JPS61208756A - Electrode for alkaline secondary battery - Google Patents

Electrode for alkaline secondary battery

Info

Publication number
JPS61208756A
JPS61208756A JP60050166A JP5016685A JPS61208756A JP S61208756 A JPS61208756 A JP S61208756A JP 60050166 A JP60050166 A JP 60050166A JP 5016685 A JP5016685 A JP 5016685A JP S61208756 A JPS61208756 A JP S61208756A
Authority
JP
Japan
Prior art keywords
electrode
nickel
active material
fibers
fiber mat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60050166A
Other languages
Japanese (ja)
Inventor
Akio Shimizu
清水 明夫
Noboru Kotani
小谷 昇
Takayuki Okamoto
隆之 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP60050166A priority Critical patent/JPS61208756A/en
Publication of JPS61208756A publication Critical patent/JPS61208756A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To simplify the process of producing an electrode for an alkaline secondary battery by using a fiber mat made of metal-plated fibers as the electrode base. CONSTITUTION:Fibers of a synthetic material such as polyethylene, polypropylene or nylon or carbon fibers are nonelectrolytically plated with a metal to coat the fibers with metallic layers. Next, a fiber mat made of these fibers is impregnated with a pasty mixture principally composed of an active material. After that, the thus obtained body is dried and compressed, thereby making an electrode. Since the active material can be packed into the fiber mat having large holes by performing impregnation only once, the electrode can be easily produced. Furthermore, since the electrode is light and highly porous, it is possible to increase the electric capacity of the electrode per unit weight.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はアルカリ二次電池用電極に関する。[Detailed description of the invention] [Industrial application field] This invention relates to an electrode for alkaline secondary batteries.

さらに詳しくは、簡単な操作でかつ安価に製造でき、軽
量で単位重量当たりの電気量密度が大きく、しかも充放
電に対する耐久性の良好なアルカリ二次電池用電極に関
する。
More specifically, the present invention relates to an electrode for an alkaline secondary battery that can be manufactured easily and inexpensively, is lightweight, has a high electrical density per unit weight, and has good durability against charging and discharging.

〔従来・の技術〕[Conventional technology]

従来、ニッケルーカドミウム二次電池、ニッケルー亜鉛
二次電池、ニッケルー水素二次電池など/7S’? +
)/−hII  k’j#抽田(71= +t )r 
nt當塔り十−+ −#ニルニッケル粉末を焼結して、
空孔率70〜80容量%の多孔性基体とし、これに水溶
液状または溶融状のニッケル塩を含浸させ、アルカリと
反応させて水酸化ニッケルを空孔内に沈着させるという
操作を5〜6回繰り返し行うことによって製造されてい
た(たとえばS、υ、Falk &^、J、5alki
nd″Alkaline Storage Batte
riesmJohn Wiley & 5ons In
c、 (1969) ) 。
Conventionally, nickel-cadmium secondary batteries, nickel-zinc secondary batteries, nickel-metal hydride secondary batteries, etc./7S'? +
)/-hII k'j#drawing field (71= +t)r
By sintering the nickel powder,
A porous substrate with a porosity of 70 to 80% by volume is impregnated with an aqueous solution or molten nickel salt, and the operation of reacting with an alkali to deposit nickel hydroxide in the pores is performed 5 to 6 times. It was manufactured by repeating (e.g. S, υ, Falk &^, J, 5alki
nd″Alkaline Storage Batte
riesmJohn Wiley & 5ons In
c, (1969)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のようにニッケル電極は、ニッケル粉末を焼結する
工程と、得られた焼結体に活物質を充填するための含浸
操作を数回繰り返すという煩雑な工程を経て製造される
ため、製造コストが高(なり、それがニッケル電極を用
いるアルカリ二次電池のコストを高める原因になってい
た。また、予め形成されたニッケル焼結体の空孔内に液
状の活物質を充填するため、充填できる活物質量に限界
があり、電気量密度の大きなものが得られないという問
題があった。
As mentioned above, nickel electrodes are manufactured through a complicated process of sintering nickel powder and repeating several times an impregnation operation to fill the resulting sintered body with active material, which reduces manufacturing costs. This has led to high costs for alkaline secondary batteries that use nickel electrodes.Also, since the liquid active material is filled into the pores of the pre-formed nickel sintered body, There is a problem that there is a limit to the amount of active material that can be produced, and it is difficult to obtain a material with a large electrical charge density.

