JPS6119956B2 - - Google Patents

Info

Publication number
JPS6119956B2
JPS6119956B2 JP53061719A JP6171978A JPS6119956B2 JP S6119956 B2 JPS6119956 B2 JP S6119956B2 JP 53061719 A JP53061719 A JP 53061719A JP 6171978 A JP6171978 A JP 6171978A JP S6119956 B2 JPS6119956 B2 JP S6119956B2
Authority
JP
Japan
Prior art keywords
seawater
emergency auxiliary
auxiliary equipment
building
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53061719A
Other languages
Japanese (ja)
Other versions
JPS54153996A (en
Inventor
Masahiro Komokawa
Kenzo Gunyasu
Shohei Amemori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6171978A priority Critical patent/JPS54153996A/en
Publication of JPS54153996A publication Critical patent/JPS54153996A/en
Publication of JPS6119956B2 publication Critical patent/JPS6119956B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は原子力発電所における非常用補機冷却
海水系に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an emergency auxiliary equipment cooling seawater system in a nuclear power plant.

非常用補機冷却海水系は原子炉事故時または原
子炉停止時等に作動する非常用補機設備の熱を除
去する非常用補機冷却系を熱交換器を介して冷却
するための系統である。以下第1図を参照して従
来の非常用補機冷却海水系の説明を行う。第1図
のうち破線で示した部分が非常用補機冷却系23
でありその熱を除去するための非常用補機冷却系
23の熱交換器1に冷却海水を送る系統が実線で
示す非常用補機冷却海水系24である。非常用補
機冷却海水系24は海水の水源11より非常用補
機冷却海水ポンプ2で海水導入配管3を通じて熱
交換器1に冷却海水を送り、非常用補機冷却系2
3を冷却した後海水導出配管4を通じて放水口1
2へ放出する系統であつて、大地震時にも確実に
熱交換器に冷却海水を供給し、通過させ冷却でき
なければならない。
The emergency auxiliary equipment cooling seawater system is a system that cools the emergency auxiliary equipment cooling system, which removes heat from the emergency auxiliary equipment that operates in the event of a reactor accident or shutdown, through a heat exchanger. be. The conventional emergency auxiliary equipment cooling seawater system will be explained below with reference to FIG. The part indicated by the broken line in Figure 1 is the emergency auxiliary cooling system 23.
The system that sends cooling seawater to the heat exchanger 1 of the emergency auxiliary cooling system 23 for removing the heat is the emergency auxiliary cooling seawater system 24 shown by the solid line. The emergency auxiliary equipment cooling seawater system 24 sends cooling seawater from the seawater source 11 to the heat exchanger 1 through the seawater introduction pipe 3 with the emergency auxiliary equipment cooling seawater pump 2, and the emergency auxiliary equipment cooling system 2
After cooling the water outlet 1 through the seawater outlet pipe 4
The system must be able to reliably supply cooling seawater to the heat exchanger and cool it by passing it through, even in the event of a major earthquake.

従来、原子力発電所の建屋51外配管の支持方
法としては、第2図のように海水導出配管4を直
接地表31上に配置する方法、第3図のように海
水導出配管4を適切な架台41を介して地表31
上に配置する方法、第4図のように地中に大径の
配管44を埋設、この配管44内に架台42を介
して支持する方法、第5図のように人工岩46を
直接岩盤32上に設置し、この人工岩46上にコ
ンクリート製ダクト45を設け、このダクト45
内に架台43を介して支持する方法などによつて
施されている。
Conventionally, methods for supporting the piping outside the building 51 of a nuclear power plant include placing the seawater outlet piping 4 directly on the ground surface 31 as shown in Figure 2, and placing the seawater outlet piping 4 on an appropriate mount as shown in Figure 3. 41 to surface 31
A method in which a large-diameter pipe 44 is buried underground as shown in FIG. A concrete duct 45 is installed on this artificial rock 46, and this duct 45
This is carried out by a method of supporting the frame 43 inside the frame 43.

