JPS61208769A - Positive resistance temperature coefficient resistor - Google Patents

Positive resistance temperature coefficient resistor

Info

Publication number
JPS61208769A
JPS61208769A JP4901485A JP4901485A JPS61208769A JP S61208769 A JPS61208769 A JP S61208769A JP 4901485 A JP4901485 A JP 4901485A JP 4901485 A JP4901485 A JP 4901485A JP S61208769 A JPS61208769 A JP S61208769A
Authority
JP
Japan
Prior art keywords
temperature coefficient
coefficient resistor
resistance temperature
positive resistance
crystalline resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4901485A
Other languages
Japanese (ja)
Inventor
伸幸 平井
正博 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4901485A priority Critical patent/JPS61208769A/en
Publication of JPS61208769A publication Critical patent/JPS61208769A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、暖房器具等に用いられる自己温度制御ヒータ
に使用される抵抗体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a resistor used in a self-temperature control heater used in a heating appliance or the like.

従来の技術 従来のこの種の正抵抗温度係数抵抗体は、ポリエチレン
等の結晶性樹脂とカーボン・ブラック等の導電性粒子と
から構成されていた。
BACKGROUND OF THE INVENTION Conventional positive resistance temperature coefficient resistors of this type are composed of a crystalline resin such as polyethylene and conductive particles such as carbon black.

発明が解決しようとする問題点 この種の正抵抗温度抵抗体を用いてヒータとした場合の
構成を第2図に示す。第2図に示すように、一対の電極
1.2の周囲に配置された正抵抗温度係数抵抗体3によ
り構成されている。ここで、この種の正抵抗温度係数抵
抗体の抵抗温度特性を第3図に示す。第3図に示すよう
に、抵抗温度特性は結晶性樹脂の軟化点Tv で急激に
立ち上がる傾向がある。ここで、このヒータにおいて、
一対の電極間に電圧を印加した場合、放熱特性によシミ
極1.2間の中心部分が最も温度が高くなる。
Problems to be Solved by the Invention FIG. 2 shows the configuration of a heater using this type of positive resistance temperature resistor. As shown in FIG. 2, it is composed of a positive resistance temperature coefficient resistor 3 placed around a pair of electrodes 1.2. Here, the resistance temperature characteristics of this type of positive resistance temperature coefficient resistor are shown in FIG. As shown in FIG. 3, the resistance-temperature characteristics tend to rise sharply at the softening point Tv of the crystalline resin. Here, in this heater,
When a voltage is applied between a pair of electrodes, the center portion between the stain electrodes 1 and 2 has the highest temperature due to heat dissipation characteristics.

ゆえに、電極1.2間の中心部分が増々抵抗が高くなり
、これによって、電極1.2間に、低抵抗、高抵抗、低
抵抗の抵抗体が電極的に直列につながった状態と等価な
る。このため、電fMl、2間に電圧を印加をしても、
電極1.2間の中心部分に集中して電圧が印加された状
態となシ、増々正抵抗温度係数抵抗体3内部の温度分布
が大きくなるという問題点を有していた。この状態を第
4図に示す。ただし、lは電極1,2間の距離を、Xは
測定位置と電極1との距離をあられしている。また、こ
の温度分布のために、正抵抗温度係数抵抗体3を構成し
ている結晶性樹脂が、位置によシ劣化速度が灰なるとい
う問題点も同時に有していた。
Therefore, the resistance of the central part between electrodes 1 and 2 becomes higher and higher, which is equivalent to a state in which resistors of low resistance, high resistance, and low resistance are connected in series between electrodes 1 and 2. . Therefore, even if a voltage is applied between the electric current fMl and 2,
When the voltage is applied concentratedly to the central portion between the electrodes 1 and 2, there is a problem in that the temperature distribution inside the positive resistance temperature coefficient resistor 3 becomes larger and larger. This state is shown in FIG. However, l represents the distance between electrodes 1 and 2, and X represents the distance between the measurement position and electrode 1. Further, due to this temperature distribution, the crystalline resin constituting the positive resistance temperature coefficient resistor 3 has the problem that the rate of deterioration varies depending on the position.

