JPS6120270Y2 - - Google Patents

Info

Publication number
JPS6120270Y2
JPS6120270Y2 JP11789977U JP11789977U JPS6120270Y2 JP S6120270 Y2 JPS6120270 Y2 JP S6120270Y2 JP 11789977 U JP11789977 U JP 11789977U JP 11789977 U JP11789977 U JP 11789977U JP S6120270 Y2 JPS6120270 Y2 JP S6120270Y2
Authority
JP
Japan
Prior art keywords
air
engine
fuel
cylinders
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11789977U
Other languages
Japanese (ja)
Other versions
JPS5444819U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11789977U priority Critical patent/JPS6120270Y2/ja
Publication of JPS5444819U publication Critical patent/JPS5444819U/ja
Application granted granted Critical
Publication of JPS6120270Y2 publication Critical patent/JPS6120270Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【考案の詳細な説明】 本考案は排ガス再燃焼装置付エンジンに係るも
のである。
[Detailed Description of the Invention] The present invention relates to an engine equipped with an exhaust gas reburning device.

エンジンにおける排気公害対策の進め方を大別
すると、燃料と空気との混合比率を理論混合比
(理論空燃比)より大としたリーンバーン方式と
逆にこれを理論空燃比より小としたリツチバーン
方式との2種に分けることができる。
The methods of taking measures against exhaust pollution in engines can be roughly divided into lean-burn methods, in which the mixture ratio of fuel and air is greater than the stoichiometric mixture ratio (stoichiometric air-fuel ratio), and rich-burn methods, in which the mixture ratio of fuel and air is lower than the stoichiometric air-fuel ratio. It can be divided into two types.

前者は燃焼温度を抑えることによつてNOXの
排出を低減し、後者は余剰の酸素をなくすことに
よつてこれを低減せんとするもので、後者に比し
前者はCO、HC等の未燃焼成分の排出が少ないと
云う特徴はあるが、いずれにせよサーマルリアク
ター等の如き排ガス再燃焼装置によつてこれを浄
化する必要がある。
The former aims to reduce NOX emissions by suppressing the combustion temperature, and the latter aims to reduce this by eliminating excess oxygen. Although it has the characteristic of emitting fewer components, in any case it is necessary to purify it using an exhaust gas re-combustion device such as a thermal reactor.

所で、リツチバーン方式によれば酸欠状態で燃
焼が進行するのであるから排出されたCO、HC等
の再燃焼浄化のためには2次空気を供給してやら
ねばならず、また燃費的にも不利であるから、リ
ーンバーン方式の方が得策であると言える。しか
しながら、リーンバーン方式では、本質的に
CO、HC等の排出が少ないため、それらの再燃焼
による発熱作用を多く期待することができない
故、再燃焼装置をCO、HC等の再燃焼浄化のため
に必要十分なる温度に保持することが極めて重大
な問題となつて来る。
By the way, according to the rich burn method, combustion proceeds in an oxygen-deficient state, so secondary air must be supplied to purify the emitted CO, HC, etc. by reburning, and it is also disadvantageous in terms of fuel efficiency. Therefore, it can be said that the lean burn method is better. However, the lean burn method essentially
Since the emissions of CO, HC, etc. are small, we cannot expect much exothermic effect from their re-combustion, so it is difficult to maintain the re-combustion device at a temperature necessary and sufficient for re-combustion purification of CO, HC, etc. This is becoming an extremely serious problem.

殊に、エンジンがアイドリング状態あるいは減
速状態にある様な場合には、燃料を絞つているた
め排ガスそのものの温度が低くなつて再燃焼装置
を冷やしてしまうことになり、その後に流入して
来るCO、HC等を再燃焼浄化することができなく
なつてしまうことがある。
In particular, when the engine is idling or decelerating, the exhaust gas itself cools down due to the fuel being throttled down, cooling the afterburner, and the CO that subsequently flows in. , it may become impossible to re-burn and purify HC, etc.

