JPS61200312A - Load controller for combined-cycle generating plant - Google Patents

Load controller for combined-cycle generating plant

Info

Publication number
JPS61200312A
JPS61200312A JP3880385A JP3880385A JPS61200312A JP S61200312 A JPS61200312 A JP S61200312A JP 3880385 A JP3880385 A JP 3880385A JP 3880385 A JP3880385 A JP 3880385A JP S61200312 A JPS61200312 A JP S61200312A
Authority
JP
Japan
Prior art keywords
load
shaft
load command
frequency
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3880385A
Other languages
Japanese (ja)
Inventor
Masae Takahashi
正衛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3880385A priority Critical patent/JPS61200312A/en
Publication of JPS61200312A publication Critical patent/JPS61200312A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve controllability ever so high, by making a shaft in single operation into distinction from a shaft in power plant load controlling in the case where the frequency bias value added to a load command of each shaft is put back to the system side, and consisting it to put back on the shaft number equivalent portion in the power station load controlling. CONSTITUTION:A controller bearing the above caption compares a load command 11 out of a central load-dispatching station with system output 22 via a variation limiter 12 and an upper-lower limiter 16 and sets the deviation 23 down to a load command 25 by way of an integrator 25 whereby it controls a governor setter of a gas turbine controller related to first-n shafts. In this case, there is provided with a frequency detector 55 which detects a variation in system frequency. And, the variation of the system frequency detected in the detector here is converted into a load command 58 by a frequency bias circuit 57, and this load command 58 is added to each shaft load command by the adder 59 additionally installed in load control circuit of each shaft. And, simultaneously, it is added to the said load command 11 via a counter 53 and an adder 50.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は複数軸形の複合サイクル発電プラントに係り、
特に系統周波数変化時のガノ(ナフリー制御を有効に活
用するのに好適な負荷制御装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a multiple-shaft combined cycle power plant,
In particular, the present invention relates to a load control device suitable for effectively utilizing nafley control when the system frequency changes.

〔発明の背景〕[Background of the invention]

複合サイクル発電プラントは、ガスタービンの排熱を利
用して発生させた蒸気で蒸気タービンを駆動する方式の
発電プラントであって、ガスタービン軸と蒸気タービン
軸とを1軸に直結した1軸形と、双方の軸を独立させた
複数軸形とに大別される。
A combined cycle power generation plant is a power generation plant that uses the exhaust heat of a gas turbine to generate steam to drive a steam turbine, and is a single-shaft type power plant in which the gas turbine shaft and the steam turbine shaft are directly connected to one shaft. It can be roughly divided into two types: and multi-axis type, in which both axes are independent.

複数軸形の複合サイクル発電プラントに関する従来の制
御装置は、特開昭59−122713号に記載の様に各
軸毎に周波数バイアス回路を設け、各軸単位にバイアス
を与えてガ・(ナーフリー補償を行うとともに各軸のバ
イアスの総和を求めてこれを発電所負荷指令に加算する
ことにより、系統周波数変化時のガバナフリー制御を有
効に活用する方式となっている。
A conventional control device for a multiple-axis combined cycle power generation plant has a frequency bias circuit for each axis, as described in Japanese Patent Application Laid-open No. 122713/1983, and biases are applied to each axis to perform gas (nerf-free compensation). This method makes effective use of governor-free control when the system frequency changes by calculating the total bias of each axis and adding it to the power plant load command.

しかしながら次の2点について配慮されていない。However, the following two points are not considered.

(1)  発電所負荷変化率は通常各軸の負荷変化率の
総和として与えられるが発電所負荷制御から除外された
軸については、該当する軸の実際の出力を発電所負荷指
令に加算し、その出力の変化を発電所負荷指令の変化率
に直接寄与式せるのが従来の方法である。
(1) The power plant load change rate is normally given as the sum of the load change rates of each axis, but for axes excluded from power plant load control, the actual output of the relevant axis is added to the power plant load command, The conventional method is to make the change in output directly contribute to the rate of change in the power plant load command.

