JP3894083B2 - Control device for spark ignition engine - Google Patents

Control device for spark ignition engine Download PDF

Info

Publication number
JP3894083B2
JP3894083B2 JP2002281293A JP2002281293A JP3894083B2 JP 3894083 B2 JP3894083 B2 JP 3894083B2 JP 2002281293 A JP2002281293 A JP 2002281293A JP 2002281293 A JP2002281293 A JP 2002281293A JP 3894083 B2 JP3894083 B2 JP 3894083B2
Authority
JP
Japan
Prior art keywords
cylinder
cylinders
region
air
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002281293A
Other languages
Japanese (ja)
Other versions
JP2004116403A (en
Inventor
光夫 人見
典之 岩田
皓二 浅海
敏朗 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002281293A priority Critical patent/JP3894083B2/en
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to EP03703108A priority patent/EP1366279B1/en
Priority to US10/472,563 priority patent/US7219634B2/en
Priority to KR10-2003-7014146A priority patent/KR20040074592A/en
Priority to DE60309098T priority patent/DE60309098T8/en
Priority to PCT/JP2003/000962 priority patent/WO2003064838A1/en
Priority to EP03703109A priority patent/EP1362176B1/en
Priority to PCT/JP2003/000961 priority patent/WO2003064837A1/en
Priority to DE60300437T priority patent/DE60300437T2/en
Priority to KR10-2003-7014141A priority patent/KR20040074591A/en
Priority to US10/472,523 priority patent/US7182050B2/en
Priority to CNB03802487XA priority patent/CN100368671C/en
Priority to CNB038024594A priority patent/CN100363609C/en
Publication of JP2004116403A publication Critical patent/JP2004116403A/en
Application granted granted Critical
Publication of JP3894083B2 publication Critical patent/JP3894083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、火花点火式エンジンの制御装置に関し、より詳しくは、多気筒のエンジンにおいて燃費改善及びエミッション向上のために各気筒の燃焼状態を制御する制御装置に関するものである。
【0002】
【従来の技術】
従来から、火花点火式エンジンにおいて、各気筒内の混合気の空燃比を理論空燃比よりも大きいリーン空燃比とした状態で燃焼を行わせることにより燃費改善を図る技術が知られており、燃焼室内に直接燃料を噴射する燃料噴射弁を備え、低回転低負荷領域等で上記燃料噴射弁から圧縮行程で燃料を噴射して成層燃焼を行わせことにより、超リーン燃焼を実現するようにしたものが知られている(例えば、特許文献1参照)。
【0003】
このようなエンジンにおいては、排気ガス浄化用の触媒として通常の三元触媒(HC,CO及びNOxに対して理論空燃比付近で浄化性能の高い触媒)だけではリーン運転時にNOxに対して充分な浄化性能が得られないため、下記特許文献1にも示されるように、酸素過剰雰囲気でNOxを吸着して酸素濃度低下雰囲気でNOxの離脱、還元を行うリーンNOx触媒を設けている。そして、このようなリーンNOx触媒を用いる場合、リーン運転中にリーンNOx触媒のNOx吸着量が増大したときは、例えば上記公報に示されるように主燃焼以外に膨張行程中に追加燃料を噴射することで排気ガスの空燃比をリッチ化するとともにCOを生成し、これによってNOxの離脱、還元を促進するようにしている。
【0004】
【特許文献1】
特開平10−29836号公報
【0005】
【発明が解決しようとする課題】
上記のような従来のリーン運転を行うエンジンでは、リーン運転中のNOx浄化性能を確保するために、上記リーンNOx触媒を排気通路に設ける必要があり、コスト的に不利である。また、上記リーンNOx触媒の浄化性能を維持するためには、上述のようにNOx吸着量増大時にNOxの離脱、還元のため追加燃料の供給等による一時的な空燃比のリッチ化を行う必要がある。さらに、使用燃料が硫黄分を多く含む場合には、上記リーンNOx触媒の硫黄被毒を解消するための触媒の加熱処理及び還元材供給等のリジェネレーション処理が必要となり、これらによって燃費改善効果が低下する。しかも、混合気の空燃比がある程度以上にリーンになると、燃焼速度が遅くなりすぎてその終期に近い燃焼が仕事に寄与しなくなるため、成層燃焼でのリーン化による燃費改善には限界があった。
【0006】
また、燃費改善のための別の手法として、圧縮自己着火が研究されており、この圧縮自己着火は、ディーゼルエンジンと同様に圧縮行程終期に燃焼室内を高温・高圧にして燃料を自己着火させるようにするものであり、空燃比が超リーンの状態や多量のEGRが導入されている状態でも、このような圧縮自己着火が行われれば燃焼室全体が一気に燃焼するため、仕事に寄与しない遅い燃焼が避けられて燃費改善に有利となる。
【0007】
しかし、通常の火花点火式ガソリンエンジンでは、燃焼のために強制点火が必要であって、圧縮上死点付近での燃焼室内の温度、圧力が圧縮自己着火を生じさせる程度までには高められず、圧縮自己着火を行わせるには燃焼室内の温度または圧力を大幅に高めるための格別の工夫が必要となるが、従来、高負荷領域でのノッキング(燃焼室内で火炎が伝播する前に混合気が自然着火することによる異常燃焼)を避けつつ、燃費改善が要求される部分負荷領域で圧縮自己着火を生じさせる程度まで燃焼室内の温度または圧力を高めることが困難であった。
【0008】
そこで、本出願人は、リーン燃焼と圧縮自己着火とを併用して大幅な燃費改善効果をもたせるべく、エンジンの部分負荷領域で、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に気筒間ガス通路を介して導入される2気筒接続状態とするとともに、先行気筒では空燃比を理論空燃比よりも大きいリーン空燃比にして、強制点火により燃焼を行わせ、後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料を供給して圧縮自己着火により燃焼を行わせるようにした火花点火式エンジンの制御装置に関する技術を出願している(特願2002−185242号)。
【0009】
本発明は、このような技術に基づき、ノッキングの発生を抑制しつつ、さらに広い運転領域において後続気筒で効果的に圧縮自己着火による燃焼を行わせることができるようにし、燃費及びエミッションの改善効果を高めることができる火花点火式エンジンの制御装置を提供するものである。
【0010】
【課題を解決するための手段】
請求項1に係る発明は、各気筒の燃焼サイクルが所定の位相差をもつように設定された多気筒の火花点火式エンジンにおいて、エンジンの部分負荷領域で、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に気筒間ガス通路を介して導入され、この後続気筒から排出されるガスが排気通路に導かれるような2気筒接続状態としつつ、先行気筒の空燃比を理論空燃比よりも大きいリーン空燃比として燃焼を行わせ、この先行気筒から後続気筒に導入されたリーン空燃比の既燃ガスに燃料を供給して後続気筒の燃焼を行わせる特殊運転モードの制御を実行する運転モード制御手段とを備え、上記特殊運転モードとされる運転領域のうちの少なくとも一部の運転領域で、後続気筒を圧縮自己着火により燃焼を行わせるとともに、この圧縮自己着火領域における高負荷側領域では、それよりも低負荷側の領域に比べて先行気筒の空燃比を相対的にリッチとし、かつ後続気筒内に新気を導入する新気導入用吸気弁を開弁することにより、上記先行気筒から導出された既燃ガスに加えて新気を後続気筒内に導入させるように制御するものである。
【0011】
この発明によると、エンジンの部分負荷領域で上記特殊運転モードとされるとともに後続気筒で圧縮自己着火により燃焼が行われる場合に、上記先行気筒ではリーン燃焼による熱効率向上及びポンピングロス低減による燃費改善効果が得られ、後続気筒では圧縮自己着火による燃焼効率の向上及びポンピングロス低減による燃費改善効果が得られる。そして、上記後続気筒の圧縮自己着火領域における高負荷側領域では、先行気筒の空燃比が比較的にリッチとされるとともに、これに対応して後続気筒内に導入される既燃ガス中の酸素濃度が低下した場合に、上記新気導入用吸気弁が開弁されて後続気筒に新気が導入されることにより、後続気筒の新気不足が解消されて上記後続気筒の圧縮自己着火が適正に実行され、かつ後続気筒内に導入される既燃ガス成分が増大されてノッキングの発生が効果的に防止されるとともに、エンジン出力が確保されることになる。
【0012】
また、請求項2に係る発明は、上記請求項1記載の火花点火式エンジンの制御装置において、後続気筒の圧縮自己着火領域における低負荷側領域では、新気導入用吸気弁を閉弁状態に維持し、上記圧縮自己着火領域における高負荷側領域では、新気導入用吸気弁を後続気筒の吸気上死点付近で開弁するものである。
【0013】
上記構成によれば、先行気筒の空燃比が比較的にリーンとされることにより、後続気筒内に導入される既燃ガス中の酸素濃度が充分に高い値に維持された後続気筒の圧縮自己着火領域における低負荷領域では、上記新気導入用吸気弁が閉弁状態に維持されることにより、後続気筒の空燃比がリーンな状態となることが防止される。また、上記圧縮自己着火領域における高負荷側領域では、新気導入用吸気弁が後続気筒の吸気上死点付近で開弁されることにより、後続気筒内に新気が効率よく導入されることになる。
【0014】
また、請求項3に係る発明は、上記請求項2記載の火花点火式エンジンの制御装置において、後続気筒の圧縮自己着火領域における高負荷側領域で開弁した新気導入用吸気弁を、後続気筒の吸気行程途中で閉弁するものである。
【0015】
上記構成によれば、上記圧縮自己着火領域における高負荷側領域では、新気導入用吸気弁が後続気筒の吸気上死点付近で開弁されることにより、後続気筒内に新気が効率よく導入された後、後続気筒の吸気行程途中で上記新気導入用吸気弁が閉弁されて新気の導入が停止されることにより、先行気筒から導出された既燃ガスが後続気筒内にスムーズに導入されることになる。
【0016】
また、請求項4に係る発明は、上記請求項1記載の火花点火式エンジンの制御装置において、後続気筒の圧縮自己着火領域における高負荷側領域では、後続気筒の既燃ガス導入弁を吸気行程の途中で開弁し、かつこの既燃ガス導入弁の開弁時期よりも前に、新気導入用吸気弁を開弁するものである。
【0017】
上記構成によれば、上記圧縮自己着火領域における高負荷側領域では、後続気筒の吸気行程途中で既燃ガス導入弁が開弁される前に、上記新気導入用吸気弁が閉弁されることにより、後続気筒内に新気が効率よく導入されるとともに、その後に後続気筒の吸気行程途中で上記既燃ガス導入弁が閉弁されることにより、先行気筒から導出された既燃ガスが後続気筒内に導入されることになる。
【0018】
また、請求項5に係る発明は、上記請求項1記載の火花点火式エンジンの制御装置において、後続気筒の圧縮自己着火領域における高負荷側領域では、それよりも低負荷側の領域に比べ、先行気筒の空燃比がリッチになるのに対応して後続気筒に導入される総ガス量に対する新気導入量の割合を高めるように制御するものである。
【0019】
上記構成によれば、後続気筒の圧縮自己着火領域における高負荷側領域では、先行気筒の空燃比が比較的にリッチとされるとともに、これに対応して後続気筒内に導入される既燃ガス中の酸素濃度が低下した場合に、後続気筒に導入される総ガス量に対する新気導入量の割合が高められることにより、後続気筒の新気不足が効果的に解消されて上記後続気筒の圧縮自己着火が適正に実行され、かつ後続気筒内の温度上昇が抑制されてノッキングの発生が効果的に防止されることになる。
【0020】
また、請求項6に係る発明は、上記請求項1記載の火花点火式エンジンの制御装置において、少なくとも後続気筒の圧縮自己着火領域では、後続気筒から排出される排気ガス中の酸素濃度が、理論空燃比の燃焼状態に対応した値となるように後続気筒の空燃比を制御するものである。
【0021】
上記構成によれば、少なくとも後続気筒の圧縮自己着火領域では、後続気筒から排出される排気ガス中の酸素濃度を、理論空燃比の燃焼状態に対応した値とする後続気筒の空燃比制御が実行されることにより、先行気筒でリーンな空燃比で燃焼が行われつつ、理論空燃比で燃焼した後続気筒の既燃ガスのみが排気通路に導出されることになる。
【0022】
【発明の実施の形態】
図1は本発明の一実施形態によるエンジンの概略構成を示し、図2はエンジン本体1の一つの気筒とそれに対して設けられた吸・排気弁等の構造を概略的に示している。これらの図において、エンジン本体1は複数の気筒を有し、図示の実施形態では4つの気筒2A〜2Dを有している。各気筒2A〜2Dにはピストン3が嵌挿され、ピストン3の上方に燃焼室4が形成されている。
【0023】
各気筒2A〜2Dに設けられた燃焼室4の頂部には点火プラグ7が装備され、そのプラグ先端が燃焼室4内に臨んでいる。この点火プラグ7には、電子制御による点火時期のコントロールが可能な点火回路8が接続されている。
【0024】