このような製造工程上の問題ならびにそれに伴う性能上
の問題は、ニッケル電極のみに限らず、ニッケルーカド
ミウム二次電池のカドミウム電極についても同様であっ
た。
Such problems in the manufacturing process and the performance problems associated therewith are not limited to nickel electrodes, but also apply to cadmium electrodes of nickel-cadmium secondary batteries.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は上述した従来技術の問題点を解決するもので
、活物質を主剤とするペースト状配合剤を電極基体に充
填して製造するアルカリ二次電池用電極の電極基体とし
て、表面が金属メッキされた合成繊維またはカーボン繊
維のファイバーマットを用いることによって、簡単な操
作でかつ安価に製造でき、しかも軽量で単位重量当たり
の電気量密度が大きく、かつ充放電に対する耐久性の良
好なアルカリ二次電池用電極を提供したものである。
This invention solves the problems of the prior art described above, and is used as an electrode base for an electrode for an alkaline secondary battery, which is manufactured by filling the electrode base with a paste-like compound containing an active material as a main ingredient. By using fiber mats made of synthetic fibers or carbon fibers, the alkaline secondary material can be manufactured easily and inexpensively, is lightweight, has a high electrical density per unit weight, and has good durability against charging and discharging. The present invention provides electrodes for batteries.

すなわち、本発明において電極基体として用いる表面が
金属メッキされたファイバーマットは、以下に詳述する
ように、開孔面積が大きく、活物質を固体状で電極基体
に充填でき、したがって電極基体への活物質の充填を1
回の含浸操作で行うことができるので、電極の製造が簡
単でかつ電極の製造コストを低くでき、しかも従来の焼
結体より少ない体積占有率で電極に良好な導電性を付与
でき、かつ軽量で空孔率が大きいため単位重量当たりの
電気量密度を大きくすることができる。そして、上記フ
ァイバーマットは活物質の保持機能を有するので、電極
の充放電に対する耐久性を従来の粉末活物質圧着方式に
よる電極に比べて大幅に高め得る。
In other words, the fiber mat whose surface is metal-plated and used as the electrode base in the present invention has a large pore area and can be filled with the active material in solid form into the electrode base, as will be explained in detail below. Filling of active material 1
Since the impregnation process can be carried out in just one impregnation operation, the electrode can be easily manufactured and the manufacturing cost can be reduced.Moreover, it can provide good conductivity to the electrode with a smaller volume occupancy than conventional sintered bodies, and is lightweight. Since the porosity is large, the electrical density per unit weight can be increased. Since the fiber mat has the function of holding the active material, the durability of the electrode against charging and discharging can be greatly improved compared to an electrode using a conventional powder active material compression bonding method.

電極基体として用いる表面が金属メッキされたファイバ
ーマットは、たとえば、ポリエチレン、ポリプロピレン
、ナイロンなどの合成繊維、または炭S繊維、活性炭素
繊維などのカーボン繊維が大きな空孔率を有しながらか
らみあって集積したもの、あるいはそれらの合成繊維ま
たはカーボン繊維を結着剤で結着して大きな空孔率を有
する不織布状にしたものなどの表面を金属メッキしたも
ノテアル。また、合成繊維やカーボン繊維にメッキをし
てから、それを前記のようにからみあわせて集めたもの
、あるいは結着剤を用いて不織布状にしたものでもよい
。いずれにせよ、これらのファイバーマントは、焼結体
に比べて開孔面積が大きく、前述のように活物質を固体
状で充填することが可能である。
A fiber mat with a metal-plated surface used as an electrode substrate is made of, for example, synthetic fibers such as polyethylene, polypropylene, and nylon, or carbon fibers such as charcoal S fibers and activated carbon fibers, which are intertwined and accumulated with a large porosity. The surface of non-woven fabrics with large porosity, made by binding these synthetic fibers or carbon fibers with a binder, is also coated with metal. Alternatively, synthetic fibers or carbon fibers may be plated and then entangled and collected as described above, or made into a non-woven fabric using a binder. In any case, these fiber mants have a larger open pore area than a sintered body, and can be filled with a solid active material as described above.

