JPS61208828A - Liquid crystal epitaxial growth method of multilayers - Google Patents

Liquid crystal epitaxial growth method of multilayers

Info

Publication number
JPS61208828A
JPS61208828A JP60049401A JP4940185A JPS61208828A JP S61208828 A JPS61208828 A JP S61208828A JP 60049401 A JP60049401 A JP 60049401A JP 4940185 A JP4940185 A JP 4940185A JP S61208828 A JPS61208828 A JP S61208828A
Authority
JP
Japan
Prior art keywords
raw material
solution
distribution
material solution
solutions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60049401A
Other languages
Japanese (ja)
Other versions
JPH0330980B2 (en
Inventor
Mineo Wajima
峰生 和島
Tsunehiro Unno
恒弘 海野
Taiichiro Konno
泰一郎 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP60049401A priority Critical patent/JPS61208828A/en
Publication of JPS61208828A publication Critical patent/JPS61208828A/en
Publication of JPH0330980B2 publication Critical patent/JPH0330980B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a crystal growing layer of the prescribed thickness by adding in advance a crystal seed to a raw material solution. CONSTITUTION:A crystal substrate 11 is held in a substrate holder 15, and raw material solutions 24, 25 of different seeds in which III-V group metals are melted in a saturated state are charged into the first and second raw material solution reservoirs 20, 21, respectively. When crystal seeds 26, 27 are added in advance to the solutions 24, 25, respectively, oversaturated components generated upon falling of the temperature are sequentially precipitated to maintain the solutions 24, 25 in the saturated state immediately before the components are distributed out, and the distributing time of the solutions can be freely selected. accordingly, the oversaturation degrees of the distributing solutions 28, 29 can be freely controlled.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多層の液相エピタキシャル成長方法に係り、
特に、原料溶液中に予め結晶種を加えておくことにより
、冷却工程において分配までの間、原料溶液を飽和状態
に保つようにして成長層の厚さが過大になることを防止
した多層の液相エピタキシャル成長方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a multilayer liquid phase epitaxial growth method,
In particular, by adding crystal seeds to the raw material solution in advance, the raw material solution is kept in a saturated state during the cooling process until distribution, thereby preventing the growth layer from becoming too thick. This invention relates to a phase epitaxial growth method.

[従来の技術] 一般に、発光ダイオードやレーザダイオードなどの半導
体を製造する方法として、例えばQa Asなどの■−
v族化合物半導体を飽和状態になるまでQa融液中に溶
解してなる1種或いはそれ以上の原料溶液に、結晶基板
を接触させて単層或いは多層にエピタキシャル成長させ
るスライド式液相成長方法は特公昭56−51158@
公報に示す如くすでに知られている。
[Prior Art] In general, as a method for manufacturing semiconductors such as light emitting diodes and laser diodes, semiconductors such as QaAs, etc.
A sliding liquid phase growth method in which a crystal substrate is brought into contact with one or more raw material solutions prepared by dissolving a group V compound semiconductor in a Qa melt to a saturated state to epitaxially grow a single layer or multiple layers is particularly suitable. Kosho 56-51158@
This is already known as shown in the official gazette.

これを第8図に基づいて説明する。This will be explained based on FIG.

第8図はスライディング方式の液相エピタキシャル装置
を示し、基台1上に、基板ホルダ2、分配溶液ホルダ3
及び原料溶液ホルダ4がそれぞれスライド自在に順次積
層されている。この従来例は、2層のエピタキシャル成
長を行なうことから、原料溶液ホルダ4には異種の原料
溶液を貯留する2基の原料溶液溜5.6が設けられると
共に分配溶液ホルダ3にも上記原料溶液を分配するため
の2基の分配溶液溜7.8が形成されている。
FIG. 8 shows a sliding type liquid phase epitaxial device, in which a substrate holder 2, a distribution solution holder 3 are placed on a base 1.
and raw material solution holders 4 are sequentially stacked so as to be slidable. Since this conventional example performs two-layer epitaxial growth, the raw material solution holder 4 is provided with two raw material solution reservoirs 5.6 for storing different types of raw material solutions, and the distribution solution holder 3 is also provided with the raw material solution. Two distribution reservoirs 7.8 are formed for distribution.