このことから、1軸でも除外された軸がある場合に特開
昭59−122713号に記載あるように各軸の周波数
バイアスの総和を求めてこれを発電所負荷指令に加算す
ると、除外された軸については周波数バイアス分と周波
数バイアス分とをすでに含む実際の出力とが2重に発電
所負荷指令に加算さnることになり、発電所負荷指令と
発電所の実際の出力の偏差が拡大することになる。
From this, if there is even one axis that has been excluded, if you calculate the sum of the frequency biases of each axis and add this to the power plant load command as described in JP-A-59-122713, it is possible to eliminate the excluded axis. For the axis, the frequency bias component and the actual output that already includes the frequency bias component are added twice to the power plant load command, increasing the deviation between the power plant load command and the power plant's actual output. I will do it.

(11)特開昭59−122713に記載あるように系
統周波数の変化による複合サイクルプラントの出力変化
はガスタービンの調定率、排熱回収ボイラ及び蒸気ター
ビンの出力応答の遅れ、それにガスタービンと蒸気ター
ビンとの出力比率に依存しており、軸単位に変化するも
のではない。こうした事情に基づいて考察すると、各軸
毎に周波数バイアス回路を設けることは不経済である。
(11) As described in JP-A-59-122713, changes in the output of a combined cycle plant due to changes in system frequency are caused by the regulation rate of the gas turbine, the delay in the output response of the exhaust heat recovery boiler and the steam turbine, and the delay between the gas turbine and the steam turbine. It depends on the output ratio with the turbine and does not change on a shaft-by-shaft basis. Considering these circumstances, it is uneconomical to provide a frequency bias circuit for each axis.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、周波数変化時のガバナフIJ−制御を
最も有効に活用できるコンバインドサイクル発電プラン
トの負荷制御装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a load control device for a combined cycle power plant that can make the most effective use of governor IJ control during frequency changes.

〔発明の概要〕[Summary of the invention]

次に、本発明の原理について、その創作における思考の
過程を辿りつつ略述する。
Next, the principle of the present invention will be briefly described while tracing the thought process in its creation.

周波数バイアス回路は発電所として1回路設置しこの出
力をそれぞれ各軸の負荷指令に加算する。
One frequency bias circuit is installed as a power plant, and its output is added to the load command of each axis.

系統周波数からバイアス値金求める方法はすでに公知で
ある。
A method for determining the bias value from the system frequency is already known.

周波数バイアス回路からのバイアス値に発電所負荷制御
中の軸数を乗じた値を発電所負荷指令に加算する。ここ
で発電所負荷制御から除外された軸数分を除く理由は次
の通りである。
A value obtained by multiplying the bias value from the frequency bias circuit by the number of axes under power plant load control is added to the power plant load command. The reason for excluding the number of axes excluded from power plant load control is as follows.

すなわち、発電所負荷変化率は通常各軸の負荷変化率の
総和である。これは軸単独での運転を考慮すると軸側に
負荷変化率回路を設置した刀が簡潔なシステムになるか
らでおる。
That is, the power plant load change rate is usually the sum of the load change rates of each axis. This is because when considering the operation of the shaft alone, a sword with a load change rate circuit installed on the shaft side becomes a simple system.

しかしながら、発電−所負荷制御から除外された@はそ
の軸に最も都合の良い変化率で運転されており、これを
使用して発電所の負荷変化率を演算するのは適切でない
。ところが、発電所全体としての負荷制御上、除外され
た軸全考慮外とはできず、除外された軸の実際の出方を
発電所負荷指令に加算しその出力の変化が発電所負荷指
令の変化率に直接寄与する方式とするのが従来の方法で
るる。
However, @ excluded from the power plant load control is operated at the rate of change that is most convenient for that axis, and it is not appropriate to use this to calculate the rate of change in the load of the power plant. However, in terms of load control for the power plant as a whole, it is not possible to exclude all excluded axes from consideration, so the actual output of the excluded axes is added to the power plant load command, and the change in output is reflected in the power plant load command. The conventional method is to use a method that directly contributes to the rate of change.