メッキは、通常、無電解メッキによって行われる0通常
、ニッケルメッキがおこなわれるが銀メッキ、コバルト
メッキなどであってもよい。
Plating is usually performed by electroless plating. Nickel plating is usually performed, but silver plating, cobalt plating, etc. may also be used.

メッキの厚みは、特に限定されるものではないが、薄す
ぎると導電性を付与する効果が充分でなく、また厚すぎ
るとこのファイバーマントの特徴の一つである軽量化が
損なわれることになるので、1〜104m、特に3μm
程度が好ましい。
The thickness of the plating is not particularly limited, but if it is too thin, the effect of imparting conductivity will not be sufficient, and if it is too thick, the light weight, which is one of the characteristics of this fiber cloak, will be lost. Therefore, 1 to 104 m, especially 3 μm
degree is preferred.

ファイバーマットは空孔率の大きい多孔体なので、無電
解メッキによりマット内部の繊維表面もメッキされ、か
つ多孔体を保ち得る。
Since the fiber mat is a porous body with a high porosity, the fiber surfaces inside the mat are also plated by electroless plating, and the porous body can be maintained.

上記ファイバーマットを構成する繊維はからみあう程度
の長さがあれば短繊維でもよく、また長繊維であっても
よい、繊維径は特に限定されるものではないか細すぎる
と強度面での問題があり、また太すぎると空孔率を低下
させることになるの7’−111〜’!On  ttw
a  −ML”?!’;〜11111  ttaa f
<un +、イーこのファイバーマントは繊維のからみ
あいによって構成され、繊維表面がメンキされているの
で、電極中5〜6%程度の体積占有率で導電マトリック
スを形成でき、従来のニッケル焼結体(導電マトリック
スの形成に際しては電極中通常20〜30%程度の体積
占有率を要する)を用いる場合に比べて活物質の充填量
を多くすることができる。上記のようにファイバーマッ
トは、少ない体積占有率で電極に良好な導電性を付与す
ることができるので、空孔率をできるだけ大きくして活
物質の充填量を多くすることが望ましく、空孔率として
は通常90容量%以上、特に94〜95容量%程度のも
のが好ましい。
The fibers constituting the above-mentioned fiber mat may be short fibers or long fibers as long as they are long enough to be entangled.The fiber diameter is not particularly limited, and if it is too thin, there may be problems in terms of strength. Yes, and if it is too thick, it will reduce the porosity.7'-111~'! On ttw
a -ML"?!';~11111 ttaa f
<un +, E This fiber cloak is composed of intertwined fibers, and the surface of the fibers is peeled, so it is possible to form a conductive matrix with a volume occupancy of about 5 to 6% in the electrode, compared to the conventional nickel sintered body ( When forming a conductive matrix, the filling amount of the active material can be increased compared to the case where a conductive matrix (usually requiring a volume occupancy of about 20 to 30% in the electrode) is used. As mentioned above, fiber mats can provide good conductivity to electrodes with a small volume occupancy, so it is desirable to increase the porosity as much as possible and increase the amount of active material filled. Generally, it is preferably 90% by volume or more, particularly about 94 to 95% by volume.

この表面が金属メッキされたファイバーマットを電極基
体に用いての電極作製は、ニッケル電極、カドミウム電
極の作製に適用でき、また、得られたニッケル電極はニ
ッケルーカドミウム二次電池、ニッケルー亜鉛二次電池
、ニッケルー水素二次電池の正極に使用でき、カドミウ
ム電極はニッケルーカドミウム二次電池の負極として使
用できる。特にニッケル電極の場合、カドミウム電極の
場合のような活物質の凝集作用がないので、これまでペ
ースト式で実用に耐える良好な電極が得られなかったこ
とより、ニッケル電極の製造に際して本発明の効果が特
に顕著に発揮される。
Electrode production using this fiber mat whose surface is metal-plated as an electrode base can be applied to the production of nickel electrodes and cadmium electrodes, and the obtained nickel electrodes can be used for nickel-cadmium secondary batteries, nickel-zinc secondary batteries, etc. It can be used as the positive electrode of batteries and nickel-hydrogen secondary batteries, and the cadmium electrode can be used as the negative electrode of nickel-cadmium secondary batteries. In particular, in the case of nickel electrodes, there is no aggregation effect of the active material as in the case of cadmium electrodes, so it has not been possible to obtain a good electrode that can withstand practical use with a paste method. is particularly noticeable.