そして、多層成長を行なうには、例えば化合物元素であ
るQa ASの飽和メルト異種原料溶液9゜10を分配
溶液ホルダ3の分配溶液溜7.8にそれぞれ同時に分配
し、その後所定温度まで冷却しで、これら各分配溶液1
2.13と結晶基板11とを左から順次接触させて更に
所定の温度に冷却し、多層のエピタキシャル成長層を積
層するようになっている。
In order to perform multilayer growth, for example, a saturated melt heterogeneous raw material solution of Qa AS, which is a compound element, is simultaneously distributed into the distribution solution reservoirs 7 and 8 of the distribution solution holder 3, and then cooled to a predetermined temperature. , each of these distribution solutions 1
2.13 and the crystal substrate 11 are sequentially brought into contact from the left, and further cooled to a predetermined temperature, thereby laminating multiple epitaxially grown layers.

[発明が解決しようとする問題点〕 ところで、上記従来例にあっては、結晶基板11が第1
分配溶液12と接触し、全体を所定の温度まで冷却する
と第2の分配溶液13も同時にその温度に冷却されるの
で、第2の分配溶液13に基板11が接触する時にはそ
の分配溶液13が非常な過飽和状態になっている。従っ
て、この状態で、基板11が第2の分配溶液13と接触
する時には過飽和成分が過剰に成長してしまい、それが
ために、この過剰成長弁により当初の設計以上の厚さに
成長層ができてしまう不都合があった。
[Problems to be Solved by the Invention] By the way, in the above conventional example, the crystal substrate 11 is
When the substrate 11 comes into contact with the distribution solution 12 and is cooled to a predetermined temperature, the second distribution solution 13 is also cooled to that temperature at the same time, so when the substrate 11 comes into contact with the second distribution solution 13, the distribution solution 13 is extremely It is in a supersaturated state. Therefore, in this state, when the substrate 11 comes into contact with the second distribution solution 13, the supersaturated component will grow excessively, and as a result, the overgrowth valve will cause the growth layer to be thicker than originally designed. There was an inconvenience that this could happen.

特に、非常に薄い結晶成長層を望む場合には、上記した
問題点があるために、その厚さコントロールが困難を極
めていた。
In particular, when a very thin crystal growth layer is desired, controlling the thickness has been extremely difficult due to the above-mentioned problems.

そこで、この種問題点を解決する為に、結晶基板11を
第2の分配溶液13に接触させるに先だって、この溶液
をダミー板に接触させて予め過剰分を除去することも行
なわれているが、その場合にはダミー板とはいえこれも
結晶基板より成るため結晶基板が一枚無駄になる不都合
があった。
Therefore, in order to solve this type of problem, prior to bringing the crystal substrate 11 into contact with the second distribution solution 13, this solution is brought into contact with a dummy plate to remove the excess amount in advance. In that case, although it is a dummy plate, it is also made of a crystal substrate, so there is an inconvenience that one crystal substrate is wasted.

[発明の目的] 本発明は、以上のような問題点に着目し、これを有効に
解決すべく創案されたものである。
[Object of the Invention] The present invention focuses on the above-mentioned problems and has been devised to effectively solve the problems.

本発明の目的は、原料溶液に予め結晶種を加えておくこ
とにより、過飽和成分を順次析出させるようして、もっ
て、分配切出時まで溶液を飽和状態に維持して所定の厚
さの結晶成長層を得ることができる多層の液相エピタキ
シャル成長方法を提供するにある。
The object of the present invention is to add crystal seeds to the raw material solution in advance so that the supersaturated components are precipitated one after another, thereby maintaining the solution in a saturated state until the time of distribution and cutting, and thereby forming crystals of a predetermined thickness. It is an object of the present invention to provide a multilayer liquid phase epitaxial growth method capable of obtaining a grown layer.