しかし、第2図、第3図および第4図で示され
た方法の場合、大地震時には、土砂の相対変位に
よつて海水導出配管4に過大な変形を生じて、あ
るいは埋設配管の破壊による土圧によつて海水導
出配管4が閉塞するおそれがある。
However, in the case of the methods shown in Figures 2, 3, and 4, in the event of a large earthquake, the seawater outlet pipe 4 may be excessively deformed due to the relative displacement of earth and sand, or the buried pipe may be destroyed. There is a risk that the seawater outlet pipe 4 may become clogged due to earth pressure.

なお建屋内の海水導出配管は建屋内架台(図示
せず)等により支持されており、大地震時等に破
壊される恐れはほとんどない。
The seawater outlet piping inside the building is supported by a frame (not shown) inside the building, so there is little risk of it being destroyed in the event of a major earthquake.

一方第5図で示された方法の場合は、直接岩盤
32と人工岩46によつて支持されるので、海水
導出配管4に過大な変形を生じることがなく、ま
た充分な強度を持つコンクリート製ダクト45に
格納することによつて土圧が直接に海水導出配管
4にかかることも無いが、ダクト45を含めて建
設工程が長くなる。
On the other hand, in the case of the method shown in FIG. 5, since the seawater outlet pipe 4 is directly supported by the bedrock 32 and the artificial rock 46, excessive deformation does not occur in the seawater outlet pipe 4, and the pipe is made of concrete with sufficient strength. Although the earth pressure is not directly applied to the seawater outlet pipe 4 by storing it in the duct 45, the construction process including the duct 45 becomes longer.

本発明は、上記の非常用補機冷却海水系24の
海水導出配管4の建設工程の短縮、安全性および
耐震性をさらに増すために、建屋51外の海水導
出配管4が閉塞した場合にも、非常用補機の冷却
という機能の維持ができる原子力発電所の配管の
耐震安全装置(以下非常用放水装置という)を提
供するものである。すなわち、第1の目的とする
ところは、非常用補機冷却系23の熱交換器1を
格納する建屋51外の海水導出配管4の支持方法
に関係なく、非常用補機冷却系23の機能を維持
し、信頼性および耐震性をさらに増すことができ
る配管の非常用放水装置を得ることにある。次に
第2の目的とするところは、数十mもある建屋5
1外の海水導出配管4の配管等の支持方法を簡単
にして、建設工程の短縮をはかることにある。
In order to further shorten the construction process of the seawater outlet pipe 4 of the emergency auxiliary equipment cooling seawater system 24, and further increase safety and earthquake resistance, the present invention provides a system that can be used even when the seawater outlet pipe 4 outside the building 51 is blocked. , provides an earthquake-resistant safety device for nuclear power plant piping (hereinafter referred to as an emergency water discharge device) that can maintain the function of cooling emergency auxiliary equipment. That is, the first objective is to improve the function of the emergency auxiliary cooling system 23 regardless of the method of supporting the seawater outlet pipe 4 outside the building 51 that houses the heat exchanger 1 of the emergency auxiliary cooling system 23. The objective is to obtain an emergency water discharge system for piping that can maintain the water quality and further increase reliability and earthquake resistance. Next, the second objective is the building 5, which is several tens of meters long.
The purpose is to shorten the construction process by simplifying the method of supporting piping, etc. for the seawater outlet piping 4.