したがって周波数バイアス値を発電所負荷指令に加算す
る場合に発電所負荷制御から除外された軸の分も含める
と周波数バイアス値が2重に発電所負荷指令に加算され
ることになるので、この2重加算を防止し、若しくは補
正する手段が必要となる。
Therefore, when adding the frequency bias value to the power plant load command, if the axes excluded from the power plant load control are also included, the frequency bias value will be added twice to the power plant load command. A means to prevent or correct double addition is required.

上に述べた考察に基づいて前記の目的を達成するため、
本発明のフリット負荷の制御装置は、ガスタービンの軸
と、蒸気タービンの軸とt互いに独立に構成するととも
に、前記ガスタービンの排熱を利用して発生せしめた蒸
気によって前記の蒸気タービンを駆動する複数軸形の複
合サイクル発゛ボフリントにおいて、(a)電力系統の
周波数変動分に基づいて各軸に対する周波数変動分の補
償として周波数バイアス信号を与える手段と、(b)前
記のバイアス信号を与える手段からの周波数バイアス信
号を各軸の負荷信号に加算する手段と、(c)前記周波
数バイアス信号を、単独a1転中の軸を除いた残りの台
数相当分に整数倍する手段と、(d)前記の整数倍する
手段の出方信号を発電所負荷指令に加算する手段とを設
けたことを特徴とする。
Based on the above considerations and in order to achieve the above objectives,
The frit load control device of the present invention has a shaft of a gas turbine and a shaft of a steam turbine configured independently of each other, and drives the steam turbine with steam generated using exhaust heat of the gas turbine. In a multi-axis type compound cycle oscillator flint, (a) means for applying a frequency bias signal as compensation for frequency fluctuations to each axis based on frequency fluctuations of the power system; and (b) means for applying the bias signal. (c) means for adding the frequency bias signal from the means to the load signal of each axis; (c) means for multiplying the frequency bias signal by an integral number equivalent to the number of machines remaining after excluding the axis that is rotating independently; (d) ) A means for adding the output signal of the means for multiplying by an integer to a power plant load command is provided.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の1実施例について、添付の図面を参照し
つつ説明する。
Next, one embodiment of the present invention will be described with reference to the accompanying drawings.

第3図に一軸型複合発車プラントの構成を示す。Figure 3 shows the configuration of a single-shaft complex departure plant.

負荷制御装置1からの負荷指令2はガスタービン制御装
置4に接続され、ガスタービン燃料流量指令7となって
調節弁】0を制御する。ガスタービ/9は与えられた燃
料流量に応じた出力を発電機12により発生する。−力
、高温のガスタービン排ガス11は排熱回収ボイラ17
に導かれ蒸気15を発生する。この蒸気は蒸気タービン
制御装置5からの加減弁開度指令8により制御された調
節弁13を経由して蒸気タービン18に導かれ発電機1
2fc駆動して出力を発生する。
A load command 2 from a load control device 1 is connected to a gas turbine control device 4, and becomes a gas turbine fuel flow rate command 7 to control a control valve 0. The gas turbine/9 generates an output according to the given fuel flow rate using the generator 12. - The high-temperature gas turbine exhaust gas 11 is transferred to the exhaust heat recovery boiler 17
and generates steam 15. This steam is guided to the steam turbine 18 via the control valve 13 controlled by the control valve opening command 8 from the steam turbine control device 5, and is then guided to the generator 1.
2fc drive to generate output.

さて復水器19で冷却された蒸気は給水16となって排
熱回収ボイラ17へもどされる。この給水流蓋は排熱回
収ボイラ制御装置13からの給水指令により制御される
調節弁14により調整される。
Now, the steam cooled in the condenser 19 becomes feed water 16 and is returned to the exhaust heat recovery boiler 17. This water supply flow lid is adjusted by a regulating valve 14 that is controlled by a water supply command from an exhaust heat recovery boiler control device 13.