ニッケル電極の作製にあたって、活物質としては水酸化
ニッケルまたはオキシ水酸化ニッケルが用いられる。ニ
ッケル電極の作製は、上記のファイバーマットよりなる
電極基体に活物質を先議することによって行われるが、
この電極基体への活物質の充填は、活物質を主剤とする
ペースト状配合剤を調製し、それを電極基体に含浸させ
ることによって行なわれる。このペースト状配合剤はた
とえば上記活物質と、ニッケル、コバルトなどの金属の
粉末、金属の短繊維、カーボン粉末、カーボン短繊維な
どの導電助剤と、カルボキシメチルセルロース、テフロ
ン(商品名、デュポン社製フッ素樹脂)などの結着剤と
、水を混合することによって調製される。上記ペースト
状配合剤において、活物質を主剤とするとは、活物質を
主要な成分とするという意味であって、必ずしも活物質
が量的に最も多いということを意味するものではない。
In producing a nickel electrode, nickel hydroxide or nickel oxyhydroxide is used as the active material. The nickel electrode is prepared by adding an active material to the electrode base made of the above-mentioned fiber mat.
The electrode substrate is filled with the active material by preparing a paste-like compound containing the active material as a main ingredient and impregnating the electrode substrate with it. This paste-like compound includes, for example, the above-mentioned active materials, conductive additives such as metal powders such as nickel and cobalt, metal short fibers, carbon powder, and carbon short fibers, carboxymethyl cellulose, and Teflon (trade name, manufactured by DuPont). It is prepared by mixing a binder such as fluororesin) and water. In the above-mentioned paste-like formulation, the expression "active material is the main ingredient" means that the active material is the main ingredient, but does not necessarily mean that the active material is the largest in quantity.

また、上記コバルト粉末は導電助剤としての作用以外に
も充放電特性を向上させるという゛重要な役割を有して
いる。そして、上記ペースト状配合剤中には上記成分以
外にもたとえば活物質の周辺に適度な空孔を設けるなど
の目的で加熱によって分解する炭酸塩の微粉末などを添
加することもできる。
In addition to acting as a conductive aid, the cobalt powder also plays an important role in improving charging and discharging characteristics. In addition to the above-mentioned components, the paste-like compound may also contain carbonate fine powder, which decomposes upon heating, for the purpose of creating appropriate pores around the active material.

カドミウム電極の作製に際しては、電極活物質には酸化
カドミウムまたは水酸化カドミウムが用いられる。そし
てペースト状配合剤は、上記ニッケル電極作製の場合と
同様に、たとえば上記カドミウム系活物質と、導電助剤
と、結着剤と水とを混合することによって調製される。
When producing a cadmium electrode, cadmium oxide or cadmium hydroxide is used as an electrode active material. The paste-like mixture is prepared, for example, by mixing the cadmium-based active material, the conductive agent, the binder, and water, as in the case of producing the nickel electrode.

電極の作製は、たとえば次に示すようにして行われる。The electrode is manufactured, for example, as shown below.

まず、電極基体としての表面が金属メッキされたファイ
バーマットに活物質を主剤とするペースト状配合剤を流
し込んで、配合剤を上記ファイバーマットに含浸させる
。これを乾燥して水分含量を減じるいわゆる予備乾燥を
したのち、加圧して圧縮する。その際、従来のニッケル
焼結体を用いる場合と同様に、補強の目的で、配合剤入
りのファイバーマットを長さ方何に二つ折りにし、その
間にエキスバンドメタル、パンチングメタルなどを挟ん
で電極強度を高めるか、あるいは配合剤入りのファイバ
ーマントを二つ折りにしたエキスバンドメタル、パンチ
ングメタル中に挟んで電極強度を高めるようにしてもよ
い。
First, a paste-like compounding agent containing an active material as a main ingredient is poured into a fiber mat whose surface is metal-plated as an electrode base to impregnate the fiber mat with the compounding agent. After this is dried to reduce the moisture content, so-called pre-drying, it is compressed under pressure. At that time, in the same way as when using conventional nickel sintered bodies, for the purpose of reinforcement, the fiber mat containing the compound is folded lengthwise in half, and an expanded metal, punched metal, etc. is sandwiched between the two and the electrode is The strength of the electrode may be increased, or the strength of the electrode may be increased by sandwiching a fiber cloak containing a compounding agent between folded expanded metal or punched metal.