[発明の概要] 上記目的を達成する本発明の構成は、複数の原料溶液溜
にそれぞれ予め結晶種を加えておき、基板に積層する順
に時間差をへだでてそれぞれ分配溶液を切出して順次エ
ピタキシャル成長させるようにし、溶液分配切出し時ま
で過剰分を析出させて飽和状態に維持するようにしたこ
とを要旨とする。
[Summary of the Invention] The structure of the present invention that achieves the above object is to add crystal seeds to each of a plurality of source solution reservoirs in advance, cut out distributed solutions from each at a time difference in the order in which they are laminated on a substrate, and sequentially perform epitaxial growth. The gist is that the excess amount is precipitated and the saturated state is maintained until the time of solution distribution and cutting.

[実施例] 以下に、本発明方法を添付図面に基づいて詳述する。第
1図乃至第6図は本発明方法を説明するための工程図で
ある。
[Example] Below, the method of the present invention will be explained in detail based on the accompanying drawings. 1 to 6 are process diagrams for explaining the method of the present invention.

まず、本発明方法を実施するための液相エピタキシャル
成長装置は、基台14上に基板ホルダ15、分配溶液ホ
ルダ16及び原料溶液ホルダ17を順次積層してそれぞ
れ相互に滑動自在になされている。図示例にあっては、
原料溶液ホルダ17及び基板ホルダ15にそれぞれ操作
棒18゜19を設け、これらをそれぞれ単独で滑動操作
できるようになされている。この装置例は、2層のエピ
タキシャル成長層を形成するものであることから、原料
溶液ホルダ17には、その滑動方向に沿って所定間隔だ
け隔てられた2基の原料溶液溜20.21が設けられて
おり、それぞれに別個の原料溶液を貯留できるようにな
されている。
First, a liquid phase epitaxial growth apparatus for carrying out the method of the present invention has a substrate holder 15, a distribution solution holder 16, and a raw material solution holder 17 stacked one after another on a base 14 so that they can slide relative to each other. In the illustrated example,
Operating rods 18 and 19 are provided on each of the raw material solution holder 17 and the substrate holder 15, so that they can be individually slid and operated. Since this device example forms two epitaxial growth layers, the raw material solution holder 17 is provided with two raw material solution reservoirs 20, 21 separated by a predetermined distance along the sliding direction. They are designed so that separate raw material solutions can be stored in each.

上記原料溶液ホルダ17の底面を兼ねる分配溶液ホルダ
16には、上記原料溶液溜20.21に対応させてこれ
らの中の原料溶液を分配して切出すための2基の分配溶
液溜22.23が設けられてお一〇、この中に分配溶液
を一旦保持するようになっている。特に、この装置にお
いては、各原料溶液の分配操作を任意の時間に独立して
行なうことを可能とするために、上記2基の分配溶液溜
22.23間の距離を上記2基の原料溶液溜20゜21
間の距離より長く設定しており、これらの各溶液溜が上
下方向に同時に符合しないようになされている。尚、各
原料溶液の分配操作を任意の時間に独立してできるなら
ば、この形状に限定されない。
The distribution solution holder 16, which also serves as the bottom surface of the raw material solution holder 17, has two distribution solution reservoirs 22 and 23 corresponding to the raw material solution reservoirs 20 and 21 for distributing and cutting out the raw material solution therein. A is provided in which the dispensing solution is temporarily held. In particular, in this device, in order to enable the distribution operation of each raw material solution to be performed independently at any time, the distance between the two distribution solution reservoirs 22 and 23 is set to Tame 20゜21
The distance between the solution reservoirs is set longer than the distance between the solution reservoirs, so that the solution reservoirs do not coincide in the vertical direction at the same time. Note that the shape is not limited to this, as long as the dispensing operation of each raw material solution can be performed independently at any time.

次に、以上のように構成された装置例を使用して、本発
明方法を具体的に説明する。
Next, the method of the present invention will be specifically explained using an example of the apparatus configured as described above.