複合発電プラントにおける熱源はガスタービンのみであ
り、負荷制御はガスタービンの燃料流針のみの制御で実
現される。蒸気タービンはいわゆる変圧運転で調節弁1
3は通常運転時全開に保持される。
The only heat source in a combined power generation plant is the gas turbine, and load control is achieved by controlling only the fuel flow needle of the gas turbine. The steam turbine operates in a so-called variable pressure operation with control valve 1.
3 is held fully open during normal operation.

第4図に負荷制御装置の制御系統を示す。Figure 4 shows the control system of the load control device.

中央給電所からの負荷指令11(以下1) P Cと称
す。)変化率制限器12、上下限制限器16を経由して
系列出力22と突き合わされる。変化率制限器の設定値
13は第1軸から第n軸重での変化率の和である。加算
器14はこのだめの加算を行うものである。また上下限
制限器の設定値18も同様に第1軸から第n1111t
での各上下限設定値の第11である。
Load command 11 (hereinafter referred to as 1) PC from the central power supply station. ) It is matched with the series output 22 via the rate of change limiter 12 and the upper and lower limit limiters 16. The set value 13 of the change rate limiter is the sum of the change rates from the first axis to the nth axis load. The adder 14 performs this final addition. Similarly, the set value 18 of the upper and lower limit limiters is set from the first axis to the n1111t.
This is the 11th of each upper and lower limit setting value.

偏差23は積分器24を経由して各軸に対する負荷指令
25となる。この負荷指令は変化率制限器28、上下限
制御器32を経由して各軸出力34と突き合わされ、そ
の偏差36がガバナ操作器37に入力される。
The deviation 23 passes through an integrator 24 and becomes a load command 25 for each axis. This load command is matched with each shaft output 34 via a change rate limiter 28 and an upper/lower limit controller 32, and the deviation 36 is inputted to a governor operating device 37.

負荷指令33が各軸出力34よりも犬であれげガバナ操
作器からの出力38けガバナ上げ指令となってガスター
ビン制御装置4のガバナ設定器39の設定を上げる。逆
に各軸の出力の力が犬であればガバナ操作器からの出力
38はガバナ下げ指令となる。
If the load command 33 is lower than each shaft output 34, the output from the governor operating device becomes a governor raising command by 38, and the setting of the governor setting device 39 of the gas turbine control device 4 is raised. Conversely, if the output force of each axis is positive, the output 38 from the governor operating device becomes a governor lowering command.

ガバナ設定値は燃料I&−を指令7となり、各軸の出力
を制御する。
The governor setting value is the fuel I&- command 7, which controls the output of each axis.

負荷制御装置は共通制御部と各軸制御部との2つに分け
ることができる。第4図において一点鎖線で囲んで示し
である部分が各軸部でそれ以外が共通制御部である。
The load control device can be divided into two parts: a common control section and each axis control section. In FIG. 4, the portions surrounded by dashed lines are the respective shaft portions, and the rest are the common control portions.

共通制御部の役目は中央給電所からのI) P Cを各
軸の負荷指令として分配することで、複数個設置される
軸を統括してあたかも1台の発電所の如く運転すること
である。
The role of the common control unit is to distribute the I) PC from the central power supply station as a load command to each axis, thereby unifying multiple installed axes and operating them as if they were one power plant. .

各軸部は共通制御部から与えられた負荷指令にもとづい
て軸の出力を制御する役目を担う。起動や停止時など必
要に応じて共通制御部から切り離し、軸単独の負荷制御
ができるように構成されている。変化率や上下限制限値
を各軸部で設定しこれを共通制御へ戻して発電所負荷制
御に1史用するのCまこの理由による。
Each shaft section plays the role of controlling the output of the shaft based on the load command given from the common control section. It is configured so that it can be separated from the common control section as needed, such as when starting or stopping, and load control can be performed on the axis alone. This is the reason why the rate of change and the upper and lower limit values are set for each axis, and then returned to the common control and used for power plant load control.

第5図は変化率及び軸出力の共通制御部への戻し力につ
いて説明したものである。
FIG. 5 explains the rate of change and the return force of the shaft output to the common control section.