加圧はプレスで加圧してもよいし、また2本のロールの
間隙を通す方法によってもよい。
Pressure may be applied by a press, or by passing the material through a gap between two rolls.

そして、得られた電極はたとえば渦巻形電池に適用する
場合、電極面に1−当たり2〜4個所スポット電気溶接
して電極強度を高めるようにしてもよい。
When the obtained electrode is applied to a spiral battery, for example, it may be spot-electrowelded to the electrode surface at 2 to 4 locations per electrode to increase the strength of the electrode.

上記のように、本発明において電極基体として用いる表
面が金属メッキされたファイバーマントは、開孔面積が
大きいので、活物質を固体状のまま充填することができ
、焼結体より少ない体積占孔率が大きいので、体積当た
りの活物質充填量すなわち電気量の大きい電極を作製す
ることができる。さらに、電極基体が合成繊維のファイ
バーマットに金属メッキしたものであるから、軽量であ
り、したがって電極の軽量化も達成でき、たとえば従来
の焼結式ニッケル電極の場合は電気量密度が100mA
h/gであったのに対し、本発明のニッケル電極では1
65mAh/gの電気量密度が得られる。そして、活物
質の充填は1回の含浸操作でできるなど、電極製造面に
おいても優れた効果が発揮され、電極製造コストを低減
できる。
As mentioned above, the fiber cloak whose surface is plated with metal and used as an electrode base in the present invention has a large pore area, so the active material can be filled in a solid state, and the volume of pores is smaller than that of a sintered body. Since the ratio is large, it is possible to produce an electrode with a large amount of active material filled per volume, that is, a large amount of electricity. Furthermore, since the electrode base is made of a synthetic fiber mat plated with metal, it is lightweight, and therefore the weight of the electrode can also be reduced.For example, in the case of a conventional sintered nickel electrode, the charge density is 100 mA.
h/g, whereas the nickel electrode of the present invention had a
A charge density of 65 mAh/g is obtained. In addition, the active material can be filled in a single impregnation operation, which provides excellent effects in terms of electrode manufacturing, and reduces electrode manufacturing costs.

〔実施例〕〔Example〕

つぎに、実施例をあげて本発明をさらに詳細に説明する
Next, the present invention will be explained in more detail by giving Examples.

線径30〜50μ−のポリプロピレン繊維製のファイバ
ーマット(幅40+u+、長さ130 mm、見掛は厚
さ11111、重量0.233 g 、空孔率95.1
容量%)を脱脂したのち、予め80℃に加温された無電
解メッキ液に20分間浸漬し、ファイバー表面にニッケ
ルメットの重量は0.293 gとなり、空孔率は95
.0容量%となった。メッキ液は塩化ニッケル12重量
部、次亜リン酸ナトリウム1重量部、塩化アンモニウム
5重量部、クエン酸ナトリウム10重量部、純水72重
量部からなるものである。
A fiber mat made of polypropylene fiber with a wire diameter of 30 to 50 μ- (width 40+u+, length 130 mm, apparent thickness 11111, weight 0.233 g, porosity 95.1
After degreasing (volume%), it was immersed in an electroless plating solution preheated to 80°C for 20 minutes, and the weight of nickel met on the fiber surface was 0.293 g, and the porosity was 95.
.. It became 0% by volume. The plating solution consisted of 12 parts by weight of nickel chloride, 1 part by weight of sodium hypophosphite, 5 parts by weight of ammonium chloride, 10 parts by weight of sodium citrate, and 72 parts by weight of pure water.