燃焼室4の側方部には、燃焼室4内に燃料を直接噴射する燃料噴射弁9が設けられている。この燃料噴射弁9は、図略のニードル弁及びソレノイドを内蔵し、後述のパルス信号が入力されることにより、そのパルス入力時期にパルス幅に対応する時間だけ駆動されて開弁し、その開弁時間に応じた量の燃料を噴射するように構成されている。なお、図外の燃料ポンプ及び燃料供給通路等を備えるとともに、圧縮行程での燃焼室内の圧力よりも高い燃料圧力を与え得る燃料供給系統を介して、上記燃料噴射弁9に燃料が供給されるように構成されている。
【0025】
また、各気筒2A〜2Dの燃焼室4に対して吸気ポート11、11a,11b及び排気ポート12、12a,12bが開口し、これらのポートに吸気通路15、排気通路20等が接続されるとともに、各ポートが吸気弁31、31a,31b及び排気弁32、32a,32bにより開閉されるようになっている。
【0026】
そして、吸気、圧縮、膨張及び排気の各行程からなる燃焼サイクルが各気筒2A〜2D毎に所定の位相差をもって行われるように構成され、4気筒エンジンの場合に、気筒列方向の一端側から1番気筒2A、2番気筒2B、3番気筒2C及び4番気筒2Dと呼ぶと、図6に示すように、上記燃焼サイクルが1番気筒2A、3番気筒2C、4番気筒2D、2番気筒2Bの順にクランク角で180°ずつの位相差をもって行われるようになっている。なお、図6において、EXは排気行程、INは吸気行程であり、また、Fは燃料噴射、Sは強制点火を表し、図中の星マークは圧縮自己着火が行われることを表している。
【0027】
排気行程と吸気行程が重なる一対の気筒間には、排気行程と吸気行程が重なるときの排気行程側の気筒(当明細書ではこれを先行気筒と呼ぶ)から吸気行程側の気筒(当明細書ではこれを後続気筒と呼ぶ)へ既燃ガスをそのまま導くことができるように、気筒間ガス通路22が設けられている。当実施形態の4気筒エンジンでは、図6に示すように1番気筒2Aの排気行程(EX)と2番気筒2Bの吸気行程(IN)とが重なり、また4番気筒2Dの排気行程(EX)と3番気筒2Cの吸気行程(IN)が重なるので、1番気筒2A及び2番気筒2Bと、4番気筒2D及び3番気筒2Cとがそれぞれ一対をなし、1番気筒2A及び4番気筒2Dが先行気筒となり、かつ2番気筒2B及び3番気筒2Cが後続気筒となる。
【0028】
各気筒2A〜2Dの吸・排気ポートと、これに接続される吸気通路15、排気通路20及び気筒間ガス通路22は、具体的には次のように構成されている。
【0029】
先行気筒である1番気筒2A及び4番気筒2Dには、それぞれ、新気を導入するための吸気ポート11と、既燃ガス(排気ガス)を排気通路20に送り出すための第1排気ポート12aと、既燃ガスを後続気筒に導出するための第2排気ポート12bとが配設されている。また、後続気筒である2番気筒2B及び3番気筒2Cには、それぞれ新気を導入するための第1吸気ポート11aと、先行気筒からの既燃ガスを導入するための第2吸気ポート11bと、既燃ガスを排気通路に送り出すための排気ポート12とが配設されている。
【0030】
図1に示す例では、1番,4番気筒(先行気筒)2A,2Dにおける吸気ポート11及び2番,3番気筒(後続気筒)2B,2Cにおける第1吸気ポート11aが、1気筒当り2個ずつ、燃焼室の左半部側に並列的に設けられる一方、1番,4番気筒2A,2D(先行気筒)における第1排気ポート12a及び第2排気ポート12bならびに2番,3番気筒(後続気筒)2B,2Cにおける第2吸気ポート11b及び排気ポート12が、燃焼室の右半部側に並列的に設けられている。
【0031】
1番,4番気筒2A,2Dにおける吸気ポート11及び2番,3番気筒2B,2Cにおける第1吸気ポート11aには、吸気通路15における気筒別の分岐吸気通路16の下流端が接続されている。各分岐吸気通路16の下流端近傍には、共通の軸を介して互いに連動する多連スロットル弁17が設けられており、この多連スロットル弁17は制御信号に応じてアクチュエータ18により駆動されることにより、吸入空気量を調節するようになっている。なお、吸気通路15における集合部よりも上流の共通吸気通路には、吸気流量を検出するエアフローセンサ19が設けられている。
【0032】
1番,4番気筒2A,2Dにおける第1排気ポート12a及び2番,3番気筒2B,2Cにおける排気ポート12には、排気通路20における気筒別の分岐排気通路21の上流端が接続されている。また、1番気筒2Aと2番気筒2Bとの間及び3番気筒2Cと4番気筒2Dとの間には、それぞれ気筒間ガス通路22が設けられている。そして、先行気筒である1番,4番気筒2A,2Dの第2排気ポート12bに、上記気筒間ガス通路22の上流端が接続されるとともに、後続気筒である2番,3番気筒2B,2Cの第2吸気ポート11bに、上記気筒間ガス通路22の下流端が接続されている。
【0033】
上記気筒間ガス通路22は、互いに隣接する気筒間を接続する比較的短い通路であり、先行気筒2A,2Dから排出されるガスがこの通路22を通る間における放熱量が比較的小さく抑えられるようになっている。
【0034】
排気通路20における分岐排気通路21の下流の集合部には排気ガス中の酸素濃度を検出することにより空燃比を検出するO2センサ23が設けられている。さらに、このO2センサ23の設置部の下流側における排気通路20には、排気浄化用の三元触媒24が設けられている。この三元触媒24は、一般に知られているように、排気ガスの空燃比が理論空燃比(つまり空気過剰率λ=1)付近にあるときにHC,CO及びNOxに対して高い浄化性能を示す触媒である。
【0035】
各気筒2A〜2Dの吸・排気ポートを開閉する吸・排気弁とこれらに対する動弁機構は、次のようになっている。
【0036】
1番,4番気筒(先行気筒)2A,2Dにおける吸気ポート11、第1排気ポート12a及び第2排気ポート12bにはそれぞれ吸気弁31、第1排気弁32a及び第2排気弁32bが設けられ、また、2番,3番気筒(後続気筒)2B,2Cにおける第1吸気ポート11a、第2吸気ポート11b及び排気ポート12にはそれぞれ第1吸気弁31a、第2吸気弁31b及び排気弁32が設けられている。そして、各気筒2A〜2Dの吸気行程や排気行程が上述のような所定の位相差をもって行われるように、これら吸・排気弁がそれぞれカムシャフト33,34等からなる動弁機構により所定のタイミングで開閉するように駆動される。
【0037】
さらに、これらの吸・排気弁のうちで第1排気弁32a、第2排気弁32b、第1吸気弁31a及び第2吸気弁31bに対しては、各弁を作動状態と停止状態とに切換える弁停止機構35が設けられている。この弁停止機構35は、従来から知られているため詳しい図示は省略するが、例えば、カムシャフト33,34のカムと弁軸との間に介装されたタペットに作動油の給排が可能な油圧室が設けられ、この油圧室に作動油が供給されている状態ではカムの作動が弁に伝えられて弁が開閉作動され、油圧室から作動油が排出されたときにはカムの作動が弁に伝えられなくなることで弁が停止されるようになっている。
【0038】
上記第1排気弁32aの弁停止機構35と第1吸気弁31aの弁停止機構35とに対する作動油給排用の通路36には、第1コントロール弁37が設けられ、また第2排気弁32bの弁停止機構35と第2吸気弁31bの弁停止機構35とに対する作動油給排用の通路38には、第2コントロール弁39が設けられている(図3参照)。
【0039】
図3は、駆動、制御系統の構成を示している。この図において、マイクロコンピュータ等からなるエンジン制御用のECU(コントロールユニット)40には、エアフローセンサ19及びO2センサ23からの信号が入力され、さらに運転状態を判別するためにエンジン回転数を検出する回転数センサ47及びアクセル開度(アクセルペダル踏込み量)を検出するアクセル開度センサ48等からの信号も入力されている。また、上記ECU40から、各燃料噴射弁9と、多連スロットル弁17のアクチュエータ18と、上記第1,第2のコントロール弁39とに対して制御信号が出力されるようになっている。
【0040】
上記ECU40は、運転状態判別手段41、弁停止機構制御手段42、吸入空気量制御手段43及び燃焼状態制御手段44を備えている。
【0041】
運転状態判別手段41は、図4に示すようにエンジンの運転領域が低負荷低回転側の運転領域A(部分負荷領域)と、高負荷側ないし高回転側の運転領域Bとに分けられた制御用マップを有し、上記回転数センサ47及びアクセル開度センサ48等からの信号により調べられるエンジンの運転状態(エンジン回転数及びエンジン負荷)が上記運転領域A,Bのいずれの領域にあるかを判別する。そして、この判別に基づき、低負荷低回転側の運転領域Aでは、排気行程にある先行気筒2A,2Dから排出される既燃ガスを、そのまま吸気行程にある後続気筒2B,2Cに導入して燃焼させる特殊運転モードが選択され、高負荷側ないし高回転側の運転領域Bでは、各気筒2A〜2Dをそれぞれ独立させ燃焼させる通常運転モードが選択されるようになっている。
【0042】
さらに運転状態判別手段41は、上記特殊運転モードが選択される運転領域Aにある場合に、この領域Aのうちの高負荷側領域A2、またはそれよりも低負荷側の領域A1のいずれにあるかを判別するように構成されている。
【0043】
弁停止機構制御手段42は、特殊運転モードでは気筒間ガス通路22を介して先行気筒の既燃ガスを後続気筒に導入させる2気筒接続状態とし、通常運転モードでは各気筒にそれぞれ新気を導入させる各気筒独立状態とするように吸・排気流通状態を変更すべく弁停止機構35を制御するもので、具体的には運転状態が運転領域A,Bのいずれにあるかに応じ、上記各コントロール弁37,39を制御することにより、原則として各弁停止機構35を次のように制御する。
【0044】
運転領域A:第1排気弁32a及び第1吸気弁31aを停止状態
第2排気弁32b及び第2吸気弁31bを作動状態
運転領域B:第1排気弁32a及び第1吸気弁31aを作動状態
第2排気弁32b及び第2吸気弁31bを停止状態
【0045】
上記吸入空気量制御手段43は、アクチュエータ18を制御することによりスロットル弁17の開度(スロットル開度)を制御するものであり、運転状態に応じてマップ等から目標吸入空気量を求め、その目標吸入空気量に応じてスロットル開度を制御する。この場合、特殊運転モードとされる運転領域Aでは、後続気筒(2番、3番気筒2B,2C)においては分岐吸気通路16からの吸気導入が遮断された状態で先行気筒から導入されるガス中の過剰空気と新たに供給される燃料との比が理論空燃比に対応した値とされつつ燃焼が行われるので、先行、後続の2気筒分の要求トルクに応じた燃料の燃焼に必要な量の空気(2気筒分の燃料の量に対して理論空燃比となる量の空気)が先行気筒(1番、4番気筒2A,2D)に供給されるように、スロットル開度が調節される。
【0046】
上記燃焼状態制御手段44は、燃料噴射制御手段45と点火制御手段46とからなっており、燃料噴射制御手段45により、各気筒2A〜2Dに設けられた燃料噴射弁9からの燃料噴射量及び噴射タイミングをエンジンの運転状態に応じて制御するとともに、点火制御手段46により運転状態に応じた点火時期の制御及び点火停止等の制御を行う。そして、特に運転状態が図4中の運転領域Aにある場合と運転領域Bにある場合とで燃焼状態の制御(燃料噴射の制御及び点火の制御)が変更される。
【0047】
すなわち、運転状態が低負荷低回転側の運転領域Aにある場合、特殊運転モードでの制御状態として、先行気筒(1番、4番気筒)2A,2Dに対しては、空燃比を理論空燃比よりも大きいリーン空燃比とするように燃料噴射量を制御するとともに、圧縮行程で燃料を噴射して混合気の成層化を行わせるように噴射タイミングを設定し、かつ、圧縮上死点付近で強制点火を行わせるように点火タイミングを設定する。一方、後続気筒(2番、3番気筒)2B,2Cに対しては、先行気筒から導入されたリーン空燃比の既燃ガスに対して燃料を供給し、実質的に理論空燃比となるように燃料噴射量を制御するとともに、吸気行程で燃料を噴射するように噴射タイミングを設定し、かつ、圧縮自己着火を行わせるべく、強制点火を停止させる。
【0048】
さらに、上記運転領域Aにおいて、先行気筒及び後続気筒からなる一対の気筒に対する燃料噴射量の和が先行気筒に導入される新気量に対して理論空燃比となる量に調整されるとともに、後続気筒でノッキングが発生するのを防止しつつ、圧縮自己着火が良好に行われるように、先行気筒(1番、4番気筒)2A,2Dに対する燃料噴射量と、後続気筒(2番、3番気筒)2B,2Cに対する燃料噴射量との割合が運転状態に応じて制御される。
【0049】
具体的には、上記運転領域Aの低負荷側領域A1では、先行気筒2A,2Dに対する燃料噴射量と後続気筒2B,2Cに対する燃料噴射量とを略同一、ないしは後続気筒2B,2C側の燃料噴射量を少し多くすることにより、先行気筒2A,2Dでの燃焼の際の空燃比が理論空燃比の2倍程度(A/F≒30、空気過剰率λで表せばλ=2程度)、ないしは理論空燃比の2倍より大(空気過剰率λがλ>2)となるようにする。この結果、エンジン負荷が低いために燃料の総噴射量が相対的に少ない値に設定され、これに起因して後続気筒2B,2Cの失火が発生し易い傾向にある上記低負荷側の領域A1で、後続気筒2B,2Cに対する燃料噴射量が過度に少ない値に設定されることが防止され、上記失火の発生が防止されることになる。
【0050】
これに対して上記運転領域Aの高負荷側領域A2では、先行気筒2A,2Dに対する燃料噴射量を後続気筒2B,2Cに対する燃料噴射量よりも多くすることにより、先行気筒での燃焼の際の空燃比が理論空燃比の2倍より小(空気過剰率λが1<λ<2)となるようにし、例えばA/F≒25となるように制御することにより、上記低負荷側の領域A1に比べて先行気筒2A,2Dの空燃比を相対的にリッチとする。この結果、エンジン負荷が高いために燃料の総噴射量が相対的に多い値に設定されることにより、後続気筒2B,2Cの温度が過度に高くなるとともに、これに対応して後続気筒2B,2Cでノッキングが発生し易い傾向にある上記高負荷側領域A2で、後続気筒2B,2Cに多量の既燃ガスが導入され、そのEGR効果によって上記ノッキングの発生が防止されることになる。
【0051】
また、上記のように運転領域Aの高負荷側領域A2で先行気筒2A,2Dに対する燃料噴射量を後続気筒2B,2Cに対する燃料噴射量よりも多く設定した場合には、後続気筒2B,2Cに導入される既燃ガス中の酸素濃度が低下し、後続気筒2B,2Cに噴射された燃料を燃焼させることが不可能となって上記特殊運転モードの制御を実行することができなくなる懸念がある。このため、上記運転領域Aの高負荷側領域A2では、後続気筒2B,2C内に新気を導入する新気導入用吸気弁(第1吸気弁31a)を一時的に開弁することにより、上記先行気筒2A,2Dから導出された既燃ガスに加えて新気を後続気筒2B,2Cに導入させるように制御する。
【0052】