切替器263は各軸負荷制御が自動、すなわち共通制御
部からの負荷指令にもとづいて軸の出力を制御している
場合、所定の変化率(例えば5%/分)261を共通制
御部への戻し変化率262とする。各軸負荷制御が手動
の場合は零の変化率265を戻し変化率262とする。
When the load control of each axis is automatic, that is, the output of the axis is controlled based on the load command from the common control unit, the switch 263 switches a predetermined rate of change (for example, 5%/min) 261 to the common control unit. It is assumed that the return change rate is 262. When each axis load control is manual, the zero change rate 265 is returned to the change rate 262.

切替器401の動作は上記とは逆になり各軸負荷制御が
自動の場合、戻しの軸出力を零402とし、手動の場合
は、実際の出力を戻しの軸出力とする。
The operation of the switch 401 is opposite to that described above, and when each shaft load control is automatic, the return shaft output is set to zero 402, and when it is manual, the actual output is set as the return shaft output.

第6図は共通部の変化率制限器の構成を示すものである
FIG. 6 shows the configuration of the rate of change limiter in the common section.

DPCと軸制御部の負荷制御が手動の状態にある軸出力
の加算値132の偏差127が切替器126を経由し変
化率制限器129へ入力される。
A deviation 127 of the added value 132 of the shaft output when the load control of the DPC and the shaft control section is in a manual state is inputted to the change rate limiter 129 via the switch 126.

変化率は加算器14の出力として与えられるか負荷制御
が手動になっている軸の戻し変化率は苓であるから、負
荷制御が自動になっている軸の負荷変化率の加算値とな
る。変化率制限器の出力130は加算器131で再び加
算値132と加算され上下限制御器への入力15となる
The rate of change is given as the output of the adder 14. Since the return rate of change for the axis where the load control is manual is the same, it is the sum of the load change rates of the axes where the load control is automatic. The output 130 of the rate of change limiter is again added to the added value 132 in an adder 131 and becomes the input 15 to the upper and lower limit controller.

レジスタ138は加算値132を記憶するが制御信号1
41が零の時はレジスタの値を更新しない。制御信号1
41は制御信号1250反転である。制御信号125が
I−1,Jの値になるのは、ある軸の負萌tllj御か
自動から手動又は手動から自動に切変わる短時間だけで
ある。
Register 138 stores addition value 132, but control signal 1
When 41 is zero, the register value is not updated. Control signal 1
41 is the inversion of the control signal 1250. The control signal 125 takes the value I-1, J only for a short time when the negative control of a certain axis is switched from automatic to manual or from manual to automatic.

これからレジスタ138は、負荷制御が手動になった軸
の出力が加算値132に加算さ扛る直前の値、又は負荷
制御が手動から自動になった軸の出力が加算値132か
ら減算される直前の値i;f:れぞれ記tはすることが
できる。
From now on, the register 138 is the value immediately before the output of the axis whose load control has changed to manual is added to the addition value 132, or the value immediately before the output of the axis whose load control has changed from manual to automatic is subtracted from the addition value 132. The values of i and f: can be respectively written as t.

これから任意の軸で負荷制御のモード切替が発生した時
の加算器136の出力はモード切替が発生した軸の出力
と同じ値となる。
From now on, when load control mode switching occurs on any axis, the output of the adder 136 will have the same value as the output of the axis where the mode switching occurred.

加算器134は変化率設定器130の出力から加算器1
36の出力を減じ、その出力133は切替器126全経
由してモード切替が発生した瞬間だけ、変化率設定器1
29に強制的に設定される。
The adder 134 inputs the output of the rate of change setter 130 to the adder 1.
36, and the output 133 passes through all the switching devices 126 and is sent to the change rate setting device 1 only at the moment when mode switching occurs.
It is forcibly set to 29.

変化率設定器の出力130は瞬時に加算値134の出力
133と等しくなり、その後、この値から加算器121
の出力127に向かって設定された変化率で動く。
The output 130 of the rate of change setter instantaneously becomes equal to the output 133 of the addition value 134, and then from this value the output 130 of the adder 121
The output 127 moves at a set rate of change.