このような問題を解決する方法として例えば特
開昭50−74032号公報に記載された発明のよう
に、多気筒内燃機関の各気筒へ薄混合気を供給す
る燃料供給手段と、機関の負荷状態を検出する検
出手段と、この検出された負荷状態に応じて約半
数の気筒へ燃料を追補する燃料追補手段を備え、
機関の負荷が低下するほど追補燃料を増加させる
ことにより、排気の未燃成分含有率を二次燃焼可
能な領域に保持するようにしたものがある。
As a method to solve such problems, for example, as in the invention described in Japanese Patent Application Laid-Open No. 50-74032, a fuel supply means for supplying a lean mixture to each cylinder of a multi-cylinder internal combustion engine, and a method for supplying a lean mixture to each cylinder of a multi-cylinder internal combustion engine, and a method for supplying a lean mixture to each cylinder of a multi-cylinder internal combustion engine, and and a fuel supplementary means for supplementing fuel to about half of the cylinders according to the detected load condition,
Some engines are designed to maintain the content of unburned components in the exhaust gas in a range where secondary combustion is possible by increasing supplementary fuel as the engine load decreases.

そして前記公報には実施例として(i)リアクタ付
4気筒内燃機関のNo.1,4気筒の吸入ポートに燃
料噴射弁を設け、これを負荷信号又はこれを代表
する信号に基づき関数発生器より発する関数信号
に応じてパルス発信器から出力するパルス信号に
よつて燃料を追補するもの、(ii)リアクタ付6気筒
内燃機関の各気筒に電磁式燃料噴射弁を設け、No.
1,2,3とNo.4,5,6の各群を前記関数発生
器からの関数信号に応じて作動する噴射燃料制御
装置によりパルス変換器を介して制御するように
したもの、(iii)リアクタ付6気筒内燃機関のNo.1,
2,3と4,5,6の各群の吸気マニホールド毎
に気化器を備え該気化器には第2のエアブリード
又はメインジエツトのバイパス路に電磁弁を設け
てこれを前記関数発生器により制御するもの等が
挙げられており、これらによつて機関の低負荷時
におけるほど燃料混合気を濃化してCO含有率を
上げ、リアクタにおける二次燃焼反応を起こし易
くしてCO、HCの浄化を行わせようとしている。
In the above publication, as an example, (i) a fuel injection valve is provided at the intake port of the No. 1 and 4 cylinders of a 4-cylinder internal combustion engine with a reactor, and this is injected by a function generator based on a load signal or a signal representing this. (ii) An electromagnetic fuel injection valve is installed in each cylinder of a six-cylinder internal combustion engine with a reactor, and No.
Each group of No. 1, 2, 3 and No. 4, 5, 6 is controlled via a pulse converter by an injection fuel control device that operates according to a function signal from the function generator, (iii ) No.1 6-cylinder internal combustion engine with reactor,
A carburetor is provided for each intake manifold of groups 2, 3, 4, 5, and 6, and the carburetor is provided with a solenoid valve in a second air bleed or a bypass path of the main jet, and this is controlled by the function generator. These methods enrich the fuel mixture and increase the CO content when the engine is under low load, making it easier for secondary combustion reactions to occur in the reactor and purifying CO and HC. I'm trying to get it done.