次に水酸化ニッケル20重量部、カーボニルニッケル粉
末2重量部、コバルト粉末0.4重量部、テフロンディ
スパージョン(テフロン濃度30重1%)4重量部、純
水73.6重量部を混合したペースト状配合剤を上記マ
ットに流し込み含浸させた。これを105℃に保った乾
燥器に入れ、配合剤中の水分含量が約10重量%になる
まで予備乾燥した。次にこれを長さ方向に二つ折りにし
、その間に開孔率70容量%のエキスバンドニッケルを
挟んで(第1図参照) 、100 k、z/dの圧力で
加圧した。加圧後、再び105℃に保った乾燥器中で完
全に乾燥して電極を得た。なお、第1図において、1a
は活物質が充填された電極基体としてのファイバーマッ
トで、1bはその折曲部、1cは補強のためのエキスバ
ンドニッケルである。
Next, a paste was prepared by mixing 20 parts by weight of nickel hydroxide, 2 parts by weight of carbonyl nickel powder, 0.4 parts by weight of cobalt powder, 4 parts by weight of Teflon dispersion (Teflon concentration 30% by weight), and 73.6 parts by weight of pure water. The mixture was poured into the mat to impregnate it. This was placed in a dryer kept at 105°C and pre-dried until the water content in the formulation became about 10% by weight. Next, this was folded in two in the length direction, and expanded nickel with a porosity of 70% by volume was sandwiched between them (see Fig. 1), and pressurized at a pressure of 100 k, z/d. After pressurization, the electrode was completely dried again in a dryer kept at 105°C. In addition, in Fig. 1, 1a
1 is a fiber mat filled with an active material as an electrode base, 1b is a bent portion thereof, and 1c is expanded nickel for reinforcement.

上記のようにして作製されたニッケル電極を正極として
用い、負極には従来法で作られたカドミウム電極を用い
、セパレータにポリプロピレンからなる不織布を用いて
渦巻状に巻き、電解液に濃度30重量%の水酸化カリウ
ム水溶液を用いて第2図に示すような構造で直径14.
5mm、高さ50mn+のニソケルーカドミウム二次電
池(KR6相当)を作製した。
The nickel electrode prepared as described above was used as the positive electrode, the cadmium electrode made by the conventional method was used as the negative electrode, and the separator was wound in a spiral using a nonwoven fabric made of polypropylene, and the electrolyte was added to a concentration of 30% by weight. Using an aqueous solution of potassium hydroxide, the structure was made as shown in Figure 2 with a diameter of 14.
A Nisokeru-cadmium secondary battery (equivalent to KR6) with a diameter of 5 mm and a height of 50 mm+ was fabricated.

第2図において、1は前記のようにして作製された一’
−7ケル電極で、厚さ約0.5 mm、幅40IIlr
a、長さ65mmの板状をしている。2はポリプロピレ
ン不織布からなるセパレータであり、平均厚さ0.2 
sumで、各電極幅より約2+gm大きい幅を有してい
る。
In FIG. 2, 1 is a 1'
-7 Kel electrode, thickness approximately 0.5 mm, width 40IIlr
a. It has a plate shape with a length of 65 mm. 2 is a separator made of polypropylene nonwoven fabric, and has an average thickness of 0.2
sum, and has a width approximately 2+gm larger than the width of each electrode.

3は負極としてのカドミウム電極で、このカドミウム電
極3は厚さ約0.5 mts、幅40mn+、長さ85
n++wのペースト式極板からなり、ニッケル電極1の
電気容量の約1.5倍の電気容量を持っている。そして
、このカドミウム電極3はセパレータ2を介在させて前
記ニッケル電極1と重ね合わせ、渦巻状に巻回されて外
装缶9内に収容されている。4はニッケル電極1のリー
ドで、5はカドミウム電極3のリードであり、6は金属
製の封口板で、この封口板6は上側部分6aと下側部分
6bとからなり、その下側部分6bに前記ニッケル電極
側のり一ド4の一端がスポット溶接されている。そして
、この電池は電池内圧が異常に上昇したときの安全性確
保のための防爆弁7ををし、絶縁バッキング8と外装缶
9をかしめるクリンプシールで蜜閉構造を保持しており
、電池内には濃度30重量%の水酸化カリウム水溶液よ
りなる電解液が封入されている。
3 is a cadmium electrode as a negative electrode, and this cadmium electrode 3 has a thickness of about 0.5 mts, a width of 40 m+, and a length of 85 mm.
It consists of an n++w paste type electrode plate and has a capacitance approximately 1.5 times that of the nickel electrode 1. The cadmium electrode 3 is overlapped with the nickel electrode 1 with the separator 2 interposed therebetween, and is wound spirally and housed in the outer can 9. 4 is a lead of the nickel electrode 1, 5 is a lead of the cadmium electrode 3, and 6 is a metal sealing plate, and this sealing plate 6 consists of an upper part 6a and a lower part 6b; One end of the glue 4 on the nickel electrode side is spot welded to. This battery has an explosion-proof valve 7 to ensure safety when the battery internal pressure rises abnormally, and maintains a tightly closed structure with a crimp seal that crimps the insulating backing 8 and the outer can 9. An electrolytic solution consisting of an aqueous potassium hydroxide solution having a concentration of 30% by weight is sealed inside.