第1図に周波数バイアス回路及び周波数ノくイアスの与
え力を示す。
FIG. 1 shows the frequency bias circuit and the applied force of the frequency bias circuit.

周波数検出器55によって検出された系統周波数の変化
は周波数バイアス回路57によって相当する負荷指令(
ΔMW)58に変換される。変換の考え方については前
述の特開昭59−122713に詳述されている。ΔM
Wは各軸の負荷制御回路に追加された加算器59によっ
て各軸負荷指令に加算されると同時に係数器53及び加
算器50を経由して発電所負荷指令に加算される。
Changes in the grid frequency detected by the frequency detector 55 are converted into corresponding load commands (
ΔMW)58. The concept of conversion is detailed in the aforementioned Japanese Patent Laid-Open No. 59-122713. ΔM
W is added to each axis load command by an adder 59 added to the load control circuit of each axis, and at the same time is added to the power plant load command via a coefficient unit 53 and an adder 50.

係数器53の機能を第2図に示す。The function of the coefficient unit 53 is shown in FIG.

切替リレー531,535はそれぞれ負荷制御が自動、
すなわち発電所負荷制御中の時に1全通しそれ以外の場
合は0を通す。加算器533はΔMWに対する係数を演
算するもので発電所負荷制御中の軸が5台あれば係数は
5となる。
The switching relays 531 and 535 each have automatic load control.
That is, when power plant load control is in progress, all 1's are passed through, and in other cases, 0's are passed. The adder 533 calculates a coefficient for ΔMW, and if there are five axes under power plant load control, the coefficient will be five.

このようにして、各軸負荷指令には同様にΔMWが加算
されるが、発電所負荷指令には発電所負荷制御中の軸数
をKとすると、K×ΔMWが加算されることになる。即
ち、発電所負荷制御中の軸数に相打する分のみ戻すこと
ができ、2重に周波数数バイアス値を戻すことにならな
い。
In this way, ΔMW is similarly added to each axis load command, but when K is the number of axes under power plant load control, K×ΔMW is added to the power plant load command. That is, it is possible to return only the amount that compensates for the number of axes under power plant load control, and the frequency number bias value is not returned twice.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明装置を適用すると、複数軸
形の複合ザイクル発電プラントにおいて各軸の負荷指令
に加えた周波数バイアス値を系列側に戻す場合、単独運
転中の軸を発電所負荷制御中の軸と区別し、発電所負荷
制御中の軸数相当分のみ戻すことができ、周波数バイア
スを2重に戻すことが無い。従って周波数バイアス回路
は発電所として1つで良い。このようにして周波数変化
時のガバナーフリー制御を有効に活用することができる
As detailed above, when the device of the present invention is applied, when the frequency bias value added to the load command of each axis is returned to the series side in a multi-shaft complex cycle power plant, the axis in isolated operation can be Distinguishing from the axes under control, it is possible to return only the number of axes equivalent to the number of axes under power plant load control, and the frequency bias will not be returned twice. Therefore, only one frequency bias circuit is required for the power plant. In this way, governor free control when the frequency changes can be effectively utilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例における周波数バイアス回路
の説明図、第2図は同じく係数演算回路の説明図である
。 第3図は複合サイクル発電プラントの系統図、第4図及
び第5図は負荷制御系統図、第6図は共通制御負荷変化
率制限器の説明図である。 57・・・周波数バイアス信号を与える手段、59・・
・周波数バイアス信号を各軸の負荷指令に加算する手段
、53・・・単独運転中の軸を除いた残りの台数相当分
整数倍する手段、50・・・発電所負荷指令に加算する
手段。
FIG. 1 is an explanatory diagram of a frequency bias circuit in one embodiment of the present invention, and FIG. 2 is an explanatory diagram of a coefficient calculation circuit. FIG. 3 is a system diagram of a combined cycle power generation plant, FIGS. 4 and 5 are load control system diagrams, and FIG. 6 is an explanatory diagram of a common control load change rate limiter. 57... Means for providing a frequency bias signal, 59...
Means for adding the frequency bias signal to the load command of each axis, 53... Means for multiplying the frequency bias signal by an integral number equivalent to the number of units remaining after excluding the axes in individual operation, 50... Means for adding to the power plant load command.