まず、第1図に示す如く基板ホルダ15に結晶基板11
を保持させると共に、第1の原料溶液溜20(図中左側
)及び第2の原料溶液溜21(図中右側)に、それぞれ
■−v族化合物金属が飽和状態に融解された異種の原料
溶液24.25を装入する。例えば、第1の原料溶液溜
20にはQa50Q1化合物金属として(3aAs4g
、ドーパントとしてS n10aより成る原料溶液を、
第2の原料溶液溜21にはQa50g、 Qa As4
g 、ドーパントとして3n1gより成る原料溶液をそ
れぞれ装入する。
First, as shown in FIG. 1, a crystal substrate 11 is placed on a substrate holder 15.
At the same time, the first raw material solution reservoir 20 (left side in the figure) and the second raw material solution reservoir 21 (right side in the figure) are filled with different kinds of raw material solutions in which ■-V group compound metals are melted in a saturated state, respectively. Charge 24.25. For example, the first raw material solution reservoir 20 contains Qa50Q1 compound metal (3aAs4g
, a raw material solution consisting of Sn10a as a dopant,
The second raw material solution reservoir 21 contains Qa50g, QaAs4
g, a raw material solution consisting of 3n1g as a dopant is charged respectively.

更に、各原料溶液24.25には、温度降下に伴なって
発生する■−V族化合物金属の過飽和成分を順次析出さ
せるための例えば溶質金属(Ga As )と同種の金
属片のごとき第1及び第2の結晶種26.27を予め過
剰分として加えておく。尚、この装置全体は加熱炉内に
設けられている。
Furthermore, in each raw material solution 24.25, a first layer such as a metal piece of the same type as the solute metal (GaAs) is added in order to sequentially precipitate the supersaturated component of the ■-V group compound metal generated as the temperature decreases. and second crystal seeds 26.27 are added in advance as an excess amount. Incidentally, this entire apparatus is provided within a heating furnace.

このように、準備したならば、次に第7図に示すような
温度プログラムに従って装置全体を冷却しつつ成長操作
を行なう。
Once the preparations have been made in this manner, the growth operation is performed while cooling the entire apparatus according to the temperature program shown in FIG.

まず、上記した状態で装置全体を800℃に上昇せしめ
てこの状態で1時間保持し、その後、第2図に示す如(
原料溶液ホルダ17のみを矢印方向へ滑動させて、この
第1の原料溶液24のみを、第1の分配溶液溜22内に
切出して分配し、そして、直ちにこの原料溶液ホルダ1
7を元に戻して、第1の分配溶液28を第1の原料溶液
24内の溶液から分離する。
First, the temperature of the entire apparatus was raised to 800°C in the above-mentioned state and maintained in this state for 1 hour.
By sliding only the raw material solution holder 17 in the direction of the arrow, only this first raw material solution 24 is cut out and distributed into the first distribution solution reservoir 22, and immediately this raw material solution holder 1 is
7 is returned to its original state to separate the first distribution solution 28 from the solution in the first raw material solution 24.

ここで、第1の原料溶液24中には第1の結晶種26を
加えであることから、第1の分配溶液28の分離直前ま
でこの原料溶液中の■−v族化合物は完全な飽和状態に
なされている。
Here, since the first crystal seeds 26 are added to the first raw material solution 24, the ■-v group compounds in this raw material solution are in a completely saturated state until just before the separation of the first distribution solution 28. is being done.

次に、第1の分配溶液28の分配後、装置全体を0.5
℃7m1nの速度で徐々に冷却する。そして4℃降下さ
せて796℃に到達したならば第3図に示す如く基板ホ
ルダ15を矢印方向に滑動操作して結晶基板11を第1
の分配溶液溜22の下に位置させ、これに分配保持され
ていた第1の分配溶液28と基板11とを第1接触させ
る。そして、この状態で786℃まで10℃低下するま
での間エピタキシャル成長を行なって第1層を形成する
Then, after dispensing the first dispensing solution 28, the entire apparatus is
Gradually cool down at a rate of 7 ml. Then, when the temperature is lowered by 4°C and reaches 796°C, the substrate holder 15 is slid in the direction of the arrow to move the crystal substrate 11 to the first position.
The substrate 11 is placed under the distribution solution reservoir 22, and the first distribution solution 28 distributed and held therein is brought into first contact with the substrate 11. In this state, epitaxial growth is performed until the temperature drops by 10° C. to 786° C. to form the first layer.