すなわち、上記運転領域Aの高負荷側領域A2では、第1吸気弁31aを後続気筒2B,2Cの吸気上死点付近で開弁した後、この後続気筒2B,2Cの吸気行程途中で上記第1吸気弁31aを閉弁状態とする。また、この第1吸気弁31aが閉弁状態となる直前までは、後続気筒2B,2Cの既燃ガス導入弁(第2吸気弁31b)を閉弁状態に維持した後に、この既燃ガス導入弁を開弁することにより上記先行気筒2A,2Dから導出された既燃ガスを後続気筒2B,2Cに導入させる。
【0053】
一方、エンジンの運転状態が高負荷側ないし高回転側の運転領域Bにある場合には、通常運転モードでの制御として、各気筒2A〜2Dの空燃比を理論空燃比もしくはそれ以下とするように燃料噴射量を制御し、例えばこの運転領域Bにおける大部分の領域で理論空燃比とし、全開負荷及びその付近の運転領域で理論空燃比よりリッチとする。そして、この場合に、各気筒2A〜2Dに対して吸気行程で燃料を噴射して混合気を均一化するように噴射タイミングを設定し、かつ、各気筒2A〜2Dとも強制点火を行わせるように制御する。
【0054】
以上のような当実施形態の装置の作用を、図5〜図8を参照しつつ説明する。低負荷低回転側の運転領域Aでは、上記弁停止機構制御手段42及び吸入空気量制御手段43等からなる運転モード制御手段により、特殊運転モードの制御が実行され、原則として前述のように第1排気弁32a及び第1吸気弁31aが停止状態、第2排気弁32b及び第2吸気弁31bが作動状態とされることにより、実質的な新気及びガスの流通経路は図7に示すようになり、先行気筒(1番,4番気筒)2A,2Dから排出される既燃ガスがそのまま気筒間ガス通路22を介して後続気筒(2番,3番気筒)2B,2Cに導入される(図7中の矢印b)とともに、この後続気筒2B,2Cから排出されるガスのみが排気通路20に導かれる(図7中の矢印c)ような2気筒接続状態とされる。
【0055】
この状態において、先行気筒2A,2Dにそれぞれ吸気行程で吸気通路15から新気が導入され(図7中の矢印a)、先行気筒2A,2Dでは空燃比が理論空燃比よりも大きくて、理論空燃比の略2倍ないしそれより小さい値となるように燃料噴射量が制御されつつ圧縮行程で燃料が噴射され、かつ、所定点火時期に点火が行われて、リーン空燃比での成層燃焼が行われる(図6参照)。
【0056】
また、先行気筒2A,2Dの吸気行程と後続気筒2B,2Cの排気行程が重なる期間に、先行気筒2A,2Dから導出された既燃ガスがガス通路22を通って後続気筒2B,2Cに導入される(図6中の白抜き矢印及び図7中の矢印b)。そして、後続気筒2B,2Cでは、先行気筒2A,2Dから導入されたリーン空燃比の既燃ガスに燃料が供給されて、理論空燃比となるように燃料噴射量が制御されつつ、吸気行程で燃料が噴射された後、圧縮行程の上死点付近で燃焼室内の圧力、温度の上昇により圧縮自己着火が行われる。
【0057】
この場合、先行気筒2A,2Dから排出された高温の既燃ガスが短い気筒間ガス通路22を通って後続気筒2B,2Cに直ちに導入されるため、後続気筒2B,2Cでは吸気行程で燃焼室内の温度が高くなり、この状態からさらに圧縮行程で圧力、温度が上昇することにより、圧縮行程終期の上死点付近では混合気が自己着火し得る程度まで燃焼室内の温度が上昇する。しかも、上記既燃ガスは先行気筒2A,2Dから排出されて後続気筒2B,2Cに導入されるまでの間に充分にミキシングされて均一に分布し、さらに吸気行程で噴射された燃料も圧縮行程終期までの間に燃焼室全体に均一に分散するため、理想的な同時圧縮自己着火条件を満たすような均一な混合気分布状態が得られる。そして、同時圧縮自己着火により燃焼が急速に行われ、これにより熱効率が大幅に向上される。
【0058】
このように、先行気筒2A,2Dでは、リーンでの成層燃焼により熱効率が高められるとともに、成層燃焼を行わない通常のエンジンと比べて吸気負圧が小さくなることでポンピングロスが低減され、一方、後続気筒2B,2Cでは、空燃比が略理論空燃比とされつつ、均一な混合気分布状態で圧縮自己着火が行われることにより熱効率が高められるとともに、先行気筒2A,2Dから押出された既燃ガスが送り込まれるため先行気筒2A,2Dよりもさらにポンピングロスが低減される。これらの作用により、燃費が大幅に改善される。
【0059】
また、先行気筒2A,2Dでは理論空燃比の略2倍もしくはそれに近いリーン空燃比とされることでNOx発生量が比較的少なく抑えられる。一方、後続気筒2B,2Cでは、先行気筒2A,2Dから既燃ガスが導入されることで多量のEGRが行われているのと同等の状態となるとともに、同時圧縮自己着火による急速燃焼が行われると可及的に酸素と窒素との反応が避けられることから、NOxの発生が充分に抑制される。このような点からもエミッションの向上に有利となる。
【0060】
また、後続気筒2B,2Cでの圧縮自己着火が先行気筒2A,2Dから排出される既燃ガスの熱を利用して達成されるため、格別の加熱手段を用いたりエンジンの圧縮比を極端に高くしたりする必要がなく、容易に圧縮自己着火を達成することができる。とくに、特殊運転モードでの先行気筒(1番、4番気筒2A,2D)に対する燃料噴射量と、後続気筒(2番、3番気筒2B,2C)に対する燃料噴射量との割合が運転状態に応じて前述のように調整されることにより、広い運転領域に亘って適正に圧縮自己着火を行わせることができる。
【0061】
すなわち、特殊運転モードとされる運転領域Aのうちの高負荷側領域A2では、低負荷側領域A1に比べて先行気筒2A,2Dに対する燃料噴射量が多く設定されることにより、先行気筒2A,2Dの空燃比を相対的にリッチ、つまり理論空燃比の2倍より小さい値となるように制御される。これにより、先行気筒2A,2Dの空燃比が理論空燃比の2倍(先行気筒と後続気筒とが同じ噴射量)とされる場合と比べ、後続気筒2B,2Cに導入されるガスの温度は上昇するものの、後続気筒2B,2Cに導入されるガス中のEGRに相当する既燃ガス成分が増大することにより、そのEGR効果によってノッキングが抑制される。
【0062】
そして、上記高負荷側領域A2で先行気筒2A,2Dの空燃比が理論空燃比の2倍より小さい値となるように設定されることにより、後続気筒2B,2Cに導入される既燃ガス中の新気量が減少することになるが、この場合に、上記先行気筒2A,2Dから導出された既燃ガスに加えて新気を後続気筒2B,2C内に導入させるように構成したため、上記高負荷側領域A2において後続気筒2B,2Cの新気不足が解消されて上記圧縮自己着火が適正に実行されることになる。
【0063】
具体的には、図5に示すように、上記後続気筒2B,2Cの吸気上死点(ITDC)付近で、後続気筒2B,2Cの既燃ガス導入弁(第2吸気弁31b)を閉弁状態に維持しつつ、新気導入用吸気弁(第1吸気弁31a)を開弁状態とすることにより、吸気通路15及び分岐通路16を介して導入された新気を上記後続気筒2B,2C内に供給するように構成したため、後続気筒2B,2Cにおいて圧縮自己着火を実行するための新気量を確保することができる。そして、後続気筒2B,2Cの吸気行程途中で上記第1吸気弁31aを閉弁状態とするとともに、その前に後続気筒2B,2Cの第2吸気弁31bを開弁状態とすることにより、先行気筒2A,2Dから導出された既燃ガスを後続気筒2B,2C内に導入させることができる。
【0064】
上記のように圧縮自己着火領域Aにおける高負荷側領域A2で、新気導入用吸気弁(第1吸気弁31a)を後続気筒2B,2Cの吸気上死点付近(ITDC)で開弁状態とすることにより、先行気筒2A,2Dから導出された既燃ガスが後続気筒2B,2C内に導入される前に、後続気筒2B,2C内に比較的温度の低い新気を効率よく導入させることができる。しかも、後続気筒2B,2Cの圧縮自己着火領域(部分負荷領域)Aにおける低負荷側領域A1では、新気導入用吸気弁(第1吸気弁31a)を閉弁状態に維持するように構成したため、先行気筒2A,2Dの空燃比が比較的にリーンとされることにより、後続気筒2B,2C内に導入される既燃ガス中の酸素濃度が充分に高い値に維持された後続気筒2B,2Cの圧縮自己着火領域Aにおける低負荷領域A1において、後続気筒2B,2Cに新気が導入されることに起因して後続気筒2B,2Cの空燃比がリーンになるのを防止することができる。
【0065】
また、後続気筒2B,2Cの圧縮自己着火領域Aにおける高負荷側領域A2で開弁した上記新気導入用吸気弁(第1吸気弁31a)を、後続気筒2B,2Cの吸気行程途中で閉弁状態とすることにより、後続気筒2B,2C内に新気を効率よく導入させた後に、この新気の導入を停止させることにより、先行気筒2A,2Cから導出された既燃ガスを後続気筒2B,2C内にスムーズに導入させることができる。
【0066】
さらに、上記実施形態に示すように、後続気筒2B,2Cの圧縮自己着火領域Aにおける高負荷側領域A2では、後続気筒2B,2Cの既燃ガス導入弁(第2吸気弁31b)を吸気行程の途中で開弁し、かつこの既燃ガス導入弁(第2吸気弁31b)の開弁時期よりも前、例えば後続気筒2B,2Cの吸気上死点付近(ITDC)で、新気導入用吸気弁(第1吸気弁31a)を開弁するように構成した場合には、上記圧縮自己着火領域Aにおける高負荷側領域A2で、後続気筒2B,2C内に新気を効率よく導入させることができるとともに、その後に上記新気導入用吸気弁(第1吸気弁31a)を閉弁状態とすることにより、先行気筒2A,2Dから導出された既燃ガスを後続気筒2B,2C内に効率よく導入させることができる。
【0067】
すなわち、図5に破線で示すように、既燃ガス導入弁(第2吸気弁31b)を後続気筒2B,2Cの吸気上死点ITDC付近で開弁状態とすることもできるが、この場合には、吸気通路15から供給された新気と、気筒間ガス通路22を介して供給された既燃ガスとが同時に後続気筒2B,2C内に導入されることにより、新気の導入量が低減されることになる。このため、上記のように後続気筒2B,2Cの吸気行程途中まで既燃ガス導入弁(第2吸気弁31b)を閉止状態に維持することにより、後続気筒2B,2C内に新気が効率よく導入されるように構成することが好ましい。また、後続気筒2B,2Cの吸気行程途中まで既燃ガス導入弁を閉止状態に維持するように構成した場合には、先行気筒2A,2Dにおける内部EGR量を増大させることができるため、先行気筒2A,2Dの内部温度を上昇させて圧縮自己着火させることができるという利点がある。
【0068】
また、後続気筒2B,2Cの圧縮自己着火領域Aにおける高負荷側領域A2では、それよりも低負荷側の領域A1に比べ、先行気筒2A,2Dの空燃比がリッチになるのに対応して後続気筒2B,2C内に導入される総ガス量に対する新気導入量の割合を高める制御を実行するように構成した場合には、後続気筒2B,2Cの圧縮自己着火領域Aにおける高負荷側領域A2で、先行気筒2A,2Dの空燃比が比較的にリッチに設定されるのに対応して後続気筒2B,2C内に導入される既燃ガス中の酸素濃度が低下した場合に、後続気筒2B,2Cに導入される総ガス量に対する新気導入量の割合を高めることにより、後続気筒2B,2Cの新気不足を効果的に解消して上記後続気筒2B,2Cの圧縮自己着火を適正に実行しつつ、エンジン出力を充分に確保することができ、かつ後続気筒2B,2C内の温度上昇を抑制してノッキングの発生を効果的に防止できるという利点がある。
【0069】
また、少なくとも後続気筒2B,2Cの圧縮自己着火領域Aで、後続気筒2B,2Cから排出される排気ガス中の酸素濃度が、理論空燃比の燃焼状態に対応した値となるように後続気筒2B,2Cの空燃比を制御するように構成した場合には、先行気筒2A,2Dでリーンな空燃比で燃焼が行われつつ、理論空燃比で燃焼した後続気筒2B,2Cの既燃ガスのみが排気通路20に導出されることになる。したがって、従来のリーンバーンエンジンのようにリーンNOx触媒を設ける必要がなく、三元触媒24だけで充分に排気浄化性能が確保される。そして、リーンNOx触媒を設ける必要がないことから、リーンNOx触媒のNOx吸蔵量増大時におけるNOxの放出、還元のための一時的な空燃比のリッチ化を行う必要がなく、燃費改善の目減りが避けられる。さらに、リーンNOx触媒の硫黄被毒の問題が生じることもない。
【0070】
一方、高負荷側ないし高回転側の運転領域Bでは通常運転モードとされ、前述のように第1排気弁32a及び第1吸気弁31aが作動状態、第2排気弁32b及び第2吸気弁31bが停止状態とされることにより、実質的な新気及びガスの流通経路は図8に示すようになり、各気筒2A〜2Dの吸気ポート11,11a及び排気ポート12a,12が独立し、吸気通路15から各気筒2A〜2Dの吸気ポート12,12aに新気が導入されるとともに各気筒2A〜2Dの排気ポート12,12aから排気通路20に既燃ガスが排出される。そしてこの場合は、理論空燃比もしくはそれよりリッチとなるように吸入空気量及び燃料噴射量が制御されることにより、出力性能が確保される。
【0071】
なお、本発明の装置の具体的構成は上記実施形態に限定されず、種々変更可能である。他の実施形態を以下に説明する。すなわち、上記各実施形態では、特殊運転モードとされる運転領域Aの全域で、後続気筒2B,2Cを圧縮自己着火により燃焼させるようにしているが、特殊運転モードとされる運転領域Aのうちの一部、例えば燃焼室内の温度、圧力が圧縮自己着火可能な状態に達しにくい極低速低負荷の領域では、後続気筒2B,2Cに対して所定の点火時期に点火プラグ7による点火を行わせ、強制点火により燃焼させるようにしてもよい。あるいはまた、エンジン温度が低いときに、後続気筒2B,2Cを強制点火により燃焼させるようにしてもよい。
【0072】
また、上記基本実施形態では弁停止機構35を用いて2気筒接続状態と各気筒独立状態とに吸・排気流通状態を切換可能としているが、吸・排気通路及び気筒間ガス通路に開閉弁を設けてこれらの通路の開閉により2気筒接続状態と各気筒独立状態とに切換え得るようにしておいてもよい。
【0073】
さらに、本発明の装置は4気筒以外の多気筒エンジンにも適用可能である。そして、例えば6気筒等では1つの気筒の排気行程と別の気筒の吸気行程が完全に重なり合うことはないが、このような場合は、一方の気筒の排気行程が他方の気筒の吸気行程より先行するとともに、両行程が部分的に重なり合う2つの気筒を先行、後続の一対の気筒とすればよい。
【0074】
【発明の効果】
以上のように本発明の制御装置によると、特殊運転モードとされた場合に、排気行程と吸気行程が重なる両気筒のうちの先行気筒ではリーン空燃比で燃焼を行わせ、後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料を供給して、圧縮自己着火により燃焼を行わせるようにしているため、先行気筒ではリーン燃焼による熱効率向上及びポンピングロス低減により、また後続気筒では圧縮自己着火による燃焼効率の向上及びポンピングロス低減により、燃費を改善することができる。
【0075】