本発明はかかる従来の問題を解消するもので、正抵抗温
度係数抵抗体3内部の電圧集中を少なくし、均一な発熱
をする抵抗体を提供することを目的とする。
The present invention is intended to solve such conventional problems, and aims to provide a resistor that reduces voltage concentration inside the positive resistance temperature coefficient resistor 3 and generates heat uniformly.

問題点を解決するだめの手段 上記問題点を解決するために、本発明の正抵抗温度係数
抵抗体は結晶性樹脂と、導電性粒子と、非線形半導体粒
子とから成るものである。
Means for Solving the Problems In order to solve the above problems, the positive resistance temperature coefficient resistor of the present invention is composed of a crystalline resin, conductive particles, and nonlinear semiconductor particles.

作   用 本発明はと記の構成によって、正抵抗温度係数抵抗体内
に非線形半導体粒子が分散されているために、電圧が集
中した場合、非線形半導体粒子がバリスター的役目を果
し、電圧を正抵抗温度抵抗体内に均一に分散させる。
Effect of the Invention According to the structure of the present invention, nonlinear semiconductor particles are dispersed within a positive resistance temperature coefficient resistor, so that when a voltage is concentrated, the nonlinear semiconductor particles act as a varistor and correct the voltage. Distribute the resistance uniformly within the temperature resistor.

実施例 以下、本発明の詳細な説明する。結晶性樹脂としてポリ
エチレン(100重量部)に、導電性粒子としてカーボ
ン・ブラック(20重量部)と、非線形半導体粒子とし
て酸化亜鉛を主成分とし、副成分として酸化ビスマスを
含んだ焼結体(15重量部、平均粒子径111m)とを
分散して構成される。
EXAMPLES The present invention will be described in detail below. A sintered body (15 parts by weight) containing polyethylene (100 parts by weight) as a crystalline resin, carbon black (20 parts by weight) as a conductive particle, and zinc oxide as a main component and bismuth oxide as a subcomponent as a nonlinear semiconductor particle. parts by weight, average particle diameter 111 m).

上記構成における抵抗温度特性は、従来例の抵抗温度特
性である、第3図とほとんど変わりはない。
The resistance-temperature characteristics in the above configuration are almost the same as those in FIG. 3, which are the resistance-temperature characteristics of the conventional example.

しかし、電圧を100v印加し、その温度分布をみると
、第1図に示すように、放熱により生じる温度分布以外
の特異な分布はみられず、均一な発熱する効果がある。
However, when a voltage of 100 V is applied and the temperature distribution is observed, as shown in FIG. 1, no peculiar distribution other than the temperature distribution caused by heat radiation is observed, and there is an effect of uniform heat generation.

これは、上記焼結体が、バリスター的役目を果し、均一
な電圧印加がなされたためと思われる。また、ポリエチ
レンに比べ酸化亜鉛は100倍熱伝導度をもち、これに
よっても温変分布を少なくさせる効果もあわせてもって
いる。
This seems to be because the sintered body acted like a varistor and applied a uniform voltage. Furthermore, zinc oxide has 100 times higher thermal conductivity than polyethylene, which also has the effect of reducing temperature variation distribution.

なお、上記実施例では、非線形半導体粒子の副成分とし
て酸化ビスマスを用いたが、コバルト、マンガン、バリ
ウム、プロトマクチニウム、プラセオジム、ランタン、
タングステン等の酸化物のうち少なくとも1つ用いても
同様な結果が得られる。
In the above example, bismuth oxide was used as a subcomponent of the nonlinear semiconductor particles, but cobalt, manganese, barium, protomactinium, praseodymium, lanthanum,
Similar results can be obtained by using at least one of oxides such as tungsten.

なお、上記実施例では、結晶性樹脂として、ポリエチレ
ンヲ用いたが、ポリプロピレン、エチレン酢酸ビニル共
重合体を用いても、抵抗温度特性の抵抗値の立ち上がシ
温度に差はあるものの、同様な効果が得られるのは明ら
かである。
In the above example, polyethylene was used as the crystalline resin, but even if polypropylene or ethylene-vinyl acetate copolymer was used, the same result would be obtained, although there would be a difference in the rise temperature of the resistance value of the resistance-temperature characteristic. It is clear that this will have a significant effect.