一方、この成長途中において、788℃になったときに
、第4図に示す如く原料溶液ホルダ17のみを矢印方向
に滑動操作して第2の、原料溶液25のみを第2の分配
溶液溜23に切出して分配し、そして直ちにこの原料溶
液ホルダ17を元に戻して第2の分配溶液2つを第2の
原料溶液溜21内の溶液から分離する。
On the other hand, during this growth, when the temperature reaches 788° C., only the raw material solution holder 17 is slid in the direction of the arrow as shown in FIG. The raw material solution holder 17 is immediately returned to its original position to separate the two second distributed solutions from the solution in the second raw material solution reservoir 21.

この場合、第2の原料溶液25を分配する直前まで、温
度は800℃から 788℃まで降下していることから
、第2の原料溶液25においては、Qa AS化合物が
過飽和状態になる傾向となる。
In this case, since the temperature has fallen from 800°C to 788°C until just before distributing the second raw material solution 25, the Qa AS compound tends to be in a supersaturated state in the second raw material solution 25. .

しかしながら、この中には第2の結晶種27が加えであ
ることから過飽和成分が順次析出してしまい、この溶液
は分配直前まで飽和状態を維持している。すなわち、第
2の分配溶液2つは過飽和状態になることなく、飽和状
態で分離分配されることになる。
However, since the second crystal seeds 27 are added to this solution, supersaturated components are sequentially precipitated, and this solution remains saturated until immediately before distribution. That is, the two second distribution solutions are separated and distributed in a saturated state without becoming supersaturated.

そして、その後2℃低下して上述の如り786℃に到達
したならば、第5図に示す如(基板ホルダ15を矢印方
向に滑動操作して結晶基板11を第2の分配溶液溜23
の下に位置し、これに分配保持されていた第2の分配溶
液29と基板11とを第2接触させ、その状態で5秒間
だけエピタキシャル成長させて第2層を形成し、第6図
に示す如く第2の分配溶液29から基板11を分離させ
て成長を終える。
After that, when the temperature decreases by 2 degrees Celsius and reaches 786 degrees Celsius as described above, the substrate holder 15 is slid in the direction of the arrow to move the crystal substrate 11 to the second distributed solution reservoir 23 as shown in FIG.
The substrate 11 is brought into contact with the second distributed solution 29 located below and distributed thereto, and epitaxial growth is performed in this state for 5 seconds to form a second layer, as shown in FIG. The growth is completed by separating the substrate 11 from the second distribution solution 29 as shown in FIG.

この成長方法により、成長したエピタキシャル層の厚さ
は、下層が10μm1上層が0.3μmとなって設計通
りの厚さを得ることができた。また、それぞれの層界面
の厚みも均一であった。
By this growth method, the thickness of the grown epitaxial layer was 10 μm for the lower layer and 0.3 μm for the upper layer, which was the thickness as designed. Moreover, the thickness of each layer interface was also uniform.

第2の分配溶液29は、788℃から786℃まで降下
する間に温度差2℃に相当する溶解量が過飽和状態とな
っているので、第21!!lにはこの過飽和成分に相当
する量の結晶が成長することになる。
The second distribution solution 29 is in a supersaturated state with a dissolved amount corresponding to a temperature difference of 2°C while falling from 788°C to 786°C, so the 21st! ! An amount of crystals corresponding to this supersaturated component will grow in l.

この場合の温度差2℃に相当する過飽和成分は第2層の
結晶成長量として予め設定されたものである。
In this case, the supersaturated component corresponding to the temperature difference of 2° C. is preset as the amount of crystal growth of the second layer.

このように、原料溶液24.25中に予め結晶種26.
27を加えておくことにより、温度降下に伴なって発生
する過飽和成分が順次析出してしまい分配切出しの直前
までこの原料溶液24゜25を飽和状態に維持すること
ができ、しかも各原料溶液の分配操作時を自由に選択で
きるので、各分配溶液28.29の過飽和度を自由に制
御することができる。
In this way, the crystal seeds 26.
By adding 27, the supersaturated components that occur as the temperature drops will precipitate sequentially, making it possible to maintain this raw material solution 24°25 in a saturated state until just before distribution and cutting. Since the time of distribution operation can be freely selected, the degree of supersaturation of each distribution solution 28,29 can be freely controlled.