そして、特に本発明では、上記後続気筒の圧縮自己着火領域における高負荷側領域では、先行気筒の空燃比が比較的にリッチとされることによりエンジン出力が確保されるとともに、これに対応して後続気筒内に導入される既燃ガス中の酸素濃度が低下した場合に、上記新気導入用吸気弁が開弁されて後続気筒に新気が導入されるように構成されているため、後続気筒の新気不足を解消して上記後続気筒の圧縮自己着火を適正に実行し、かつ後続気筒内に導入される既燃ガス成分を増大させてノッキングの発生を効果的に防止することができる。このため、上記圧縮自己着火領域を大幅に拡大することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態による制御装置を備えたエンジン全体の概略平面図である。
【図2】エンジン本体等の概略断面図である。
【図3】制御系統のブロック図である。
【図4】運転状態に応じた制御を行うための運転領域設定の一例を示す説明図である。
【図5】先行気筒及び後続気筒の燃焼サイクル及び開弁タイミング等を示す説明図である。
【図6】各気筒の排気行程、吸気行程、燃料噴射時期及び点火時期等を示す図である。
【図7】低負荷低回転時の実質的な新気及びガスの流通経路を示す説明図である。
【図8】高負荷高回転時の実質的な新気及びガスの流通経路を示す説明図である。
【符号の説明】
1 エンジン本体
2A〜2D 気筒
9 燃料噴射弁
15 吸気通路
20 排気通路
22 気筒間ガス通路
35 弁停止機構
31a 第1吸気弁(新気導入用吸気弁)
31b 第2吸気弁(既燃ガス導入弁)
40 ECU
41 運転状態判別手段
42 弁停止機構制御手段(運転モード制御手段)
43 吸入空気量制御手段
44 燃焼状態制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a spark ignition engine, and more particularly to a control device for controlling the combustion state of each cylinder in order to improve fuel consumption and emissions in a multi-cylinder engine.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a spark ignition engine, a technique for improving fuel consumption by performing combustion in a state where the air-fuel ratio of the air-fuel mixture in each cylinder is set to a lean air-fuel ratio larger than the stoichiometric air-fuel ratio is known. A fuel injection valve that directly injects fuel into the room is provided, and super lean combustion is realized by injecting fuel in the compression stroke from the fuel injection valve in the low-rotation low-load region or the like to perform stratified combustion. Those are known (for example, see Patent Document 1).
[0003]
In such an engine, an ordinary three-way catalyst (a catalyst having a high purification performance in the vicinity of the theoretical air-fuel ratio with respect to HC, CO, and NOx) alone as an exhaust gas purification catalyst is sufficient for NOx during lean operation. Since the purification performance cannot be obtained, a lean NOx catalyst is provided that adsorbs NOx in an oxygen-excessive atmosphere and releases and reduces NOx in an oxygen-concentrated atmosphere as shown in Patent Document 1 below. When such a lean NOx catalyst is used, if the NOx adsorption amount of the lean NOx catalyst increases during the lean operation, for example, as shown in the above publication, additional fuel is injected during the expansion stroke in addition to the main combustion. As a result, the air-fuel ratio of the exhaust gas is enriched and CO is generated, thereby promoting NOx separation and reduction.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-29836
[0005]
[Problems to be solved by the invention]
In an engine that performs the conventional lean operation as described above, it is necessary to provide the lean NOx catalyst in the exhaust passage in order to ensure NOx purification performance during the lean operation, which is disadvantageous in terms of cost. Further, in order to maintain the purification performance of the lean NOx catalyst, it is necessary to temporarily enrich the air-fuel ratio by removing additional NOx or supplying additional fuel for reduction when the NOx adsorption amount increases as described above. is there. Furthermore, when the fuel used contains a large amount of sulfur, it is necessary to perform regeneration processing such as catalyst heating treatment and reducing material supply to eliminate sulfur poisoning of the lean NOx catalyst. descend. Moreover, if the air-fuel ratio of the air-fuel mixture becomes leaner than a certain level, the combustion speed becomes too slow and combustion close to the end does not contribute to work, so there is a limit to fuel efficiency improvement by leaning in stratified combustion .
[0006]
In addition, compression self-ignition has been studied as another method for improving fuel efficiency. This compression self-ignition, like a diesel engine, causes the combustion chamber to become self-ignited at a high temperature and high pressure at the end of the compression stroke. Even if the air-fuel ratio is super lean or a large amount of EGR is introduced, if such compression self-ignition is performed, the entire combustion chamber burns at once, so slow combustion that does not contribute to work Is avoided, which is advantageous for improving fuel economy.
[0007]
However, in a normal spark-ignition gasoline engine, forced ignition is required for combustion, and the temperature and pressure in the combustion chamber near the compression top dead center cannot be increased to such an extent that compression self-ignition occurs. However, in order to perform compression self-ignition, special measures are required to greatly increase the temperature or pressure in the combustion chamber. Conventionally, however, knocking in a high load region (mixture before the flame propagates in the combustion chamber) However, it is difficult to increase the temperature or pressure in the combustion chamber to such an extent that compression self-ignition occurs in a partial load region where fuel consumption improvement is required, while avoiding abnormal combustion due to spontaneous ignition).
[0008]
Therefore, the present applicant is in the exhaust stroke between a pair of cylinders in which the exhaust stroke and the intake stroke overlap in the partial load region of the engine in order to have a significant fuel efficiency improvement effect by using both lean combustion and compression self-ignition. The burned gas discharged from the preceding cylinder is directly connected to the succeeding cylinder in the intake stroke via the inter-cylinder gas passage, and a lean air condition in which the air-fuel ratio is larger than the stoichiometric air-fuel ratio is set in the preceding cylinder. A spark ignition type engine in which combustion is performed by forced ignition at a fuel ratio and fuel is supplied to the burned gas having a lean air-fuel ratio introduced from the preceding cylinder in the subsequent cylinder and combustion is performed by compression self-ignition. A technology related to a control device has been filed (Japanese Patent Application No. 2002-185242).
[0009]
Based on such a technique, the present invention enables combustion by compression self-ignition to be effectively performed in the succeeding cylinder in a wider operating range while suppressing the occurrence of knocking, thereby improving fuel efficiency and emission. The present invention provides a control device for a spark ignition engine capable of improving the engine.