上記実施例のニッケル電極を用いた電池を電池Aとし、
従来法による焼結式ニッケル電極を用いた電池を電池B
とし、ファイバーマットを用いない粉末圧着式ニッケル
電極を用いた電池を電池Cとし、それらの電池の充放電
特性を比較した。その結果を第3図に示す、充放電特性
を調べるための試験条件は放電電流100mA、充電電
流100mAで9時間充電し、放電時のカット電圧は1
.OVである。なお、電池ASB、Cの相違はニッケル
第3図に示すように、本発明の実施例のニッケル電極を
用いた電池Aは、従来の焼結式ニッケル電極を用いた電
池Bより電気量が大きく、また従来の粉末活物質圧着方
式によるニッケル電極を用いた電池Cに比べて充放電の
繰り返しによる電気量劣化がはるかに少なかった。
A battery using the nickel electrode of the above example is referred to as battery A,
Battery B uses a conventional sintered nickel electrode.
A battery using a powder-pressed nickel electrode without using a fiber mat was designated as battery C, and the charge-discharge characteristics of these batteries were compared. The results are shown in Figure 3.The test conditions for examining the charge/discharge characteristics were charging for 9 hours at a discharge current of 100 mA and a charging current of 100 mA, and a cut voltage of 1 during discharging.
.. It is OV. The difference between batteries ASB and C is nickel. As shown in Figure 3, battery A using the nickel electrode of the embodiment of the present invention has a larger amount of electricity than battery B using the conventional sintered nickel electrode. Moreover, compared to Battery C using a nickel electrode using a conventional powder active material compression method, the amount of electricity deteriorated much less due to repeated charging and discharging.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では表面が金属メンキされ
たファイバーマットを電極基体として用いることにより
、従来の焼結式電極に比べて活物質の充填工程が著しく
簡略化され、したがって電極の製造工程が短縮化でき、
製造コストの低減化が達成できた。また、軽量で電極の
電気量密度を従来の焼結式電極より高(でき、かつ、従
来の粉末活物質圧着方式による電極に比べて充放電の繰
り返しによる電気量劣化を著しく抑制することができた
As explained above, in the present invention, by using a fiber mat whose surface is coated with metal as an electrode base, the filling process of active material is significantly simplified compared to conventional sintered electrodes, and therefore the electrode manufacturing process is can be shortened,
A reduction in manufacturing costs was achieved. In addition, it is lightweight and has a higher charge density than conventional sintered electrodes, and can significantly suppress the deterioration of charge due to repeated charging and discharging compared to electrodes made using the conventional powder active material compression method. Ta.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すニッケル電極図は本発
明の実施例のニッケル電極を用いたニッケルーカドミウ
ム二次電池を示す断面図であり、第3図は本発明の実施
例のニッケル電極を用いたニッケルーカドミウム二次電
池と従来のニッケル電極を用いたニッケルーカドミウム
二次電池との充放電特性図である。 1・・・ニッケル電極、 1a・・・電極基体としての
ファイバーマット、  2・・・セパレータ、  3・
・・カドミウム電極 第1図 第3図 記放?睨ナイク1し改
FIG. 1 shows a nickel electrode according to an embodiment of the present invention. FIG. 3 is a sectional view showing a nickel-cadmium secondary battery using a nickel electrode according to an embodiment of the present invention. FIG. 2 is a charge/discharge characteristic diagram of a nickel-cadmium secondary battery using a nickel electrode and a conventional nickel-cadmium secondary battery using a nickel electrode. DESCRIPTION OF SYMBOLS 1... Nickel electrode, 1a... Fiber mat as an electrode base, 2... Separator, 3.
...Cadmium electrode Figure 1 Figure 3 Recording radiation? Glamor Naik 1 Shikai

Claims (2)