なお、上記実施例では、導電性粒子にカーボン・ブラッ
クを用いたが、金属粒子、導電性金属酸化物粒子を用い
ても同様な効果が得られるのは明らかである。
In the above embodiment, carbon black was used as the conductive particles, but it is clear that similar effects can be obtained by using metal particles or conductive metal oxide particles.

発明の効果 以とのように、本発明の正抵抗温度係数抵抗体によれば
、次の効果が得られる。
Effects of the Invention As described above, the positive resistance temperature coefficient resistor of the present invention provides the following effects.

(1)正抵抗温度係数抵抗体内に分散した非線形半導体
粒子がバリスター的役目を果して電圧の集中を防止し、
正抵抗温度係数抵抗体内の電圧が均一になるために、均
一な発熱を得ることができる。
(1) Nonlinear semiconductor particles dispersed within the positive resistance temperature coefficient resistor function as a varistor to prevent voltage concentration;
Since the voltage within the positive resistance temperature coefficient resistor becomes uniform, uniform heat generation can be obtained.

(2)均一な発熱のために、正抵抗温度係数抵抗体の主
成分である結晶性樹脂の劣化速度が位置により異ならず
、減速される。
(2) Because of uniform heat generation, the deterioration rate of the crystalline resin, which is the main component of the positive resistance temperature coefficient resistor, does not vary depending on the position and is slowed down.

第2図は同正抵抗温度係数抵抗体を用いたヒータの一部
切欠斜視図、第3図は従来の正抵抗温度係数抵抗体の抵
抗温度特性図、第4図は従来の正抵抗温度係数抵抗体の
温度分布図である。
Figure 2 is a partially cutaway perspective view of a heater using the same positive resistance temperature coefficient resistor, Figure 3 is a resistance temperature characteristic diagram of a conventional positive resistance temperature coefficient resistor, and Figure 4 is a diagram of a conventional positive resistance temperature coefficient resistor. It is a temperature distribution diagram of a resistor.

1.2・・・・・・1対の電極、3・・・・・・正抵抗
温度係数抵抗体。
1.2... A pair of electrodes, 3... Positive resistance temperature coefficient resistor.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図      /、?、、、化極 第3図 v 温浸[′C〕
Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 /,? ,,, Figure 3 v Digestion ['C]

Claims (7)

【特許請求の範囲】[Claims] (1)結晶性樹脂と、導電性粒子と、非線形半導体粒子
とから成る正抵抗温度係数抵抗体。
(1) A positive resistance temperature coefficient resistor comprising a crystalline resin, conductive particles, and nonlinear semiconductor particles.
(2)結晶性樹脂がポリエチレン、ポリプロピレン、エ
チレン酢酸ビニル共重合体の少なくとも1つを含む特許
請求の範囲第1項記載の正抵抗温度係数抵抗体。
(2) The positive resistance temperature coefficient resistor according to claim 1, wherein the crystalline resin contains at least one of polyethylene, polypropylene, and ethylene-vinyl acetate copolymer.
(3)導電性粒子がカーボン・ブラックである特許請求
の範囲第1項記載の正抵抗温度係数抵抗体。
(3) A positive resistance temperature coefficient resistor according to claim 1, wherein the conductive particles are carbon black.
(4)非線形半導体粒子が酸化亜鉛を主成分とし、副組
成物として、ビスマス、コバルト、マンガン、バリウム
、プロトアクチニウム、プラセオジム、ランタン、タン
グステン等の酸化物が少なくとも1つ含まれる特許請求
の範囲第1項記載の正抵抗温度係数抵抗体。
(4) The nonlinear semiconductor particles contain zinc oxide as a main component and at least one oxide of bismuth, cobalt, manganese, barium, protactinium, praseodymium, lanthanum, tungsten, etc. as a subcomposition. Positive resistance temperature coefficient resistor according to item 1.
(5)非線形半導体粒子の粒子径が0.3μmから20
μmの範囲である特許請求の範囲第1項または第4項記
載の正抵抗温度係数抵抗体。
(5) The particle diameter of the nonlinear semiconductor particles is from 0.3 μm to 20 μm.
A positive temperature coefficient resistor according to claim 1 or claim 4, wherein the positive resistance temperature coefficient resistor has a temperature coefficient of resistance in the range of μm.
(6)非線形半導体粒子が結晶性樹脂100重量部に対
して5重量部から30重量部の範囲で含まれる特許請求
の範囲第1項または第4項記載の正抵抗温度係数抵抗体
(6) The positive resistance temperature coefficient resistor according to claim 1 or 4, wherein the nonlinear semiconductor particles are contained in an amount of 5 to 30 parts by weight based on 100 parts by weight of the crystalline resin.
(7)カーボン・ブラックが結晶性樹脂100重量部に
対して10重量部から35重量部の範囲で含まれる特許
請求の範囲第3項記載の正抵抗温度係数抵抗体。
(7) The positive resistance temperature coefficient resistor according to claim 3, wherein carbon black is contained in a range of 10 to 35 parts by weight based on 100 parts by weight of the crystalline resin.
JP4901485A 1985-03-12 1985-03-12 Positive resistance temperature coefficient resistor Pending JPS61208769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4901485A JPS61208769A (en) 1985-03-12 1985-03-12 Positive resistance temperature coefficient resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4901485A JPS61208769A (en) 1985-03-12 1985-03-12 Positive resistance temperature coefficient resistor