[0010]
[Means for Solving the Problems]
The invention according to claim 1 is a multi-cylinder spark ignition engine in which the combustion cycle of each cylinder is set to have a predetermined phase difference, and a pair of exhaust strokes and intake strokes overlap in a partial load region of the engine. The burned gas discharged from the preceding cylinder in the exhaust stroke between the cylinders is directly introduced into the subsequent cylinder in the intake stroke through the inter-cylinder gas passage so that the gas discharged from the subsequent cylinder is guided to the exhaust passage. With the two cylinders connected, combustion is performed with the air-fuel ratio of the preceding cylinder set to a lean air-fuel ratio larger than the stoichiometric air-fuel ratio, and fuel is supplied from the preceding cylinder to the burned gas of the lean air-fuel ratio introduced into the succeeding cylinder. Operation mode control means for executing control of a special operation mode for causing the subsequent cylinders to perform combustion, and at least a part of the operation region to be set to the special operation mode. In this region, the subsequent cylinder is burned by compression self-ignition, and the air-fuel ratio of the preceding cylinder is made relatively rich in the high load side region in the compression self ignition region as compared to the region on the low load side. Further, by opening the intake valve for introducing fresh air into the succeeding cylinder, control is performed so that fresh air is introduced into the succeeding cylinder in addition to the burned gas derived from the preceding cylinder. Is.
[0011]
According to the present invention, when the special operation mode is set in the partial load region of the engine and the combustion is performed by the compression auto-ignition in the subsequent cylinder, the fuel efficiency improvement effect by the lean combustion is improved by the lean combustion and the pumping loss is reduced by the preceding cylinder. In the succeeding cylinder, the combustion efficiency is improved by compression self-ignition and the fuel efficiency is improved by reducing the pumping loss. In the high load side region in the compression self-ignition region of the subsequent cylinder, the air-fuel ratio of the preceding cylinder is made relatively rich, and the oxygen in the burned gas introduced into the subsequent cylinder correspondingly When the concentration decreases, the intake valve for introducing fresh air is opened and fresh air is introduced into the succeeding cylinder, so that the lack of fresh air in the succeeding cylinder is resolved and the compression auto-ignition of the succeeding cylinder is proper. The burnt gas component introduced into the subsequent cylinder is increased and knocking is effectively prevented, and the engine output is ensured.
[0012]
Further, the invention according to claim 2 is the spark ignition type engine control device according to claim 1, wherein the intake valve for introducing fresh air is closed in the low load side region in the compression self-ignition region of the subsequent cylinder. In the high load side region in the compression self-ignition region, the fresh air introduction intake valve is opened near the intake top dead center of the subsequent cylinder.
[0013]
According to the above configuration, since the air-fuel ratio of the preceding cylinder is relatively lean, the oxygen concentration in the burned gas introduced into the succeeding cylinder is maintained at a sufficiently high value. In the low load region in the ignition region, the fresh air introduction intake valve is maintained in the closed state, thereby preventing the air-fuel ratio of the subsequent cylinder from being in a lean state. In addition, in the high load side region in the compression self-ignition region, the fresh air introduction intake valve is opened near the intake top dead center of the subsequent cylinder, so that fresh air is efficiently introduced into the subsequent cylinder. become.
[0014]
Further, according to a third aspect of the present invention, in the spark ignition engine control device according to the second aspect, a fresh air intake intake valve opened in a high load side region in a compression self-ignition region of a subsequent cylinder The valve is closed during the intake stroke of the cylinder.
[0015]
According to the above configuration, in the high load side region in the compression self-ignition region, the fresh air introduction intake valve is opened near the intake top dead center of the subsequent cylinder, so that fresh air is efficiently introduced into the subsequent cylinder. After the introduction, the fresh air introduction intake valve is closed during the intake stroke of the succeeding cylinder and the introduction of the fresh air is stopped, so that the burned gas derived from the preceding cylinder is smoothly transferred into the succeeding cylinder. Will be introduced.
[0016]
According to a fourth aspect of the present invention, in the control device for the spark ignition engine according to the first aspect, in the high load side region in the compression self-ignition region of the subsequent cylinder, the burned gas introduction valve of the subsequent cylinder is connected to the intake stroke. The intake valve for fresh air introduction is opened before the opening timing of the burned gas introduction valve.
[0017]
According to the above configuration, in the high load side region in the compression self-ignition region, the fresh air introduction intake valve is closed before the burned gas introduction valve is opened during the intake stroke of the subsequent cylinder. As a result, fresh air is efficiently introduced into the succeeding cylinder, and then the burned gas introduction valve is closed during the intake stroke of the succeeding cylinder, so that the burned gas derived from the preceding cylinder is reduced. It will be introduced into the succeeding cylinder.
[0018]
Further, the invention according to claim 5 is the control device for the spark ignition type engine according to claim 1, wherein the high load side region in the compression self-ignition region of the subsequent cylinder is compared with the low load side region. In response to the air-fuel ratio of the preceding cylinder becoming rich, the ratio of the fresh air introduction amount to the total gas amount introduced into the subsequent cylinder is controlled to increase.
[0019]
According to the above configuration, in the high load side region in the compression self-ignition region of the subsequent cylinder, the air-fuel ratio of the preceding cylinder is made relatively rich, and the burned gas introduced into the succeeding cylinder correspondingly When the oxygen concentration in the tank decreases, the ratio of the amount of fresh air introduced to the total amount of gas introduced into the succeeding cylinder is increased, effectively eliminating the shortage of fresh air in the succeeding cylinder and compressing the succeeding cylinder. The self-ignition is properly executed, and the temperature rise in the succeeding cylinder is suppressed, so that the occurrence of knocking is effectively prevented.
[0020]
Further, the invention according to claim 6 is the spark ignition engine control apparatus according to claim 1, wherein the oxygen concentration in the exhaust gas discharged from the succeeding cylinder is theoretically at least in the compression self-ignition region of the succeeding cylinder. The air-fuel ratio of the succeeding cylinder is controlled so that it becomes a value corresponding to the combustion state of the air-fuel ratio.
[0021]
According to the above configuration, at least in the compression auto-ignition region of the subsequent cylinder, the air-fuel ratio control of the subsequent cylinder is performed so that the oxygen concentration in the exhaust gas discharged from the subsequent cylinder is a value corresponding to the combustion state of the stoichiometric air-fuel ratio. As a result, combustion is performed at a lean air-fuel ratio in the preceding cylinder, and only the burned gas of the subsequent cylinder burned at the stoichiometric air-fuel ratio is led to the exhaust passage.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic configuration of an engine according to an embodiment of the present invention, and FIG. 2 schematically shows a structure of one cylinder of an engine body 1 and intake / exhaust valves provided for the cylinder. In these drawings, the engine body 1 has a plurality of cylinders, and in the illustrated embodiment, has four cylinders 2A to 2D. A piston 3 is fitted into each of the cylinders 2 </ b> A to 2 </ b> D, and a combustion chamber 4 is formed above the piston 3.
[0023]
A spark plug 7 is provided at the top of the combustion chamber 4 provided in each of the cylinders 2 </ b> A to 2 </ b> D, and the plug tip faces the combustion chamber 4. An ignition circuit 8 capable of controlling the ignition timing by electronic control is connected to the spark plug 7.
[0024]
A fuel injection valve 9 that directly injects fuel into the combustion chamber 4 is provided at a side portion of the combustion chamber 4. This fuel injection valve 9 incorporates a needle valve and a solenoid (not shown). When a pulse signal described later is input, the fuel injection valve 9 is driven for a time corresponding to the pulse width at the pulse input timing to open the valve. An amount of fuel corresponding to the valve time is injected. In addition, fuel is supplied to the fuel injection valve 9 through a fuel supply system that includes a fuel pump, a fuel supply passage, and the like that are not shown, and that can apply a fuel pressure higher than the pressure in the combustion chamber during the compression stroke. It is configured as follows.
[0025]
Further, intake ports 11, 11a, 11b and exhaust ports 12, 12a, 12b are opened to the combustion chambers 4 of the respective cylinders 2A to 2D, and an intake passage 15 and an exhaust passage 20 are connected to these ports. Each port is opened and closed by intake valves 31, 31a, 31b and exhaust valves 32, 32a, 32b.
[0026]
A combustion cycle including intake, compression, expansion, and exhaust strokes is performed with a predetermined phase difference for each of the cylinders 2A to 2D. In the case of a four-cylinder engine, from one end side in the cylinder row direction When referred to as the first cylinder 2A, the second cylinder 2B, the third cylinder 2C, and the fourth cylinder 2D, as shown in FIG. 6, the combustion cycle is the first cylinder 2A, the third cylinder 2C, the fourth cylinder 2D, 2, The operation is performed with a phase difference of 180 ° in crank angle in the order of the numbered cylinder 2B. In FIG. 6, EX represents an exhaust stroke, IN represents an intake stroke, F represents fuel injection, S represents forced ignition, and a star mark in the drawing represents compression self-ignition.
[0027]
Between a pair of cylinders in which the exhaust stroke and the intake stroke overlap, a cylinder on the intake stroke side (this specification is referred to as a preceding cylinder) from the cylinder on the exhaust stroke side when the exhaust stroke and the intake stroke overlap (this specification is referred to as a preceding cylinder) The inter-cylinder gas passage 22 is provided so that the burned gas can be directly introduced to the subsequent cylinder). In the four-cylinder engine of this embodiment, as shown in FIG. 6, the exhaust stroke (EX) of the first cylinder 2A and the intake stroke (IN) of the second cylinder 2B overlap, and the exhaust stroke (EX) of the fourth cylinder 2D. ) And the intake stroke (IN) of the third cylinder 2C overlap, so that the first cylinder 2A and the second cylinder 2B, the fourth cylinder 2D and the third cylinder 2C form a pair, respectively, and the first cylinder 2A and the fourth cylinder The cylinder 2D is the preceding cylinder, and the second cylinder 2B and the third cylinder 2C are the subsequent cylinders.
[0028]
The intake / exhaust ports of the cylinders 2A to 2D, the intake passage 15, the exhaust passage 20, and the inter-cylinder gas passage 22 connected to the intake / exhaust ports are specifically configured as follows.
[0029]
The first cylinder 2A and the fourth cylinder 2D, which are the preceding cylinders, respectively include an intake port 11 for introducing fresh air and a first exhaust port 12a for sending burned gas (exhaust gas) to the exhaust passage 20. And a second exhaust port 12b for leading the burned gas to the succeeding cylinder. Further, the second cylinder 2B and the third cylinder 2C, which are the subsequent cylinders, respectively, have a first intake port 11a for introducing fresh air and a second intake port 11b for introducing burned gas from the preceding cylinder. And an exhaust port 12 for sending the burned gas to the exhaust passage.
[0030]
In the example shown in FIG. 1, the intake ports 11 in the first and fourth cylinders (preceding cylinders) 2A and 2D and the first intake ports 11a in the second and third cylinders (subsequent cylinders) 2B and 2C are 2 per cylinder. The first exhaust port 12a and the second exhaust port 12b and the second and third cylinders in the first and fourth cylinders 2A and 2D (preceding cylinders) are provided in parallel on the left half side of the combustion chamber. (Subsequent cylinders) The second intake port 11b and the exhaust port 12 in 2B and 2C are provided in parallel on the right half side of the combustion chamber.
[0031]
The intake port 11 in the 1st and 4th cylinders 2A and 2D and the first intake port 11a in the 2nd and 3rd cylinders 2B and 2C are connected to the downstream end of the branch intake passage 16 for each cylinder in the intake passage 15. Yes. In the vicinity of the downstream end of each branch intake passage 16, a multiple throttle valve 17 that is linked to each other via a common shaft is provided, and this multiple throttle valve 17 is driven by an actuator 18 in accordance with a control signal. Thus, the intake air amount is adjusted. Note that an air flow sensor 19 for detecting the intake air flow rate is provided in the common intake passage upstream of the collecting portion in the intake passage 15.
[0032]
The first exhaust port 12a in the first and fourth cylinders 2A and 2D and the exhaust port 12 in the second and third cylinders 2B and 2C are connected to the upstream ends of the cylinder-specific branch exhaust passages 21 in the exhaust passage 20. Yes. An inter-cylinder gas passage 22 is provided between the first cylinder 2A and the second cylinder 2B and between the third cylinder 2C and the fourth cylinder 2D. The upstream end of the inter-cylinder gas passage 22 is connected to the second exhaust ports 12b of the first and fourth cylinders 2A and 2D as the preceding cylinders, and the second and third cylinders 2B as the subsequent cylinders. The downstream end of the inter-cylinder gas passage 22 is connected to the 2C second intake port 11b.
[0033]
The inter-cylinder gas passage 22 is a relatively short passage that connects adjacent cylinders so that the amount of heat released while the gas discharged from the preceding cylinders 2A and 2D passes through the passage 22 can be kept relatively small. It has become.