また、第1及び第2の分配溶液溜22.23間に、結晶
基板11を連続的に往復移動させてサンドインチ構造に
成長層を形成することもできる。
Furthermore, it is also possible to form a growth layer in a sandwich-inch structure by continuously moving the crystal substrate 11 back and forth between the first and second distribution solution reservoirs 22 and 23.

尚、上記実施例にあっては、2層成長を行なう場合につ
いて説明したが、これに限らずこれ以上の多層成長の場
合についてても本発明方法を適用し得るのは勿論である
In the above embodiments, the case where two-layer growth is performed has been described, but the method of the present invention is of course applicable not only to this but also to the case of multi-layer growth.

この場合にも原料溶液に予め結晶種をそれぞれ加えてお
き、分配直前まで飽和状態を維持しておき、設定された
それぞれ別個の時間に各原料溶液を独立に分配して、所
定の過飽和度を得るようにする。
In this case as well, each crystal seed is added to the raw material solution in advance, the saturated state is maintained until immediately before distribution, and each raw material solution is independently distributed at set separate times to achieve a predetermined degree of supersaturation. Try to get it.

[発明の効果] 以上要するに、本発明方法によれば、次のような優れた
効果を発揮することができる。
[Effects of the Invention] In summary, according to the method of the present invention, the following excellent effects can be exhibited.

(1)  所定の時間差を隔てて分配溶液を分配切出し
、しかも原料溶液中に結晶種を加えることにより分配直
前まで飽和状態を維持することができるので、従来例と
異なり、過飽和度を精度良く確実に制御することができ
る。
(1) The distribution solution is dispensed at a predetermined time difference, and by adding crystal seeds to the raw material solution, the saturated state can be maintained until just before distribution, so unlike conventional methods, the degree of supersaturation can be accurately and accurately determined. can be controlled.

(2)  過飽和度を精度良く制御できることから、エ
ピタキシャル成長層の厚さ制御を容易に行なうことがで
き、特に、厚さの薄い成長層も確実に形成することがで
きる。
(2) Since the degree of supersaturation can be controlled with high precision, the thickness of the epitaxially grown layer can be easily controlled, and in particular, even thin growth layers can be formed reliably.

(3)  本発明方法を行なう装置は、分配溶液溜の取
付は間隔を変えて各原料溶液の分配時期を独立させて任
意に選択できるようにしただけなので、構造簡単であり
、容易に採用することができる。
(3) The apparatus for carrying out the method of the present invention has a simple structure and is easy to adopt, since the distribution solution reservoirs are simply installed at different intervals so that the timing of distribution of each raw material solution can be independently selected. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図は本発明方法を説明するための工程図
、第7図は本発明方法を実施するための温度プログラム
の一例を示すグラフ、第8図は従来の液相エピタキシャ
ル成長方法を説明するためのエピタキシャル成長装置を
示す縦断面図である。 尚、図中11は結晶基板、20.21は原r1溶液溜、
22.23は分配溶液溜、24.25は原料溶液、26
.27は結晶種、28.29は分配溶液である。 特許出願人   日立電線株式会社 代理人弁理士  絹  谷  信  雄第2図 第3図
1 to 6 are process diagrams for explaining the method of the present invention, FIG. 7 is a graph showing an example of a temperature program for carrying out the method of the present invention, and FIG. 8 is a graph showing a conventional liquid phase epitaxial growth method. It is a longitudinal cross-sectional view showing an epitaxial growth apparatus for explanation. In the figure, 11 is the crystal substrate, 20.21 is the original r1 solution reservoir,
22.23 is distribution solution reservoir, 24.25 is raw material solution, 26
.. 27 is a crystal seed, 28.29 is a distribution solution. Patent Applicant Hitachi Cable Co., Ltd. Representative Patent Attorney Nobuo Kinutani Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 複数の原料溶液溜からそれぞれ分配溶液を切出し、これ
ら切出された分配溶液を順次結晶基板上に接触させて基
板上に多層のエピタキシャル成長層を形成するに際して
、上記原料溶液溜に収容された原料溶液中に、予め過飽
和成分を析出させる結晶種を加えた後、上記基板に積層
される順に時間差を隔ててそれぞれ分配溶液を切出すと
共に、これら切出された順に上記基板に上記分配溶液を
接触させるようにしたことを特徴とする多層の液相エピ
タキシャル成長方法。
When a distribution solution is cut out from each of a plurality of raw material solution reservoirs and these cut out distribution solutions are sequentially brought into contact with a crystal substrate to form a multilayer epitaxial growth layer on the substrate, the raw material solution contained in the raw material solution reservoir is After adding a crystal seed to precipitate a supersaturated component in advance, the distribution solution is cut out at a time difference in the order in which it is laminated on the substrate, and the distribution solution is brought into contact with the substrate in the order in which it is cut out. A multilayer liquid phase epitaxial growth method characterized by:
JP60049401A 1985-03-14 1985-03-14 Liquid crystal epitaxial growth method of multilayers Granted JPS61208828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60049401A JPS61208828A (en) 1985-03-14 1985-03-14 Liquid crystal epitaxial growth method of multilayers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60049401A JPS61208828A (en) 1985-03-14 1985-03-14 Liquid crystal epitaxial growth method of multilayers

