 5 is formed on its surface by a vapor phase method.
A method for producing a separation membrane, characterized by forming a thin film having a large number of pores of 2000 Å. 2. The method for producing a separation membrane according to claim 1, wherein the glass layer is coated on a ceramic porous body to a thickness of 10 to 500 μm. 3. The method for producing a separation membrane according to claim 1 or 2, wherein the thin film is formed to a thickness of 10 Å to 100 μ.
JP5007985A 1985-03-07 1985-03-13 Preparation of separation membrane Pending JPS61209013A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5007985A JPS61209013A (en) 1985-03-13 1985-03-13 Preparation of separation membrane
US06/832,218 US4689150A (en) 1985-03-07 1986-02-24 Separation membrane and process for manufacturing the same
DE8686301512T DE3675961D1 (en) 1985-03-07 1986-03-04 SEPARATION MEMBRANE AND METHOD FOR THEIR PRODUCTION.
EP86301512A EP0195549B1 (en) 1985-03-07 1986-03-04 A separation membrane and process for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5007985A JPS61209013A (en) 1985-03-13 1985-03-13 Preparation of separation membrane

Publications (1)

Publication Number Publication Date
JPS61209013A true JPS61209013A (en) 1986-09-17

Family

ID=12849003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5007985A Pending JPS61209013A (en) 1985-03-07 1985-03-13 Preparation of separation membrane

Country Status (1)

Country Link
JP (1) JPS61209013A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268463A (en) * 2006-03-31 2007-10-18 Hitachi Zosen Corp Method for manufacturing filter material
JP2010529905A (en) * 2007-06-14 2010-09-02 アレバ・エヌペ Apparatus and system for treating gas mixtures by permeation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931843A (en) * 1972-07-21 1974-03-22
JPS56164035A (en) * 1980-04-28 1981-12-16 Nat Res Dev Porous glass membrane for reverse osmosis desalination
JPS57166342A (en) * 1981-03-31 1982-10-13 Toyobo Co Ltd Porous glass fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931843A (en) * 1972-07-21 1974-03-22
JPS56164035A (en) * 1980-04-28 1981-12-16 Nat Res Dev Porous glass membrane for reverse osmosis desalination
JPS57166342A (en) * 1981-03-31 1982-10-13 Toyobo Co Ltd Porous glass fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268463A (en) * 2006-03-31 2007-10-18 Hitachi Zosen Corp Method for manufacturing filter material
JP2010529905A (en) * 2007-06-14 2010-09-02 アレバ・エヌペ Apparatus and system for treating gas mixtures by permeation

Similar Documents

Publication Publication Date Title
US4689150A (en) Separation membrane and process for manufacturing the same
US5250184A (en) Procedure for the preparation of microporous ceramic membranes for the separation of gas and liquid mixtures
KR100460450B1 (en) Preparation of the silica composite membranes with thermal stability by Soaking-Rolling method
JP5897458B2 (en) Pervaporation separation method
JPS61209005A (en) Separation membrane and its preparation
JP2016135741A (en) Silica film filter, and method for producing silica film filter
WO2001064583A1 (en) Zeolite formed product, zeolite laminate intermediate, zeolite laminate composite and method for their preparation
JPS61209013A (en) Preparation of separation membrane
JPS62121616A (en) Separating membrane of hydrogen gas
JP3117276B2 (en) Hydrogen separation membrane
CN102389715B (en) Method for preparing porous inorganic membrane by particle sintering technology assisted by carbon skeleton
KR101136853B1 (en) Method for Thin Film Coating of Palladium Alloy on Porous Metal Substrate
JP4313307B2 (en) Zeolite molded body manufacturing method and zeolite laminated composite manufacturing method
EP1682252A1 (en) Titania composite membrane for water/alcohol separation, and preparation thereof
JPS61209004A (en) Separation membrane and its preparation
JPS61209012A (en) Preparation of separation membrane
US4340408A (en) High silica glass
JPS61204006A (en) Separation membrane and its production
JP2002249311A (en) Zeolite molded product, zeolite laminated intermediate body, zeolite laminated composite and method for producing these
CN112159208A (en) Preparation method of alumina-silica composite ceramic membrane
JP2923752B2 (en) Humidity responsive membrane with inorganic xerogel membrane
JPH0717780A (en) Production of porous ceramic film
JPH03242231A (en) Ceramic separating film with porous metal carrier
KR100531130B1 (en) Preparation of composite palladium membranes using etching process of metal chlorides
JPH038813B2 (en)