[0034]
In the exhaust passage 20, downstream of the branch exhaust passage 21, an air-fuel ratio is detected by detecting the oxygen concentration in the exhaust gas. 2 A sensor 23 is provided. In addition, this O 2 A three-way catalyst 24 for purifying exhaust gas is provided in the exhaust passage 20 on the downstream side of the installation portion of the sensor 23. As is generally known, the three-way catalyst 24 has high purification performance for HC, CO, and NOx when the air-fuel ratio of the exhaust gas is near the stoichiometric air-fuel ratio (that is, the excess air ratio λ = 1). It is the catalyst shown.
[0035]
The intake / exhaust valves for opening and closing the intake / exhaust ports of the cylinders 2A to 2D and the valve operating mechanisms for these valves are as follows.
[0036]
The intake port 11, the first exhaust port 12a and the second exhaust port 12b in the first and fourth cylinders (preceding cylinders) 2A and 2D are respectively provided with an intake valve 31, a first exhaust valve 32a and a second exhaust valve 32b. The first intake port 11a, the second intake port 11b, and the exhaust port 12 in the second and third cylinders (subsequent cylinders) 2B and 2C are respectively connected to the first intake valve 31a, the second intake valve 31b, and the exhaust valve 32. Is provided. The intake / exhaust valves are controlled at predetermined timings by a valve operating mechanism comprising camshafts 33, 34, etc. so that the intake strokes and exhaust strokes of the cylinders 2A to 2D are performed with a predetermined phase difference as described above. It is driven to open and close.
[0037]
Further, among these intake / exhaust valves, the first exhaust valve 32a, the second exhaust valve 32b, the first intake valve 31a, and the second intake valve 31b are switched between an operating state and a stopped state. A valve stop mechanism 35 is provided. The valve stop mechanism 35 has been known in the art and will not be shown in detail. For example, hydraulic oil can be supplied to and discharged from a tappet interposed between the cams of the camshafts 33 and 34 and the valve shaft. When a hydraulic oil is supplied to the hydraulic chamber, the operation of the cam is transmitted to the valve and the valve is opened and closed. When the hydraulic oil is discharged from the hydraulic chamber, the cam operation is not performed. The valve is stopped by not being able to be transmitted to.
[0038]
A first control valve 37 is provided in the hydraulic oil supply / discharge passage 36 for the valve stop mechanism 35 of the first exhaust valve 32a and the valve stop mechanism 35 of the first intake valve 31a, and the second exhaust valve 32b. A second control valve 39 is provided in the hydraulic oil supply / discharge passage 38 with respect to the valve stop mechanism 35 and the valve stop mechanism 35 of the second intake valve 31b (see FIG. 3).
[0039]
FIG. 3 shows the configuration of the drive and control system. In this figure, an ECU (control unit) 40 for engine control composed of a microcomputer or the like is provided with an air flow sensor 19 and an O 2 A signal from the sensor 23 is input, and a signal from an engine speed sensor 47 for detecting the engine speed and an accelerator position sensor 48 for detecting an accelerator position (accelerator pedal depression amount) for determining the driving state are also included. Have been entered. Further, control signals are output from the ECU 40 to the fuel injection valves 9, the actuator 18 of the multiple throttle valve 17, and the first and second control valves 39.
[0040]
The ECU 40 includes an operation state determination unit 41, a valve stop mechanism control unit 42, an intake air amount control unit 43, and a combustion state control unit 44.
[0041]
As shown in FIG. 4, the operating state discriminating means 41 is divided into an operating region A (partial load region) on the low load and low rotation side and an operating region B on the high load side or high rotation side. The operating state of the engine (engine speed and engine load) that has a control map and is examined by signals from the rotational speed sensor 47, the accelerator opening sensor 48, etc. is in any of the operating areas A and B. Is determined. Based on this determination, in the operation region A on the low load and low rotation side, the burned gas discharged from the preceding cylinders 2A and 2D in the exhaust stroke is introduced as it is into the subsequent cylinders 2B and 2C in the intake stroke. A special operation mode for combustion is selected, and in the operation region B on the high load side or high rotation side, a normal operation mode for independently burning each cylinder 2A to 2D is selected.
[0042]
Furthermore, when the operation state determination unit 41 is in the operation region A in which the special operation mode is selected, the operation state determination unit 41 is in either the high load side region A2 of the region A or the region A1 on the lower load side. It is comprised so that it may determine.
[0043]
The valve stop mechanism control means 42 is in a two-cylinder connection state in which the burned gas of the preceding cylinder is introduced into the succeeding cylinder via the inter-cylinder gas passage 22 in the special operation mode, and fresh air is introduced into each cylinder in the normal operation mode. The valve stop mechanism 35 is controlled to change the intake / exhaust flow state so that each cylinder is in an independent state. Specifically, depending on whether the operation state is in the operation region A or B, By controlling the control valves 37 and 39, in principle, each valve stop mechanism 35 is controlled as follows.
[0044]
Operating region A: the first exhaust valve 32a and the first intake valve 31a are stopped
The second exhaust valve 32b and the second intake valve 31b are activated.
Operating region B: the first exhaust valve 32a and the first intake valve 31a are in an operating state
Stop the second exhaust valve 32b and the second intake valve 31b
[0045]
The intake air amount control means 43 controls the opening degree of the throttle valve 17 (throttle opening degree) by controlling the actuator 18, and obtains a target intake air amount from a map or the like according to the operating state. The throttle opening is controlled according to the target intake air amount. In this case, in the operation region A in the special operation mode, the gas introduced from the preceding cylinder in a state where the intake air introduction from the branch intake passage 16 is blocked in the succeeding cylinders (second and third cylinders 2B and 2C). Since the combustion is performed while the ratio of excess air in the fuel to the newly supplied fuel is set to a value corresponding to the stoichiometric air-fuel ratio, it is necessary for the combustion of fuel according to the required torque for the preceding and subsequent two cylinders. The throttle opening is adjusted so that the amount of air (the amount of air that is the stoichiometric air-fuel ratio with respect to the amount of fuel for two cylinders) is supplied to the preceding cylinders (the first and fourth cylinders 2A, 2D). The
[0046]
The combustion state control means 44 is composed of a fuel injection control means 45 and an ignition control means 46. The fuel injection control means 45 causes the fuel injection amount from the fuel injection valves 9 provided in the respective cylinders 2A to 2D and The injection timing is controlled according to the operating state of the engine, and ignition control means 46 controls ignition timing and ignition stop according to the operating state. In particular, the control of the combustion state (control of fuel injection and control of ignition) is changed depending on whether the operation state is in the operation region A in FIG. 4 or in the operation region B.
[0047]
That is, when the operation state is in the operation region A on the low load and low rotation side, the air-fuel ratio is set to the theoretical sky for the preceding cylinders (first and fourth cylinders) 2A and 2D as the control state in the special operation mode. The fuel injection amount is controlled so that the lean air-fuel ratio is larger than the fuel ratio, the injection timing is set so that fuel is injected in the compression stroke and the mixture is stratified, and near the compression top dead center The ignition timing is set so that the forced ignition is performed. On the other hand, for the succeeding cylinders (second and third cylinders) 2B and 2C, fuel is supplied to the burned gas having a lean air-fuel ratio introduced from the preceding cylinder so that the stoichiometric air-fuel ratio is substantially achieved. In addition, the fuel injection amount is controlled, the injection timing is set so as to inject fuel in the intake stroke, and the forced ignition is stopped in order to perform compression self-ignition.
[0048]
Further, in the operation region A, the sum of the fuel injection amounts for the pair of cylinders including the preceding cylinder and the succeeding cylinder is adjusted to an amount that becomes the stoichiometric air-fuel ratio with respect to the fresh air amount introduced into the preceding cylinder. The fuel injection amount for the preceding cylinders (1st and 4th cylinders) 2A and 2D and the subsequent cylinders (2nd and 3rd cylinders) so that the compression self-ignition is satisfactorily performed while preventing knocking from occurring in the cylinders. The ratio of the fuel injection amount to the cylinders 2B and 2C is controlled according to the operating state.
[0049]
Specifically, in the low load side region A1 of the operation region A, the fuel injection amount for the preceding cylinders 2A, 2D and the fuel injection amount for the subsequent cylinders 2B, 2C are substantially the same, or the fuel on the subsequent cylinders 2B, 2C side. By slightly increasing the injection amount, the air-fuel ratio at the time of combustion in the preceding cylinders 2A, 2D is about twice the theoretical air-fuel ratio (A / F≈30, about λ = 2 if expressed by the excess air ratio λ), Or, it is set to be larger than twice the theoretical air-fuel ratio (the excess air ratio λ is λ> 2). As a result, since the engine load is low, the total fuel injection amount is set to a relatively small value, and due to this, misfire of the subsequent cylinders 2B and 2C tends to occur, the low load side region A1 Thus, the fuel injection amount for the subsequent cylinders 2B and 2C is prevented from being set to an excessively small value, and the occurrence of the misfire is prevented.
[0050]
On the other hand, in the high load side region A2 of the operation region A, the fuel injection amount for the preceding cylinders 2A and 2D is made larger than the fuel injection amount for the subsequent cylinders 2B and 2C, so By controlling the air-fuel ratio to be smaller than twice the stoichiometric air-fuel ratio (the excess air ratio λ is 1 <λ <2), for example, A / F≈25, the low load side region A1 Compared to the above, the air-fuel ratio of the preceding cylinders 2A and 2D is made relatively rich. As a result, since the engine load is high and the total fuel injection amount is set to a relatively large value, the temperature of the succeeding cylinders 2B, 2C becomes excessively high, and the succeeding cylinders 2B, 2B, A large amount of burned gas is introduced into the succeeding cylinders 2B and 2C in the high load side region A2 that tends to cause knocking at 2C, and the occurrence of knocking is prevented by the EGR effect.
[0051]
Further, when the fuel injection amount for the preceding cylinders 2A, 2D is set larger than the fuel injection amount for the subsequent cylinders 2B, 2C in the high load side region A2 of the operation region A as described above, the subsequent cylinders 2B, 2C There is a concern that the oxygen concentration in the burnt gas to be introduced decreases, and it becomes impossible to burn the fuel injected into the succeeding cylinders 2B and 2C, and the control in the special operation mode cannot be executed. . Therefore, in the high load side region A2 of the operation region A, by temporarily opening the fresh air introduction intake valve (first intake valve 31a) for introducing fresh air into the succeeding cylinders 2B and 2C, Control is performed so that fresh air is introduced into the subsequent cylinders 2B and 2C in addition to the burned gas derived from the preceding cylinders 2A and 2D.
[0052]
That is, in the high load side region A2 of the operation region A, the first intake valve 31a is opened near the intake top dead center of the subsequent cylinders 2B and 2C, and then the intake stroke of the subsequent cylinders 2B and 2C is performed during the intake stroke. 1 The intake valve 31a is closed. Further, until the first intake valve 31a is closed, the burned gas introduction valve (second intake valve 31b) of the succeeding cylinders 2B and 2C is maintained in the closed state, and then the burned gas introduction is performed. By opening the valve, the burned gas derived from the preceding cylinders 2A and 2D is introduced into the succeeding cylinders 2B and 2C.
[0053]
On the other hand, when the operating state of the engine is in the operating region B on the high load side or the high rotation side, the air-fuel ratio of each cylinder 2A to 2D is set to the stoichiometric air-fuel ratio or lower as control in the normal operation mode. For example, the fuel injection amount is controlled so that the stoichiometric air-fuel ratio is set in, for example, most of the operating region B, and richer than the stoichiometric air-fuel ratio in the fully-open load and the operating region in the vicinity thereof. In this case, the injection timing is set so that the air-fuel mixture is made uniform by injecting fuel to each of the cylinders 2A to 2D and the cylinders 2A to 2D are forcedly ignited. To control.
[0054]
The operation of the apparatus of the present embodiment as described above will be described with reference to FIGS. In the operation region A on the low load and low rotation side, the special operation mode is controlled by the operation mode control means including the valve stop mechanism control means 42, the intake air amount control means 43, and the like. FIG. 7 shows a substantial new air and gas flow path when the first exhaust valve 32a and the first intake valve 31a are stopped and the second exhaust valve 32b and the second intake valve 31b are activated. Thus, the burnt gas discharged from the preceding cylinders (first and fourth cylinders) 2A and 2D is directly introduced into the subsequent cylinders (second and third cylinders) 2B and 2C through the inter-cylinder gas passage 22. Together with (arrow b in FIG. 7), only the gas discharged from the succeeding cylinders 2B and 2C is led to the exhaust passage 20 (two-cylinder connection state) (arrow c in FIG. 7).