しかしながら前公報記載の発明では、低速時に
特定気筒又は群毎に燃料噴射弁又は気化器より燃
料を供給して濃混合気とするので、リアクタの温
度低下と再燃焼浄化に必要な温度保持は成される
が、(a)低負荷時には通常の浄化燃料の供給に加え
て燃料噴射弁又は気化器より再燃焼に必要な燃料
を機関に供給するので、燃料消費が大となる、(b)
気化器を用いるものでは上記(iii)にあげた実施例の
如く、いくつかの吸気マニホールド毎に高価な気
化器を設置する必要があるのでコスト高となるほ
か、気化器毎及び気化器間の制御、調整を必要と
するので構造複雑となり、また気化器のエアブリ
ードに電磁弁を設け或いはメインジエツトにバイ
パス路を形成してここに電磁弁を設けるので、既
設の気化器に取り付けることができず、予めこの
ような気化器を製作する必要がありこれもコスト
高をもたらすなどの欠点がある。
However, in the invention described in the previous publication, fuel is supplied from the fuel injector or vaporizer to each specific cylinder or group at low speeds to create a rich mixture, so it is not possible to lower the temperature of the reactor and maintain the temperature necessary for reburning purification. However, (a) at low loads, in addition to the normal supply of purified fuel, fuel necessary for re-combustion is supplied to the engine from the fuel injection valve or carburetor, resulting in high fuel consumption; (b)
For those that use a carburetor, as in the example mentioned in (iii) above, it is necessary to install an expensive carburetor for each intake manifold, which increases the cost. The structure is complicated because it requires control and adjustment, and because a solenoid valve is installed on the air bleed of the carburetor or a bypass path is formed in the main jet and a solenoid valve is installed there, it cannot be installed on an existing carburetor. However, it is necessary to manufacture such a vaporizer in advance, which also has disadvantages such as high cost.

本考案はこれらの点に鑑み案出されたものであ
つて、上記リーンバーン方式によるエンジンのア
イドリング時あるいは減速時において、特定の気
筒に対して空気量を減少させてリツチバーン方式
をとらせ、CO、HC等の排出を促がしてその再燃
焼による発熱により上記温度の確保を図り、常に
清浄な排ガスが得られしかも燃料消費少ないエン
ジンを比較的構造簡単で安価に提供せんとする。
The present invention was devised in view of these points, and it reduces the amount of air in a specific cylinder to use the rich burn method when the engine is idling or decelerating due to the lean burn method described above. To provide an engine with a relatively simple structure and low cost that can always produce clean exhaust gas and consume less fuel by promoting the discharge of HC, HC, etc. and securing the above temperature by heat generation from re-combustion.

前記目的を達成するため本考案はエアクリーナ
より気化器をバイパスし、各分岐管により一部気
筒と他気筒に接続する空気管にスロツトル弁と連
動する調整弁を設け、前記分岐管の一方にアイド
リング又は減速状態を検出する手段の信号により
閉塞される制御弁を設け、前記状態時、前記制御
弁を設けない分岐管に接続した気筒では理論空燃
比より大きい値を保持したまま、前記制御弁を設
けた分岐管に接続した気筒では理論空燃比より小
なる値をとるようにしてなることを要旨とする。
In order to achieve the above object, the present invention bypasses the carburetor from the air cleaner, and installs a regulating valve in conjunction with a throttle valve in the air pipe connected to some cylinders and other cylinders by each branch pipe, and provides an idling valve in one of the branch pipes. Alternatively, a control valve is provided that is closed by a signal from a means for detecting a deceleration state, and in the above state, the control valve is closed while maintaining a value larger than the stoichiometric air-fuel ratio in the cylinder connected to the branch pipe where the control valve is not provided. The gist is that the air-fuel ratio in the cylinder connected to the provided branch pipe is smaller than the stoichiometric air-fuel ratio.

以下図示せる本考案の一実施例について詳説す
るに、1はリーンバーン方式をとる多気筒エンジ
ン、2は燃焼室(気筒)、3は吸気弁、4は排気
弁である。該燃焼室2には吸気弁3、吸気ポート
5、吸気管6等を介して気化器7より混合気が供
給されるようになつており、また該燃焼室2から
の排ガスは排気弁4及び排気ポート8を介してサ
ーマルリアクターの如き排ガス再燃焼装置9に至
り、そこで再燃焼浄化されるようになつている。
尚、10はエアクリーナー、11はポートライナ
ー、12は排気管である。
An embodiment of the present invention shown in the drawings will be described in detail below. Reference numeral 1 indicates a multi-cylinder engine employing a lean burn system, 2 a combustion chamber (cylinder), 3 an intake valve, and 4 an exhaust valve. A mixture is supplied to the combustion chamber 2 from a carburetor 7 via an intake valve 3, an intake port 5, an intake pipe 6, etc., and exhaust gas from the combustion chamber 2 is supplied to an exhaust valve 4 and an intake pipe 6. The exhaust gas flows through an exhaust port 8 to an exhaust gas re-combustion device 9 such as a thermal reactor, where it is re-combusted and purified.
Note that 10 is an air cleaner, 11 is a port liner, and 12 is an exhaust pipe.