Claims (1)

【特許請求の範囲】[Claims] 1、ガスタービンの軸と蒸気タービンの軸とを互いに独
立に構成するとともに、前記ガスタービンの排熱を利用
して発生せしめた蒸気によつて前記の蒸気タービンを駆
動する複数軸形の複合サイクル発電プラントにおいて、
(a)電力系統の周波数変動分に基づいて各軸に対する
周波数変動分の補償として周波数バイアス信号を与える
手段と、(b)前記のバイアス信号を与える手段からの
周波数バイアス信号を各軸の負荷信号に加算する手段と
、(c)前記周波数バイアス信号を、単独運転中の軸を
除いた残りの台数相当分に整数倍する手段と、(d)前
記の整数倍する手段の出力信号を発電所負荷指令に加算
する手段とを設けたことを特徴とする複合サイクル発電
プラントの負荷制御装置。
1. A multi-shaft combined cycle in which the shaft of a gas turbine and the shaft of a steam turbine are constructed independently of each other, and the steam turbine is driven by steam generated using exhaust heat of the gas turbine. In a power plant,
(a) means for applying a frequency bias signal as compensation for frequency fluctuations to each axis based on the frequency fluctuations of the power system; and (b) means for applying a frequency bias signal from the means for applying the bias signal to a load signal for each axis. (c) means for multiplying the frequency bias signal by an integral number equivalent to the number of units remaining after excluding the axes in individual operation; and (d) means for multiplying the output signal of the frequency bias signal by an integral number to a power plant. 1. A load control device for a combined cycle power generation plant, comprising: means for adding to a load command.
JP3880385A 1985-03-01 1985-03-01 Load controller for combined-cycle generating plant Pending JPS61200312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3880385A JPS61200312A (en) 1985-03-01 1985-03-01 Load controller for combined-cycle generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3880385A JPS61200312A (en) 1985-03-01 1985-03-01 Load controller for combined-cycle generating plant

Publications (1)

Publication Number Publication Date
JPS61200312A true JPS61200312A (en) 1986-09-04

Family

ID=12535450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3880385A Pending JPS61200312A (en) 1985-03-01 1985-03-01 Load controller for combined-cycle generating plant

Country Status (1)

Country Link
JP (1) JPS61200312A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912106A (en) * 1982-07-12 1984-01-21 Toshiba Corp Output control device of combined cycle power generating system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912106A (en) * 1982-07-12 1984-01-21 Toshiba Corp Output control device of combined cycle power generating system

Similar Documents

Publication Publication Date Title
US4173124A (en) Boiler feed water pump control systems
JPS6333372B2 (en)
JPS61200312A (en) Load controller for combined-cycle generating plant
JP2509612B2 (en) Bypass controller
US4558569A (en) Stuck pushbutton contingency operation for a steam turbine control system
GB1265841A (en)
JPS6193210A (en) Load controller of one-shaft type composite power plant
JP2613248B2 (en) Load control device for single shaft combined cycle power plant
JPS6111444Y2 (en)
JPS637247B2 (en)
JPH05272361A (en) Load controller of combined-cycle power generating plant
JPH0454809B2 (en)
JPS58105306A (en) Water supply controller
JPH0333889B2 (en)
JPS59122710A (en) Load control device for complex cycle electric power plant
JPH0331882B2 (en)
JPS6176029A (en) Generalized load controller
JPS6243046B2 (en)
JPS59115406A (en) Load controller of composite cycle power generating plant
JPS5929704A (en) Controller of turbine driving feed water pump
JPH0339163B2 (en)
JPS6361864B2 (en)
JPS59201638A (en) Output controller of composite generating plant
JPS6098106A (en) Electric turbine governor
JPH0738125B2 (en) Integrated load control device