以下図面を参照して本発明の一実施例を説明す
る。第6図は、本発明の適用場所を示すものであ
る。この図からわかるように、配管の非常用放水
装置101を非常用補機冷却系23の熱交換器1
を格納する建屋51内から建屋壁52の外部付近
にわたり設置するものである。非常用補機冷却海
水系24は、原子炉事故時または原子炉停止時等
に作動するものである。非常用補機21より伝達
される熱は、非常用補機冷却系23のポンプ22
によつて循環する淡水冷却水により冷却され、更
に熱交換器1を介して非常用補機冷却海水系24
に伝達除去される。非常用補機冷却海水系24は
ポンプ2により水源11から海水導入配管3を通
じて熱交換器1に冷却海水を送り込み、この冷却
海水は熱交換器1で熱を受け、海水導出配管4を
通して放水口12に放出する。非常用補機冷却海
水系24の海水導出配管4には、本発明の非常用
放水装置101が設置されており、その実施例を
第7図に示す。この図からわかるように非常用補
機冷却海水系24の建屋51内の海水導出配管4
に建屋51外に開口をす分岐放出管5を設置し、
この分岐放出管5に設定圧力以上で管路が開く破
壊板121を設置し、海水を建屋51外に放出す
るものである。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 6 shows where the present invention is applied. As can be seen from this figure, the emergency water discharge device 101 of the piping is connected to the heat exchanger 1 of the emergency auxiliary equipment cooling system 23.
It is installed from the inside of the building 51 where the equipment is stored to near the outside of the building wall 52. The emergency auxiliary equipment cooling seawater system 24 is operated in the event of a nuclear reactor accident or nuclear reactor shutdown. The heat transferred from the emergency auxiliary equipment 21 is transferred to the pump 22 of the emergency auxiliary equipment cooling system 23.
The system is cooled by freshwater cooling water circulated by
transmission is removed. The emergency auxiliary equipment cooling seawater system 24 uses a pump 2 to send cooling seawater from a water source 11 to a heat exchanger 1 through a seawater inlet pipe 3, and this cooling seawater receives heat in the heat exchanger 1 and passes through a seawater outlet pipe 4 to a water outlet. Released on 12th. An emergency water discharge device 101 of the present invention is installed in the seawater outlet pipe 4 of the emergency auxiliary equipment cooling seawater system 24, and an embodiment thereof is shown in FIG. As can be seen from this figure, the seawater outlet pipe 4 in the building 51 of the emergency auxiliary equipment cooling seawater system 24
A branch discharge pipe 5 having an opening outside the building 51 is installed,
A break plate 121 is installed in this branch discharge pipe 5 so that the pipe opens when the pressure exceeds a set pressure, and seawater is discharged to the outside of the building 51.

次に作用を説明する。非常用補機冷却海水系2
4は、原子炉事故時または原子炉停止時等に作動
し、原子炉等で発生する熱負荷は非常用補機21
を通じて非常用補機冷却系23ポンプ22を運転
することによつて、熱交換器1を介して、熱を非
常用補機冷却海水系24に伝えて除熱し、放水口
12に放出する。
Next, the action will be explained. Emergency auxiliary equipment cooling seawater system 2
4 is activated in the event of a nuclear reactor accident or nuclear reactor shutdown, etc., and the heat load generated in the reactor etc. is handled by the emergency auxiliary equipment 21.
By operating the pump 22 of the emergency auxiliary cooling system 23 through the heat exchanger 1, heat is transferred to the emergency auxiliary cooling seawater system 24, where the heat is removed, and the heat is discharged to the water outlet 12.