そして該エンジン1には、気化器7で生成され
る混合気を希釈して前記リーンバーン方式をなさ
しめるために、気化器7をバイパスしてエアクリ
ーナー10と吸気管6とを連絡する空気管13が
配設されており、該管13中には気化器7のスロ
ツトル弁14と連動する調整弁15を設けて、エ
ンジンの運転状況に応じて適切に、しかも燃焼室
2に供給される混合気の濃度が常時理論空燃比よ
り薄くなるよう空気量が調整されている。このよ
うに、該エンジン1に於てはリーンバーン方式を
とるため、排ガスに2次空気の供給を成さずと
も、再燃焼浄化装置を適切に保温しておくことに
よりCO、HC等を再燃焼浄化することができるの
である。また、図示実施例は4気筒エンジンの例
であるが、気筒着火順序がNo.(#)1、No.(#)
3、No.(#)4、No.(#)2となる場合にはその
奇数番目の気筒となる#1、#4気筒に連なる吸
気管6と偶数番目の気筒となる#2、#3気筒に
連なる吸気管6′とが独立させてあつて(4気筒
の例)、前記空気管13も下方において分岐管1
6,17により夫々吸気管6,6′に連なつてい
る。この一方の分岐管17中には制御弁18が特
に設けてあり、通常は開放するも、エンジン1が
アイドリングあるいは減速状態にあるときはこれ
をスイツチ19にて検出し、一方の分岐管17を
閉塞して吸気管6′に対する空気の供給を停止す
ることができるようになつている。
The engine 1 includes an air pipe that bypasses the carburetor 7 and connects the air cleaner 10 and the intake pipe 6 in order to dilute the air-fuel mixture generated in the carburetor 7 and perform the lean burn method. 13 is disposed in the pipe 13, and a regulating valve 15 which is interlocked with the throttle valve 14 of the carburetor 7 is provided in the pipe 13 so that the mixture can be appropriately supplied to the combustion chamber 2 according to the operating conditions of the engine. The amount of air is adjusted so that the concentration of air is always thinner than the stoichiometric air-fuel ratio. In this way, since the engine 1 uses a lean burn system, CO, HC, etc. can be regenerated by keeping the afterburning purification device appropriately warm, even without supplying secondary air to the exhaust gas. It can be purified by combustion. Furthermore, although the illustrated embodiment is an example of a four-cylinder engine, the cylinder ignition order is No. (#) 1, No. (#)
3. In the case of No. (#) 4, No. (#) 2, the intake pipes 6 are connected to the #1 and #4 cylinders which are the odd numbered cylinders, and #2 and #3 which are the even numbered cylinders. The intake pipes 6' connected to the cylinders are separate (in the case of a four-cylinder engine), and the air pipes 13 are also connected to the branch pipes 1 at the bottom.
6 and 17 are connected to intake pipes 6 and 6', respectively. A control valve 18 is especially provided in this one branch pipe 17, and although it is normally open, when the engine 1 is idling or decelerating, this is detected by a switch 19, and the one branch pipe 17 is opened. It can be closed to stop the supply of air to the intake pipe 6'.

尚、20はバツテリで、上記制御弁18はスイ
ツチ19がONしたとき電磁的に作動する。
Note that 20 is a battery, and the control valve 18 is electromagnetically operated when the switch 19 is turned on.