Publications (1)

Publication Number Publication Date
JPS61208769A true JPS61208769A (en) 1986-09-17

Family

ID=12819281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4901485A Pending JPS61208769A (en) 1985-03-12 1985-03-12 Positive resistance temperature coefficient resistor

Country Status (1)

Country Link
JP (1) JPS61208769A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117090A (en) * 1988-10-26 1990-05-01 Matsushita Electric Ind Co Ltd Article to be heated by microwave
WO1991007804A1 (en) * 1989-11-13 1991-05-30 Nkk Corporation Small dc motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414034A (en) * 1977-07-01 1979-02-01 Matsushita Electric Ind Co Ltd Heating element
JPS566397A (en) * 1979-06-28 1981-01-22 Okazaki Mfg Co Ltd Heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414034A (en) * 1977-07-01 1979-02-01 Matsushita Electric Ind Co Ltd Heating element
JPS566397A (en) * 1979-06-28 1981-01-22 Okazaki Mfg Co Ltd Heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117090A (en) * 1988-10-26 1990-05-01 Matsushita Electric Ind Co Ltd Article to be heated by microwave
WO1991007804A1 (en) * 1989-11-13 1991-05-30 Nkk Corporation Small dc motor

Similar Documents

Publication Publication Date Title
CA1050093A (en) Sealed thermostatic heater employing a heater and ptc thermistor
JP3022644B2 (en) Organic positive temperature coefficient thermistor
JPS61208769A (en) Positive resistance temperature coefficient resistor
JP2734253B2 (en) Positive resistance temperature coefficient heating element
JP2734250B2 (en) Positive resistance temperature coefficient heating element
JP2734251B2 (en) Positive resistance temperature coefficient heating element
JP2734252B2 (en) Positive resistance temperature coefficient heating element
JPS5858793B2 (en) heating element
JPS61135087A (en) Temperature self controlled heater
JP2730062B2 (en) Positive resistance temperature coefficient heating element
JPH0443587A (en) Heater having positive resistance temperature coefficient
JPS61143986A (en) Heat generating body unit
JPH03176982A (en) Heating element with positive resistance temperature coefficient
JP2000133502A (en) Organic positive temperature coefficient thermistor
JPS60206109A (en) Current limiting resistance element
JPH03176981A (en) Heating element with positive resistance temperature coefficient
JPH0286087A (en) Polymer ptc element
JPS6179203A (en) Current limiting resistance element
JPS63224173A (en) Positive temperature coefficient resistance heater
JPS6242402A (en) Current limiting element
JPS6132377A (en) Heater
JPH0359986A (en) Heating body with positive resistance temperature coefficient
JPH02148681A (en) Positive resistance-temperature coefficient heater
JPS61193390A (en) Heat generating body
JPH028608Y2 (en)