しかし、前記海水導出配管4が第5図のように
強固な支持方法で支持されていない場合には、大
地震時、前記海水導出配管4は建屋51の外で閉
塞する可能性がある。(なお非常用補機冷却海水
系の海水導入配管3は第5図のように大地震時に
も建全性が保たれる構造となつている。)このよ
うな建屋外の海水導出配管4の閉塞時に、海水導
出配管4の圧力はポンプ2のポンプ特性曲線によ
つて高くなり破壊板121が破れると冷却水は分
岐放出管5を通して建屋51外に放出される。よ
つて非常用補機冷却海水系24を通水継続運転す
ることが可能となり、原子炉等で発生する熱負荷
の除去ができる。なお分岐放出管5から放出され
る海水は建屋の外に流れ出るが、原子力発電所の
機能にほとんど影響はない。また本願の分岐放出
管5は地震等により破損する確率が小さい建屋内
の海水導出配管4から分岐されているため安全性
が高い。即ち非常用補機冷却系23および非常用
補機冷却海水系24の信頼性および耐震性を増す
ことができ、その結果原子力発電所の安全性を高
める。
However, if the seawater outlet pipe 4 is not supported by a strong support method as shown in FIG. 5, the seawater outlet pipe 4 may become blocked outside the building 51 in the event of a major earthquake. (As shown in Figure 5, the seawater inlet piping 3 of the emergency auxiliary equipment cooling seawater system has a structure that maintains its integrity even in the event of a major earthquake.) At the time of blockage, the pressure in the seawater outlet pipe 4 increases according to the pump characteristic curve of the pump 2, and when the rupture plate 121 ruptures, the cooling water is discharged to the outside of the building 51 through the branch discharge pipe 5. Therefore, the emergency auxiliary equipment cooling seawater system 24 can continue to be operated with water flowing through it, and the heat load generated in the nuclear reactor or the like can be removed. Although the seawater released from the branch discharge pipe 5 flows out of the building, it has almost no effect on the functions of the nuclear power plant. Further, the branch discharge pipe 5 of the present application is highly safe because it is branched from the seawater outlet pipe 4 inside the building, which has a low probability of being damaged by earthquakes or the like. That is, the reliability and earthquake resistance of the emergency auxiliary cooling system 23 and the emergency auxiliary cooling seawater system 24 can be increased, and as a result, the safety of the nuclear power plant is improved.

また、海水導出配管4の建屋51の外での配管
の支持方法が簡易なものですむため、建設工程の
短縮をはかることができる。
Further, since the method of supporting the seawater outlet piping 4 outside the building 51 is simple, the construction process can be shortened.

以上説明のように本発明は構成されているた
め、大地震時に建屋外の海水導出配管に閉塞が生
じたとしても非常用補機冷却系23および非常用
補機冷却海水系24は連続通水運転が可能とな
り、信頼性および耐震性を更に増すことができ
る。また屋外での配管支持方法が簡単になるため
建設工程の短縮をはかることができる。
Since the present invention is constructed as described above, even if a blockage occurs in the seawater outlet piping outside the building during a major earthquake, the emergency auxiliary equipment cooling system 23 and the emergency auxiliary equipment cooling seawater system 24 will continue to have water flow. It becomes possible to operate the system, and further increases reliability and earthquake resistance. Furthermore, since the method of supporting the pipes outdoors is simplified, the construction process can be shortened.

なお、前述の如く水源11は海水だけでなく淡
水でも同様となる。
Note that, as described above, the water source 11 can be not only seawater but also freshwater.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の非常用補機冷却系及び非常用補
機冷却海水系の概略系統構成を示す説明図、第2
図、第3図、第4図、第5図は従来の非常用補機
冷却海水系の建屋外での配管支持方法を説明する
ための断面図、第6図は本発明の配管の耐震安全
装置を設けた非常用補機冷却系および非常用補機
冷却海水系の概略系統構成を示す説明図、第7図
は本発明の実施例を示す系統構成図である。 1……熱交換器、2……ポンプ、3……海水導
入配管、4……海水導出配管、5……分岐放出
管、11……水源、12……放水口、21……非
常用補機、22……ポンプ、23……非常用補機
冷却系、24……非常用補機冷却海水系、31…
…地表、101……非常用放水装置(耐震安全装
置)、121……破壊板。
Figure 1 is an explanatory diagram showing the schematic system configuration of a conventional emergency auxiliary equipment cooling system and emergency auxiliary equipment cooling seawater system.
Figures 3, 4, and 5 are cross-sectional views for explaining the conventional method of supporting piping outside the building of an emergency auxiliary cooling seawater system, and Figure 6 shows the seismic safety of piping according to the present invention. FIG. 7 is an explanatory diagram showing a schematic system configuration of an emergency auxiliary cooling system and an emergency auxiliary cooling seawater system provided with devices, and FIG. 7 is a system configuration diagram showing an embodiment of the present invention. 1...Heat exchanger, 2...Pump, 3...Seawater inlet piping, 4...Seawater outlet piping, 5...Branch discharge pipe, 11...Water source, 12...Water outlet, 21...Emergency supplement Machine, 22...Pump, 23...Emergency auxiliary cooling system, 24...Emergency auxiliary cooling seawater system, 31...
...Ground surface, 101...Emergency water spray device (earthquake safety device), 121...Destruction plate.