以上の如き構成の本考案エンジンにあつては、
一定回転以上の通常の運転状態では、気化器にて
生成された混合気が空気管13を介して調整弁1
5により調整されて供給される空気によつて運転
状態に応じ希釈され、リーンバーン方式をとつて
いる。従つて、燃焼温度を抑えてNOXの排出の
低減が図られ、且つ排ガス中のCO、HC等の未燃
焼成分は必要十分なる温度に保持されている再燃
焼装置9において再燃焼浄化される。
In the engine of the present invention having the above configuration,
In normal operating conditions above a certain rotation, the air-fuel mixture generated in the carburetor is passed through the air pipe 13 to the regulating valve 1.
The air is diluted according to the operating conditions by the air adjusted and supplied by No. 5, and a lean burn system is adopted. Therefore, the combustion temperature is suppressed to reduce NOX emissions, and unburned components such as CO and HC in the exhaust gas are reburned and purified in the reburning device 9, which is maintained at a necessary and sufficient temperature.

この状態からエンジン1が減速あるいはアイド
リングに移ると、この状態をスイツチ19が検出
し、制御弁18をもつて一方の分岐管17を閉塞
することになる。
When the engine 1 shifts from this state to deceleration or idling, the switch 19 detects this state and uses the control valve 18 to close one branch pipe 17.

すると、#1、#4気筒に連なる吸気管6には
依然として空気管13からの空気が供給されてい
る故、リーンバーン方式がとられていて、NOX
の発生が抑えられているが、一方上述のようにし
て制御弁18の作動により吸気管13からの空気
の供給を断たれた#2、#3気筒にあつては、混
合気濃度が理論空燃比より濃くなつてリツチバー
ン方式をとるようになり、前述と同様にここでも
NOXの排出は抑制されている。そして通常この
状態では排ガスの温度が下つて再燃焼装置9に於
ける温度がCO、HC等の再燃焼浄化に必要な温度
を保持し得なくなつてしまうが、本考案にあつて
は、上述の如く#2、#3気筒に対してはリツチ
バーン方式をとらせているから、ここでは酸欠状
態での燃焼に基づき多量のCO、HC等の未燃焼成
分が生成され、これらが再燃焼装置9内で燃焼す
ることによつて上記温度の確保が図れるのであ
る。
Then, since air from the air pipe 13 is still being supplied to the intake pipe 6 connected to the #1 and #4 cylinders, a lean burn system is being adopted, and NOX
On the other hand, in the case of cylinders #2 and #3, where the air supply from the intake pipe 13 was cut off by the operation of the control valve 18 as described above, the mixture concentration reached the stoichiometric empty air. It becomes richer than the fuel ratio and adopts the rich burn method, and as mentioned above, here as well.
NOX emissions are suppressed. Normally, in this state, the temperature of the exhaust gas decreases and the temperature in the afterburner 9 cannot maintain the temperature necessary for the afterburning purification of CO, HC, etc. However, in the case of the present invention, the above-mentioned Since the rich burn method is used for the #2 and #3 cylinders, a large amount of unburned components such as CO and HC are generated due to combustion in an oxygen-deficient state, and these are sent to the reburning device. The above temperature can be ensured by burning in the 9.