Publications (2)

Publication Number Publication Date
JPS61208828A true JPS61208828A (en) 1986-09-17
JPH0330980B2 JPH0330980B2 (en) 1991-05-01

Family

ID=12830018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60049401A Granted JPS61208828A (en) 1985-03-14 1985-03-14 Liquid crystal epitaxial growth method of multilayers

Country Status (1)

Country Link
JP (1) JPS61208828A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102779A (en) * 1972-04-10 1973-12-24
JPS5651158A (en) * 1979-10-03 1981-05-08 Ricoh Co Ltd Reproducing method of binary picture
JPS5742211A (en) * 1980-08-28 1982-03-09 Nippon Gakki Seizo Kk Feedback amplifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102779A (en) * 1972-04-10 1973-12-24
JPS5651158A (en) * 1979-10-03 1981-05-08 Ricoh Co Ltd Reproducing method of binary picture
JPS5742211A (en) * 1980-08-28 1982-03-09 Nippon Gakki Seizo Kk Feedback amplifier

Also Published As

Publication number Publication date
JPH0330980B2 (en) 1991-05-01

Similar Documents

Publication Publication Date Title
US3862859A (en) Method of making a semiconductor device
US4149914A (en) Method for depositing epitaxial monocrystalline semiconductive layers via sliding liquid phase epitaxy
JPS61208828A (en) Liquid crystal epitaxial growth method of multilayers
JPS58120600A (en) Epitaxial growth method of 2-5 family compound semiconductor
JPH0196091A (en) Liquid phase epitaxy growth device for semiconductor single crystal
US4390379A (en) Elimination of edge growth in liquid phase epitaxy
JPS626338B2 (en)
JPS5812230B2 (en) epitaxial epitaxy
JPH0538063Y2 (en)
JPH0196090A (en) Liquid phase epitaxial growth process of semiconductor crystal
JPS60145608A (en) Liquid phase epitaxial growth method
JPH06291068A (en) Liquid phase epitaxial growth method
JPS626684Y2 (en)
JPH0519516B2 (en)
JPS628008B2 (en)
JPH0772117B2 (en) Liquid phase epitaxial growth method and apparatus
JPS6235998B2 (en)
JPS589794B2 (en) Semiconductor liquid phase multilayer thin film growth method and growth equipment
JPS61281097A (en) Method for liquid-phase growth of multi-layer semiconductor film
JPH0597574A (en) Liquid-phase epitaxial growth device and growth method therefore
JPS61225821A (en) Apparatus for liquid phase epitaxial growth
JPS627697A (en) Liquid phase epitaxial growth method
JPS6240846B2 (en)
JPH0485819A (en) Liquid phase epitaxial growth device
JPH0694398B2 (en) Liquid phase epitaxial growth method