Claims (1)

【特許請求の範囲】[Claims] 1 原子力発電所の建屋内に設置された非常用補
機設備の熱を熱交換器を介して海水で冷却する非
常用補機冷却海水系において、前記熱交換器の建
屋内の海水導出配管から分岐して建屋外に開口す
る分岐放出管を設け、この分岐放出管に破壊板を
設けてなることを特徴とする非常用補機冷却海水
系。
1. In the emergency auxiliary equipment cooling seawater system that cools the heat of the emergency auxiliary equipment installed in the building of a nuclear power plant with seawater via a heat exchanger, from the seawater outlet piping inside the building of the heat exchanger. An emergency auxiliary equipment cooling seawater system characterized by having a branch discharge pipe that branches out and opens outside the building, and a break plate provided on the branch discharge pipe.
JP6171978A 1978-05-25 1978-05-25 Sub-cooling sea water system for emergency Granted JPS54153996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6171978A JPS54153996A (en) 1978-05-25 1978-05-25 Sub-cooling sea water system for emergency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6171978A JPS54153996A (en) 1978-05-25 1978-05-25 Sub-cooling sea water system for emergency

Publications (2)

Publication Number Publication Date
JPS54153996A JPS54153996A (en) 1979-12-04
JPS6119956B2 true JPS6119956B2 (en) 1986-05-20

Family

ID=13179303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6171978A Granted JPS54153996A (en) 1978-05-25 1978-05-25 Sub-cooling sea water system for emergency

Country Status (1)

Country Link
JP (1) JPS54153996A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5188906B2 (en) * 2008-08-07 2013-04-24 日立Geニュークリア・エナジー株式会社 Anomaly detection equipment for nuclear power plants
JP6806445B2 (en) * 2016-01-18 2021-01-06 三菱重工業株式会社 Piping support structure and its formation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117799A (en) * 1974-06-26 1976-02-12 Kraftwerk Union Ag

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117799A (en) * 1974-06-26 1976-02-12 Kraftwerk Union Ag

Also Published As

Publication number Publication date
JPS54153996A (en) 1979-12-04

Similar Documents

Publication Publication Date Title
US4971752A (en) Safety design for nuclear power plants
EP2096644B1 (en) Passive cooling and depressurization system and pressurized water nuclear power plant
KR102020908B1 (en) Main steam system that reduces the release of radioactive material to the atmosphere under severe accident
US4050983A (en) Passive containment system
US3168445A (en) Safety equipment for nuclear powerreactor plants
CA2968581C (en) Containment vessel drain system
JP2983290B2 (en) Heat release equipment for nuclear reactors, especially pressurized water reactors
JPS6184588A (en) Underground type nuclear power plant
JPS6119956B2 (en)
US20200234836A1 (en) System and method for reducing atmospheric release of radioactive materials caused by severe accident
KR102113284B1 (en) system and a method for reducing the release of radioactive material to the atmosphere under severe accident
US10446279B2 (en) Boiling water type nuclear power plant
JPS58193492A (en) Emergency auxiliary machine cooling sea water system
JP6277466B2 (en) Nuclear power plant equipment.
JPS58193493A (en) Emergency auxiliary machine cooling sea water system
JP6348855B2 (en) Emergency core cooling system for nuclear power plants
CN111063462B (en) Self-generating cooling system after spent fuel pool accident
JPH0450798A (en) Emitted radiation reduction device
JP3449583B2 (en) Condensate storage equipment
JP4974258B1 (en) Nuclear power plant with radioactive decontamination facility
KR101565547B1 (en) Coping methods for extreme natural events in nuclear power plants
RU2106025C1 (en) Shielding system for water-moderated reactor containment
JP2017219525A (en) Device for preventing nuclear reactor from leaking radioactivity
RU2093909C1 (en) Nuclear power plant
JPH02157699A (en) Sea water collecting facility