即ち、上記エンジンでは#1、#3、#4、
#2の順に着火燃焼が行われるので、夫々の気筒
の燃焼室2内にはリーン−リツチ−リーン−リツ
チの混合気が導入され、従つて再燃焼装置9には
ほゞ等容量のリーン及びリツチバーンによる排気
ガスが交互に導かれる。これによつて各気筒から
のNOXの排出は少なくなり、かつ再燃焼装置内
では温度のCO、HCの生成を伴う再燃焼が行われ
ることとなる。そしてこれらの未燃焼成分の再燃
焼成分の再燃焼にはリーンバーン方式をとつてい
る#1、#4気筒の余剰酸素が利用されるから、
2次空気の供給は不要である。しかも、エンジン
1はこの状態に於ても全体としてはリーンバーン
方式をとつているのである。
That is, in the above engine, #1, #3, #4,
Since ignition combustion is performed in the order of #2, a lean-rich-lean-rich mixture is introduced into the combustion chamber 2 of each cylinder, and therefore, the afterburner 9 has approximately equal volumes of lean and rich mixtures. Exhaust gas from rich burns is alternately guided. As a result, NOX emissions from each cylinder are reduced, and re-combustion occurs in the re-combustion device with the production of CO and HC at high temperatures. And for the re-burning of these unburned components, surplus oxygen from the #1 and #4 cylinders, which are using the lean burn system, is used.
No secondary air supply is required. Moreover, even in this state, the engine 1 as a whole employs a lean burn system.

以上の如く本考案排ガス再燃焼装置付エンジン
はエアクリーナより気化器をバイパスし、各分岐
管により一部気筒と他気筒に接続する空気管にス
ロツトル弁と連動する調整弁を設け、前記分岐管
の一方にアイドリング又は減速状態を検出する手
段の信号により閉塞される制御弁を設け、前記状
態時、前記制御弁を設けない分岐管に接続した気
筒では理論空燃比より大きい値を保持したまま、
前記制御弁を設けた分岐管に接続した気筒では理
論空燃比より小なる値をとるようにしてなるの
で、(i)#1、#3、#4、#2の着火に前記各気
筒ではリーン、リツチ、リーン、リツチとほぼ等
量の燃焼が行われ、各気筒から再燃焼装置へ導か
れる排ガスもCO、HCの薄いガスと、濃いガスと
が交互に排出されるので極めて効率よく、再燃焼
室の温度低下が防止でき、しかもその温度を再燃
焼浄化に必要かつ十分な程度に保持できるので、
排気管に排出されるガスは常に正常なガスとする
ことができる。(ii)車両の減速時およびアイドリン
グ時においても一部気筒の燃料を追補するのでは
なく、一部気筒の吸気2次空気を遮断する方法を
とつたので、燃費的にもきわめて有利となる、(iii)
高価なキヤブレータを複数個用いることもなく、
構造簡単できわめて安価な再燃焼装置付エンジン
が得られる等の効果がある。
As described above, the engine with the exhaust gas reburning device of the present invention bypasses the carburetor from the air cleaner, and the air pipes connected to some cylinders and other cylinders by each branch pipe are provided with a regulating valve that interlocks with the throttle valve. A control valve is provided on one side that is closed by a signal from a means for detecting an idling or deceleration state, and in the above state, a cylinder connected to a branch pipe without the control valve maintains a value larger than the stoichiometric air-fuel ratio;
Since the cylinders connected to the branch pipe in which the control valve is installed have a value smaller than the stoichiometric air-fuel ratio, (i) the ignition of #1, #3, #4, and #2 requires lean in each cylinder; , rich, lean, and rich combustion takes place, and the exhaust gas led from each cylinder to the reburning device is extremely efficient, as thin gases such as CO and HC and rich gases are alternately discharged. It is possible to prevent the temperature of the combustion chamber from decreasing, and to maintain the temperature at a level necessary and sufficient for reburning and purification.
The gas discharged into the exhaust pipe can always be normal gas. (ii) Rather than supplementing fuel to some cylinders when the vehicle is decelerating or idling, we have adopted a method of blocking the intake secondary air of some cylinders, which is extremely advantageous in terms of fuel efficiency. (iii)
No need to use multiple expensive carburetors,
This has the advantage of providing an engine with a reburning device that is simple in structure and extremely inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案の一実施例を示す説明図である。 1;エンジン、6,6′;吸気管、7;気化
器、9;排ガス再燃焼装置、10;エアクリー
ナ、13;空気管、15;調整弁、16,17;
分岐管、18;制御弁、19;スイツチ。
The figure is an explanatory diagram showing an embodiment of the present invention. 1; Engine, 6, 6'; Intake pipe, 7; Carburetor, 9; Exhaust gas re-combustion device, 10; Air cleaner, 13; Air pipe, 15; Regulating valve, 16, 17;
Branch pipe, 18; control valve, 19; switch.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] エアクリーナより気化器をバイパスし、各分岐
管により一部気筒と他気筒に接続する空気管にス
ロツトル弁と連動する調整弁を設け、前記分岐管
の一方にアイドリング又は減速状態を検出する手
段の信号により閉塞される制御弁を設け、前記状
態時、前記制御弁を設けない分岐管に接続した気
筒では理論空燃比より大きい値を保持したまま、
前記制御弁を設けた分岐管に接続した気筒では理
論空燃比より小なる値をとるようにしてなる排ガ
ス再燃焼装置付エンジン。
An air pipe that bypasses the carburetor from the air cleaner and is connected to some cylinders and other cylinders by each branch pipe is provided with an adjustment valve that interlocks with a throttle valve, and a signal of a means for detecting an idling or deceleration state is provided on one of the branch pipes. A control valve is provided which is closed by the control valve, and in the above state, the air-fuel ratio is maintained at a value larger than the stoichiometric air-fuel ratio in the cylinder connected to the branch pipe where the control valve is not provided.
An engine equipped with an exhaust gas reburning device, in which a cylinder connected to a branch pipe provided with the control valve has a value smaller than the stoichiometric air-fuel ratio.
JP11789977U 1977-09-01 1977-09-01 Expired JPS6120270Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11789977U JPS6120270Y2 (en) 1977-09-01 1977-09-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11789977U JPS6120270Y2 (en) 1977-09-01 1977-09-01