【特許請求の範囲】[Claims] (1)電極基体として表面が金属メッキされたファイバ
ーマットを用いたことを特徴とするアルカリ二次電池用
電極。
(1) An electrode for an alkaline secondary battery, characterized in that a fiber mat whose surface is plated with metal is used as an electrode base.
(2)電極がニッケル電極である特許請求の範囲第1項
記載のアルカリ二次電池用電極。
(2) The electrode for an alkaline secondary battery according to claim 1, wherein the electrode is a nickel electrode.
JP60050166A 1985-03-12 1985-03-12 Electrode for alkaline secondary battery Pending JPS61208756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60050166A JPS61208756A (en) 1985-03-12 1985-03-12 Electrode for alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60050166A JPS61208756A (en) 1985-03-12 1985-03-12 Electrode for alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPS61208756A true JPS61208756A (en) 1986-09-17

Family

ID=12851616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60050166A Pending JPS61208756A (en) 1985-03-12 1985-03-12 Electrode for alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPS61208756A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384216A (en) * 1992-05-27 1995-01-24 Toshiba Battery Co., Ltd. Paste-type electrode for alkali secondary cell
JP2003109600A (en) * 2001-09-28 2003-04-11 Japan Vilene Co Ltd Current collector material for battery, and battery using the same
JP2008071533A (en) * 2006-09-12 2008-03-27 Sumitomo Electric Ind Ltd Manufacturing method of alkaline battery nickel electrode and alkaline battery nickel electrode
US7588861B2 (en) 2006-03-02 2009-09-15 Sumitomo Electric Industries, Ltd. Battery electrode producing method of filling active material into a metal coated fabric substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125231A (en) * 1974-03-25 1975-10-02
JPS5217630A (en) * 1975-07-16 1977-02-09 Tudor Ab Battery having soluble plate
JPS5588272A (en) * 1978-12-26 1980-07-03 Matsushita Electric Ind Co Ltd Method for producing cell electrode substrate
JPS5630266A (en) * 1979-08-21 1981-03-26 Yuasa Battery Co Ltd Alkali storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125231A (en) * 1974-03-25 1975-10-02
JPS5217630A (en) * 1975-07-16 1977-02-09 Tudor Ab Battery having soluble plate
JPS5588272A (en) * 1978-12-26 1980-07-03 Matsushita Electric Ind Co Ltd Method for producing cell electrode substrate
JPS5630266A (en) * 1979-08-21 1981-03-26 Yuasa Battery Co Ltd Alkali storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384216A (en) * 1992-05-27 1995-01-24 Toshiba Battery Co., Ltd. Paste-type electrode for alkali secondary cell
JP2003109600A (en) * 2001-09-28 2003-04-11 Japan Vilene Co Ltd Current collector material for battery, and battery using the same
US7588861B2 (en) 2006-03-02 2009-09-15 Sumitomo Electric Industries, Ltd. Battery electrode producing method of filling active material into a metal coated fabric substrate
JP2008071533A (en) * 2006-09-12 2008-03-27 Sumitomo Electric Ind Ltd Manufacturing method of alkaline battery nickel electrode and alkaline battery nickel electrode

Similar Documents

Publication Publication Date Title
JP2673078B2 (en) Paste type electrode for alkaline secondary battery
CN1121079C (en) Cylindrical alkali accumulator adapting non-sintered electrode and manufacturing method therefor
US4091181A (en) Rechargeable galvanic cell
JPS61208756A (en) Electrode for alkaline secondary battery
US6150056A (en) Alkaline storage battery and method for producing an electrode used therefor
JP7105525B2 (en) zinc battery
JP3330263B2 (en) Alkaline secondary battery and manufacturing method thereof
JPS61198562A (en) Electrode for alkaline secondary battery
EP0403052B1 (en) Nickel electrode and alkaline battery using the same
JPS62165862A (en) Manufacture of electrode base plate for alkaline storage battery
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPS61135054A (en) Manufacture of nickel electrode for alkaline secondary battery
JPH10334902A (en) Alkaline storage battery and manufacture of its electrode
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPH1140148A (en) Alkaline storage battery and manufacture of electrode thereof
JPH0693359B2 (en) Method for producing paste type electrode for battery
JP2009026622A (en) Alkaline storage battery, and manufacturing method thereof
JP2000113901A (en) Alkaline secondary battery
JPS60225373A (en) Alkaline zinc storage battery
JPH022269B2 (en)
JPS62283561A (en) Nickel electrode for alkaline secondary cell
JP2001202952A (en) Method of producing paste-form nickel electrode