[0055]
In this state, fresh air is introduced into the preceding cylinders 2A and 2D from the intake passage 15 in the intake stroke (arrow a in FIG. 7), and the air-fuel ratio in the preceding cylinders 2A and 2D is larger than the stoichiometric air-fuel ratio. Fuel is injected in the compression stroke while the fuel injection amount is controlled to be approximately twice or less than the air-fuel ratio, and ignition is performed at a predetermined ignition timing, so that stratified combustion at the lean air-fuel ratio is performed. Is performed (see FIG. 6).
[0056]
Further, burned gas derived from the preceding cylinders 2A and 2D is introduced into the succeeding cylinders 2B and 2C through the gas passage 22 during a period in which the intake strokes of the preceding cylinders 2A and 2D overlap with the exhaust strokes of the succeeding cylinders 2B and 2C. (The white arrow in FIG. 6 and the arrow b in FIG. 7). In the succeeding cylinders 2B and 2C, fuel is supplied to the burned gas having a lean air-fuel ratio introduced from the preceding cylinders 2A and 2D, and the fuel injection amount is controlled so as to become the stoichiometric air-fuel ratio. After the fuel is injected, compression self-ignition is performed near the top dead center of the compression stroke due to an increase in pressure and temperature in the combustion chamber.
[0057]
In this case, since the high-temperature burned gas discharged from the preceding cylinders 2A and 2D is immediately introduced into the succeeding cylinders 2B and 2C through the short inter-cylinder gas passage 22, the succeeding cylinders 2B and 2C are in the combustion chamber during the intake stroke. In this state, the pressure and temperature further increase in the compression stroke, and the temperature in the combustion chamber rises to the extent that the air-fuel mixture can self-ignite near the top dead center at the end of the compression stroke. Moreover, the burned gas is sufficiently mixed and evenly distributed from the time when it is discharged from the preceding cylinders 2A and 2D to the time when it is introduced into the succeeding cylinders 2B and 2C, and the fuel injected in the intake stroke is also compressed. Since it is uniformly dispersed throughout the combustion chamber by the end, a uniform mixture distribution state that satisfies the ideal simultaneous compression self-ignition condition can be obtained. And combustion is rapidly performed by simultaneous compression self-ignition, and, thereby, thermal efficiency is improved significantly.
[0058]
In this way, in the preceding cylinders 2A and 2D, the thermal efficiency is increased by the stratified combustion in lean, and the pumping loss is reduced by reducing the intake negative pressure as compared with a normal engine that does not perform stratified combustion, In the succeeding cylinders 2B and 2C, while the air-fuel ratio is substantially the stoichiometric air-fuel ratio, the compression self-ignition is performed in a uniform mixture distribution state, so that the thermal efficiency is increased and the burned fuel extruded from the preceding cylinders 2A and 2D. Since gas is fed, the pumping loss is further reduced as compared with the preceding cylinders 2A and 2D. These effects greatly improve fuel efficiency.
[0059]
In addition, in the preceding cylinders 2A and 2D, the lean air-fuel ratio is set to approximately twice or close to the theoretical air-fuel ratio, so that the NOx generation amount can be suppressed to be relatively small. On the other hand, in the succeeding cylinders 2B and 2C, the burned gas is introduced from the preceding cylinders 2A and 2D so that a large amount of EGR is performed, and rapid combustion by simultaneous compression self-ignition is performed. Therefore, the reaction between oxygen and nitrogen is avoided as much as possible, so that the generation of NOx is sufficiently suppressed. This is also advantageous for improving emissions.
[0060]
Further, since the compression self-ignition in the succeeding cylinders 2B and 2C is achieved by using the heat of the burned gas discharged from the preceding cylinders 2A and 2D, a special heating means is used or the compression ratio of the engine is extremely reduced. It is not necessary to make it high, and compression self-ignition can be easily achieved. In particular, the ratio between the fuel injection amount for the preceding cylinder (first and fourth cylinders 2A and 2D) and the fuel injection amount for the subsequent cylinders (second and third cylinders 2B and 2C) in the special operation mode is in the operating state. Accordingly, by adjusting as described above, compression self-ignition can be appropriately performed over a wide operation region.
[0061]
That is, in the high load side region A2 in the operation region A that is set to the special operation mode, the fuel injection amount for the preceding cylinders 2A, 2D is set larger than that in the low load side region A1, thereby leading cylinders 2A, The 2D air-fuel ratio is controlled to be relatively rich, that is, a value smaller than twice the theoretical air-fuel ratio. As a result, the temperature of the gas introduced into the succeeding cylinders 2B and 2C is lower than when the air fuel ratio of the preceding cylinders 2A and 2D is twice the theoretical air fuel ratio (the preceding cylinder and the succeeding cylinder have the same injection amount). Although increasing, the burned gas component corresponding to EGR in the gas introduced into the succeeding cylinders 2B and 2C increases, so that knocking is suppressed by the EGR effect.
[0062]
In the high load side region A2, the air-fuel ratio of the preceding cylinders 2A, 2D is set to be smaller than twice the theoretical air-fuel ratio, so that the burned gas introduced into the succeeding cylinders 2B, 2C In this case, since fresh air is introduced into the succeeding cylinders 2B and 2C in addition to the burned gas derived from the preceding cylinders 2A and 2D, In the high load side region A2, the shortage of fresh air in the succeeding cylinders 2B and 2C is resolved, and the compression self-ignition is appropriately executed.
[0063]
Specifically, as shown in FIG. 5, the burned gas introduction valve (second intake valve 31b) of the subsequent cylinders 2B and 2C is closed near the intake top dead center (ITDC) of the subsequent cylinders 2B and 2C. While maintaining the state, the fresh air introduction intake valve (first intake valve 31a) is opened, so that the fresh air introduced through the intake passage 15 and the branch passage 16 is transferred to the succeeding cylinders 2B and 2C. Since it is configured to be supplied to the inside, it is possible to secure a fresh air amount for executing the compression self-ignition in the succeeding cylinders 2B and 2C. The first intake valve 31a is closed during the intake stroke of the subsequent cylinders 2B and 2C, and the second intake valve 31b of the subsequent cylinders 2B and 2C is opened before that. The burned gas derived from the cylinders 2A and 2D can be introduced into the succeeding cylinders 2B and 2C.
[0064]
As described above, in the high load side region A2 in the compression self-ignition region A, the fresh air intake intake valve (first intake valve 31a) is opened near the intake top dead center (ITDC) of the succeeding cylinders 2B and 2C. By doing so, before the burned gas derived from the preceding cylinders 2A and 2D is introduced into the succeeding cylinders 2B and 2C, fresh air having a relatively low temperature is efficiently introduced into the succeeding cylinders 2B and 2C. Can do. Moreover, in the low load side region A1 in the compression self-ignition region (partial load region) A of the succeeding cylinders 2B and 2C, the fresh air intake intake valve (first intake valve 31a) is maintained in the closed state. The subsequent cylinders 2B, 2D, 2B, 2D, 2C, 2B, 2B, 2B, 2B, 2B, 2B, 2C, 2B, 2B, 2B, 2C, etc. In the low load region A1 in the 2C compression self-ignition region A, it is possible to prevent the air-fuel ratio of the subsequent cylinders 2B and 2C from becoming lean due to the introduction of fresh air into the subsequent cylinders 2B and 2C. .
[0065]
In addition, the fresh air introduction intake valve (first intake valve 31a) opened in the high load side region A2 in the compression self-ignition region A of the subsequent cylinders 2B and 2C is closed during the intake stroke of the subsequent cylinders 2B and 2C. By setting the valve state, fresh air is efficiently introduced into the succeeding cylinders 2B and 2C, and then the introduction of the fresh air is stopped, so that the burned gas derived from the preceding cylinders 2A and 2C can be removed. It can be smoothly introduced into 2B and 2C.
[0066]
Further, as shown in the above-described embodiment, in the high load side region A2 in the compression self-ignition region A of the subsequent cylinders 2B and 2C, the burned gas introduction valve (second intake valve 31b) of the subsequent cylinders 2B and 2C is taken into the intake stroke. For opening fresh air before the opening timing of the burned gas introduction valve (second intake valve 31b), for example, near the intake top dead center (ITDC) of the succeeding cylinders 2B and 2C. When the intake valve (first intake valve 31a) is configured to be opened, fresh air is efficiently introduced into the succeeding cylinders 2B and 2C in the high load side region A2 in the compression self-ignition region A. In addition, the burned gas derived from the preceding cylinders 2A and 2D is efficiently put into the succeeding cylinders 2B and 2C by closing the intake valve for introducing fresh air (first intake valve 31a) after that. Can be introduced well.
[0067]
That is, as shown by a broken line in FIG. 5, the burned gas introduction valve (second intake valve 31b) can be opened near the intake top dead center ITDC of the succeeding cylinders 2B and 2C. The fresh air supplied from the intake passage 15 and the burned gas supplied via the inter-cylinder gas passage 22 are simultaneously introduced into the succeeding cylinders 2B and 2C, thereby reducing the amount of fresh air introduced. Will be. Therefore, by maintaining the burnt gas introduction valve (second intake valve 31b) in the closed state until the middle of the intake stroke of the subsequent cylinders 2B and 2C as described above, fresh air is efficiently generated in the subsequent cylinders 2B and 2C. It is preferable to be configured to be introduced. Further, when the burned gas introduction valve is kept closed until the intake stroke of the succeeding cylinders 2B and 2C is halfway, the internal EGR amount in the preceding cylinders 2A and 2D can be increased. There is an advantage that compression self-ignition can be performed by raising the internal temperature of 2A and 2D.
[0068]
Further, in the high load side region A2 in the compression self-ignition region A of the subsequent cylinders 2B and 2C, the air-fuel ratio of the preceding cylinders 2A and 2D becomes richer than the region A1 on the lower load side. When the control is performed to increase the ratio of the fresh air introduction amount to the total gas amount introduced into the succeeding cylinders 2B and 2C, the high load side region in the compression self-ignition region A of the succeeding cylinders 2B and 2C In A2, when the oxygen concentration in the burned gas introduced into the succeeding cylinders 2B and 2C decreases in response to the air-fuel ratio of the preceding cylinders 2A and 2D being set relatively rich, the succeeding cylinders By increasing the ratio of the amount of fresh air introduced to the total amount of gas introduced into 2B and 2C, the shortage of fresh air in the succeeding cylinders 2B and 2C is effectively eliminated, and the compression self-ignition of the succeeding cylinders 2B and 2C is appropriate. While running on the engine Force sufficiently can be secured, and the following cylinders 2B, there is an advantage that the occurrence of knocking by suppressing temperature rise in the 2C can be effectively prevented.
[0069]
Further, at least in the compression self-ignition region A of the succeeding cylinders 2B and 2C, the succeeding cylinder 2B so that the oxygen concentration in the exhaust gas discharged from the succeeding cylinders 2B and 2C becomes a value corresponding to the combustion state of the stoichiometric air-fuel ratio. , 2C is configured to control the air-fuel ratio of the preceding cylinders 2A, 2D, the combustion is performed with a lean air-fuel ratio, and only the burned gas of the succeeding cylinders 2B, 2C burned with the stoichiometric air-fuel ratio. It is led out to the exhaust passage 20. Therefore, it is not necessary to provide a lean NOx catalyst as in a conventional lean burn engine, and the exhaust purification performance is sufficiently ensured by the three-way catalyst 24 alone. Since there is no need to provide a lean NOx catalyst, there is no need to temporarily enrich the air-fuel ratio for NOx release and reduction when the NOx storage amount of the lean NOx catalyst is increased, thereby reducing fuel consumption improvement. can avoid. Furthermore, the problem of sulfur poisoning of the lean NOx catalyst does not occur.
[0070]
On the other hand, in the operation region B on the high load side or the high rotation side, the normal operation mode is set. As described above, the first exhaust valve 32a and the first intake valve 31a are in the operating state, and the second exhaust valve 32b and the second intake valve 31b. Is brought into a stopped state, the actual flow path of fresh air and gas becomes as shown in FIG. 8, the intake ports 11 and 11a and the exhaust ports 12a and 12 of each cylinder 2A to 2D become independent, and the intake air Fresh air is introduced from the passage 15 to the intake ports 12 and 12a of the cylinders 2A to 2D, and burned gas is discharged from the exhaust ports 12 and 12a of the cylinders 2A to 2D to the exhaust passage 20. In this case, the output performance is ensured by controlling the intake air amount and the fuel injection amount so that the stoichiometric air-fuel ratio or richer.