Publications (2)

Publication Number Publication Date
JPS5444819U JPS5444819U (en) 1979-03-28
JPS6120270Y2 true JPS6120270Y2 (en) 1986-06-18

Family

ID=29071754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11789977U Expired JPS6120270Y2 (en) 1977-09-01 1977-09-01

Country Status (1)

Country Link
JP (1) JPS6120270Y2 (en)

Also Published As

Publication number Publication date
JPS5444819U (en) 1979-03-28

Similar Documents

Publication Publication Date Title
CN105275625B (en) System and method for exhaust catalyst temperature control
US6779337B2 (en) Hydrogen fueled spark ignition engine
JP3963144B2 (en) Control device for spark ignition engine
EP0936353B1 (en) In-cylinder injection type internal combustion engine
JP3985083B2 (en) Diesel engine exhaust purification system
US20060201137A1 (en) Engine control equipment
US6941905B2 (en) Control unit for spark ignition-type engine
EP0971104A3 (en) An exhaust gas purification device for an internal combustion engine
JP3711942B2 (en) Control device for turbocharged engine
JP2001182601A (en) Early warm-up control device for exhaust emission control catalyst
JPS6120270Y2 (en)
JP3711939B2 (en) Control device for spark ignition engine
JPS62247176A (en) Ignition timing controller for multicylinder internal combustion engine
JP3327940B2 (en) Engine combustion control device
JP4285091B2 (en) Control device for spark ignition engine
JP4329446B2 (en) Control device for spark ignition engine
JP3972744B2 (en) Control device for spark ignition type 4-cycle engine
JP2000097078A (en) Internal-combustion engine
JP3894083B2 (en) Control device for spark ignition engine
JP2000145548A (en) Multicylinder internal combustion engine
JP2004132318A (en) Exhaust emission control device for internal combustion engine
JP2000064911A (en) Internal combustion engine
JPH01273820A (en) Purifying device for exhaust gas of engine
JPS5947134B2 (en) Gas-injected multi-cylinder engine
JP2000104620A (en) Device for detecting variation in intake volume among cylinders in internal combustion engine