[0071]
In addition, the specific structure of the apparatus of this invention is not limited to the said embodiment, A various change is possible. Other embodiments are described below. That is, in each of the above embodiments, the subsequent cylinders 2B and 2C are burned by compression self-ignition over the entire operation region A in the special operation mode. For example, in a very low speed and low load region in which the temperature and pressure in the combustion chamber are difficult to reach a state in which compression self-ignition is possible, the subsequent cylinders 2B and 2C are ignited by the spark plug 7 at a predetermined ignition timing. Alternatively, combustion may be performed by forced ignition. Alternatively, when the engine temperature is low, the subsequent cylinders 2B and 2C may be burned by forced ignition.
[0072]
In the basic embodiment, the intake / exhaust flow state can be switched between the two-cylinder connected state and the individual cylinder independent state using the valve stop mechanism 35. However, on-off valves are provided in the intake / exhaust passage and the inter-cylinder gas passage. It may be provided so that the two-cylinder connected state and each cylinder independent state can be switched by opening and closing these passages.
[0073]
Furthermore, the apparatus of the present invention can also be applied to multi-cylinder engines other than four cylinders. For example, in the case of six cylinders, the exhaust stroke of one cylinder and the intake stroke of another cylinder do not completely overlap. In such a case, the exhaust stroke of one cylinder precedes the intake stroke of the other cylinder. In addition, two cylinders in which both strokes partially overlap may be used as a pair of preceding and succeeding cylinders.
[0074]
【The invention's effect】
As described above, according to the control device of the present invention, when the special operation mode is set, the preceding cylinder of the two cylinders in which the exhaust stroke and the intake stroke overlap with each other performs combustion at a lean air-fuel ratio, and the succeeding cylinder in the preceding cylinder Since the fuel is supplied to the burned gas having a lean air-fuel ratio introduced from the combustion chamber and combustion is performed by compression self-ignition, the preceding cylinder improves thermal efficiency and reduces the pumping loss due to lean combustion, and the succeeding cylinder Fuel efficiency can be improved by improving combustion efficiency and reducing pumping loss by compression self-ignition.
[0075]
In particular, in the present invention, in the high load side region in the compression self-ignition region of the subsequent cylinder, the air-fuel ratio of the preceding cylinder is made relatively rich, so that the engine output is ensured and correspondingly. When the oxygen concentration in the burned gas introduced into the succeeding cylinder decreases, the new air introduction intake valve is opened and fresh air is introduced into the succeeding cylinder. The lack of fresh air in the cylinder can be resolved, the compression auto-ignition of the succeeding cylinder can be properly executed, and the burned gas component introduced into the succeeding cylinder can be increased to effectively prevent the occurrence of knocking. . For this reason, the said compression self-ignition area | region can be expanded significantly.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of an entire engine including a control device according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view of an engine body and the like.
FIG. 3 is a block diagram of a control system.
FIG. 4 is an explanatory diagram showing an example of operation region setting for performing control according to an operation state.
FIG. 5 is an explanatory diagram showing a combustion cycle, valve opening timing, and the like of a preceding cylinder and a succeeding cylinder.
FIG. 6 is a diagram showing an exhaust stroke, an intake stroke, a fuel injection timing, an ignition timing, and the like of each cylinder.
FIG. 7 is an explanatory diagram showing substantial fresh air and gas flow paths at low load and low rotation.
FIG. 8 is an explanatory diagram showing substantial fresh air and gas flow paths at high load and high rotation speed.
[Explanation of symbols]
1 Engine body
2A to 2D cylinder
9 Fuel injection valve
15 Intake passage
20 Exhaust passage
22 Gas passage between cylinders
35 Valve stop mechanism
31a First intake valve (intake valve for introducing fresh air)
31b Second intake valve (burnt gas introduction valve)
40 ECU
41 Operating state discriminating means
42 Valve stop mechanism control means (operation mode control means)
43 Intake air amount control means
44 Combustion state control means

Claims (6)

各気筒の燃焼サイクルが所定の位相差をもつように設定された多気筒の火花点火式エンジンにおいて、
エンジンの部分負荷領域で、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に気筒間ガス通路を介して導入され、この後続気筒から排出されるガスが排気通路に導かれるような2気筒接続状態としつつ、先行気筒の空燃比を理論空燃比よりも大きいリーン空燃比として燃焼を行わせ、この先行気筒から後続気筒に導入されたリーン空燃比の既燃ガスに燃料を供給して後続気筒の燃焼を行わせる特殊運転モードの制御を実行する運転モード制御手段とを備え、
上記特殊運転モードとされる運転領域のうちの少なくとも一部の運転領域で、後続気筒を圧縮自己着火により燃焼を行わせるとともに、この圧縮自己着火領域における高負荷側領域では、それよりも低負荷側の領域に比べて先行気筒の空燃比を相対的にリッチとし、かつ後続気筒内に新気を導入する新気導入用吸気弁を開弁することにより、上記先行気筒から導出された既燃ガスに加えて新気を後続気筒内に導入させるように制御することを特徴とする火花点火式エンジンの制御装置。
In a multi-cylinder spark ignition engine in which the combustion cycle of each cylinder is set to have a predetermined phase difference,
In the partial load region of the engine, the burned gas discharged from the preceding cylinder in the exhaust stroke between a pair of cylinders in which the exhaust stroke and the intake stroke overlap is directly introduced to the subsequent cylinder in the intake stroke via the inter-cylinder gas passage. The combustion is performed with the air-fuel ratio of the preceding cylinder set to a lean air-fuel ratio larger than the stoichiometric air-fuel ratio while the two cylinders are connected such that the gas discharged from the succeeding cylinder is guided to the exhaust passage. An operation mode control means for performing control in a special operation mode in which fuel is supplied to burned gas having a lean air-fuel ratio introduced into the cylinder and combustion of the subsequent cylinder is performed,
In at least a part of the operation region set as the special operation mode, the subsequent cylinder is caused to burn by compression self-ignition, and in the high load side region in the compression self-ignition region, the load is lower than that. Burned out from the preceding cylinder by opening the intake valve for introducing fresh air into the succeeding cylinder and making the air-fuel ratio of the preceding cylinder relatively rich compared to the region on the side. A control device for a spark ignition engine, wherein control is performed so that fresh air is introduced into a succeeding cylinder in addition to gas.
後続気筒の圧縮自己着火領域における低負荷側領域では、新気導入用吸気弁を閉弁状態に維持し、上記圧縮自己着火領域における高負荷側領域では、新気導入用吸気弁を後続気筒の吸気上死点付近で開弁することを特徴とする請求項1記載の火花点火式エンジンの制御装置。In the low load side region in the compression self-ignition region of the subsequent cylinder, the fresh air introduction intake valve is kept closed, and in the high load side region in the compression self ignition region, the fresh air introduction intake valve is maintained in the subsequent cylinder. 2. The spark ignition engine control apparatus according to claim 1, wherein the valve is opened near the intake top dead center. 後続気筒の圧縮自己着火領域における高負荷側領域で開弁した新気導入用吸気弁を、後続気筒の吸気行程途中で閉弁することを特徴とする請求項2記載の火花点火式エンジンの制御装置。3. The control of a spark ignition engine according to claim 2, wherein the intake valve for introducing fresh air that is opened in the high load side region in the compression self-ignition region of the subsequent cylinder is closed during the intake stroke of the subsequent cylinder. apparatus. 後続気筒の圧縮自己着火領域における高負荷側領域では、後続気筒の既燃ガス導入弁を吸気行程の途中で開弁し、かつこの既燃ガス導入弁の開弁時期よりも前に、新気導入用吸気弁を開弁することを特徴とする請求項1記載の火花点火式エンジンの制御装置。In the high load side region in the compression auto-ignition region of the subsequent cylinder, the burned gas introduction valve of the subsequent cylinder is opened during the intake stroke, and the fresh air is opened before the opening timing of the burned gas introduction valve. 2. The control device for a spark ignition engine according to claim 1, wherein the intake valve for introduction is opened. 後続気筒の圧縮自己着火領域における高負荷側領域では、それよりも低負荷側の領域に比べ、先行気筒の空燃比がリッチになるのに対応して後続気筒に導入される総ガス量に対する新気導入量の割合を高めるように制御することを特徴とする請求項1記載の火花点火式エンジンの制御装置。In the high load side region in the compression auto-ignition region of the succeeding cylinder, compared to the region on the low load side, the new gas amount relative to the total gas introduced into the succeeding cylinder corresponding to the rich air / fuel ratio of the preceding cylinder becomes larger. 2. The control device for a spark ignition engine according to claim 1, wherein the control is performed so as to increase a ratio of the air introduction amount. 少なくとも後続気筒の圧縮自己着火領域では、後続気筒から排出される排気ガス中の酸素濃度が、理論空燃比の燃焼状態に対応した値となるように後続気筒の空燃比を制御することを特徴とする請求項1記載の火花点火式エンジンの制御装置。At least in the compression self-ignition region of the subsequent cylinder, the air-fuel ratio of the subsequent cylinder is controlled so that the oxygen concentration in the exhaust gas discharged from the subsequent cylinder becomes a value corresponding to the combustion state of the stoichiometric air-fuel ratio. The spark ignition engine control device according to claim 1.
JP2002281293A 2002-01-31 2002-09-26 Control device for spark ignition engine Expired - Fee Related JP3894083B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2002281293A JP3894083B2 (en) 2002-09-26 2002-09-26 Control device for spark ignition engine
US10/472,523 US7182050B2 (en) 2002-01-31 2003-01-31 Control device for spark-ignition engine
KR10-2003-7014146A KR20040074592A (en) 2002-01-31 2003-01-31 Spark ignition engine control device
DE60309098T DE60309098T8 (en) 2002-01-31 2003-01-31 DEVICE FOR REGULATING A RADIATED INTERNAL COMBUSTION ENGINE
PCT/JP2003/000962 WO2003064838A1 (en) 2002-01-31 2003-01-31 Spark ignition engine control device
EP03703109A EP1362176B1 (en) 2002-01-31 2003-01-31 Spark ignition engine control device
EP03703108A EP1366279B1 (en) 2002-01-31 2003-01-31 Control device for spark-ignition engine
DE60300437T DE60300437T2 (en) 2002-01-31 2003-01-31 DEVICE FOR REGULATING A RADIATED INTERNAL COMBUSTION ENGINE
KR10-2003-7014141A KR20040074591A (en) 2002-01-31 2003-01-31 Control device for spark-ignition engine
US10/472,563 US7219634B2 (en) 2002-01-31 2003-01-31 Spark ignition engine control device
CNB03802487XA CN100368671C (en) 2002-01-31 2003-01-31 Spark ignition engine control device
CNB038024594A CN100363609C (en) 2002-01-31 2003-01-31 Spark ignition engine control device
PCT/JP2003/000961 WO2003064837A1 (en) 2002-01-31 2003-01-31 Control device for spark-ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002281293A JP3894083B2 (en) 2002-09-26 2002-09-26 Control device for spark ignition engine

Publications (2)

Publication Number Publication Date
JP2004116403A JP2004116403A (en) 2004-04-15
JP3894083B2 true JP3894083B2 (en) 2007-03-14

Family

ID=32275776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281293A Expired - Fee Related JP3894083B2 (en) 2002-01-31 2002-09-26 Control device for spark ignition engine

Country Status (1)

Country Link
JP (1) JP3894083B2 (en)

Also Published As

Publication number Publication date
JP2004116403A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP3963144B2 (en) Control device for spark ignition engine
JP3846393B2 (en) Control device for spark ignition engine
JP4259255B2 (en) Control device for spark ignition engine
JP3711942B2 (en) Control device for turbocharged engine
JP3711939B2 (en) Control device for spark ignition engine
JP4285091B2 (en) Control device for spark ignition engine
JP3894083B2 (en) Control device for spark ignition engine
JP3972744B2 (en) Control device for spark ignition type 4-cycle engine
JP3711941B2 (en) Control device for spark ignition engine
JP4329446B2 (en) Control device for spark ignition engine
JP4052215B2 (en) Control device for spark ignition engine
JP4107180B2 (en) Control device for spark ignition engine
JP3951855B2 (en) Control device for spark ignition engine
JP3951829B2 (en) Control device for spark ignition type 4-cycle engine
JP3951852B2 (en) Engine control device
JP3900072B2 (en) Control device for spark ignition engine
JP4123102B2 (en) Control device for spark ignition engine
JP2005016358A (en) Controller of spark ignition engine
JP4052214B2 (en) Control device for spark ignition engine
JP3951856B2 (en) Control device for spark ignition engine
JP4158670B2 (en) Control device for spark ignition engine
JP2004011620A (en) Running mode detector and running mode controller of spark ignition type engine
JP2004124761A (en) Control device for spark ignition type engine
JP2005054678A (en) Control device for spark ignition type engine
JP2005016360A (en) Controller of spark ignition engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees