JPS58193492A - Emergency auxiliary machine cooling sea water system - Google Patents

Emergency auxiliary machine cooling sea water system

Info

Publication number
JPS58193492A
JPS58193492A JP58038958A JP3895883A JPS58193492A JP S58193492 A JPS58193492 A JP S58193492A JP 58038958 A JP58038958 A JP 58038958A JP 3895883 A JP3895883 A JP 3895883A JP S58193492 A JPS58193492 A JP S58193492A
Authority
JP
Japan
Prior art keywords
seawater
emergency auxiliary
auxiliary equipment
emergency
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58038958A
Other languages
Japanese (ja)
Inventor
薦川 雅洋
郡安 憲三
雨森 昌平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58038958A priority Critical patent/JPS58193492A/en
Publication of JPS58193492A publication Critical patent/JPS58193492A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は原子力発電所における非常用補機冷却海水系に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an emergency auxiliary equipment cooling seawater system in a nuclear power plant.

非常用補機冷却海水系は原子炉事故時または原子炉停止
時等に作動する非常用補機設備の熱を除去する非常用補
機冷却系を熱交換器を介して冷却するための系統である
。以下第1図を参照して従来の非常用補機冷却海水系の
説明を行う。181図のうち破線で示した部分が非常用
補機冷却系23でありその熱を除去するための非常用補
機冷却系23の熱交換器1に冷却海水を送る系統が実線
で示す非常用補機冷却海水系24である。非常用補機冷
却海水系24は海水の水源11より非常用補機冷却海水
ポンプ2で海水導入配管3を通じて熱交換器lに冷却海
水を送り、非常用補機冷却系おを冷却した後海水導出配
管4を通じて放水口12へ放出する系統であって、大地
震時にも確実に熱交換器に冷却海水を供給し、通過させ
冷却できなければならない。
The emergency auxiliary equipment cooling seawater system is a system that cools the emergency auxiliary equipment cooling system, which removes heat from the emergency auxiliary equipment that operates in the event of a reactor accident or shutdown, through a heat exchanger. be. The conventional emergency auxiliary equipment cooling seawater system will be explained below with reference to FIG. In Figure 181, the part shown by the broken line is the emergency auxiliary equipment cooling system 23, and the system that sends cooling seawater to the heat exchanger 1 of the emergency auxiliary equipment cooling system 23 to remove the heat is shown by the solid line. This is an auxiliary equipment cooling seawater system 24. The emergency auxiliary equipment cooling seawater system 24 sends cooling seawater from the seawater source 11 to the heat exchanger l through the seawater introduction pipe 3 with the emergency auxiliary equipment cooling seawater pump 2, and after cooling the emergency auxiliary equipment cooling system O, the seawater is supplied. The system discharges water to the water outlet 12 through the lead-out pipe 4, and must be able to reliably supply and cool the heat exchanger with cooling seawater even in the event of a major earthquake.

従来、原子力発電所の建屋51外配管の支持方法として
は、第2図のように海水導出配管4を直接地表31上に
配置する方法、第3図のように海水導出配管4を適切な
架台41を介して地表31上に配置する方法、第4図の
ように地中に大径の配管44を埋設、この配管44内に
架台42を介して支持する方法、第5図のように人工者
46を直接岩磐32上に設置し、この人工台46上にコ
ンクリート製ダクト45を設け、このダクト45内に架
台43を介して支持する方法などによって施されている
Conventionally, methods for supporting the piping outside the building 51 of a nuclear power plant include placing the seawater outlet piping 4 directly on the ground surface 31 as shown in Figure 2, and placing the seawater outlet piping 4 on an appropriate mount as shown in Figure 3. 41 on the ground surface 31, a method of burying a large-diameter pipe 44 underground as shown in FIG. This is carried out by installing a concrete duct 46 directly on the rock 32, providing a concrete duct 45 on the artificial stand 46, and supporting it within the duct 45 via a pedestal 43.

しかし、第2図、第3図および第4図で示された方法の
場合、大地震時には、土砂の相対変位によって海水導出
配管4に過大な変形を生じて、あるいは埋設配管の破壊
による土圧によって海水導出配管4が閉塞するおそれが
ある。
However, in the case of the methods shown in Figures 2, 3, and 4, in the event of a major earthquake, excessive deformation may occur in the seawater outlet pipe 4 due to relative displacement of earth and sand, or earth pressure may occur due to destruction of the buried pipe. There is a risk that the seawater outlet pipe 4 may become clogged.

なお建屋内の海水導出配管は建屋自架台(図示せず)等
により支持されており、大地震時等に破壊される恐れは
ほとんどない。
The seawater outlet piping inside the building is supported by the building's own trestle (not shown), so there is little risk of it being destroyed in the event of a major earthquake.

一方第5図で示された方法の場合は、直接岩盤32と人
工台46によって支持されるので、海水導出配管4に過
大な変形を生じることがなく、また充分な強度を持つコ
ンクリート製ダクト45に格納することによって土圧が
直接に海水導出配管4にかかることも無いが、ダクト4
5を含めて建設工程が長くなる。
On the other hand, in the case of the method shown in FIG. 5, since it is directly supported by the bedrock 32 and the artificial stand 46, excessive deformation does not occur in the seawater outlet pipe 4, and the concrete duct 45 has sufficient strength. By storing the seawater in the duct 4, earth pressure is not directly applied to the seawater outlet pipe 4.
5, the construction process will be longer.

本発明は、上記の非常用補機冷却海水系24の海水導出
配管4の建設工程の短縮、安全性および耐震性をさらに
増すために、建屋51外の海水導出配管4が閉塞した場
合にも、非常用補機の冷却という機能の維持ができる原
子力発電所の配管の耐震安全装置(以下非常用放水装置
という)を提供するものである。すなわち、第1の目的
とするところは、非常用補機冷却系23の熱交換器1を
格納するJill151外の海水導出配管4の支持方法
に関係なく、非常用補機冷却系23の機能を維持し、信
頼性および耐震性をさらに増すことができる配管の非常
用放水装置を得ることにある。次に第2の目的とすると
ころは、数十mもある建屋51外の海水導出配管4の配
管等の支持方法を簡単にして、建設工程の短縮をはかる
ことにある。
In order to further shorten the construction process of the seawater outlet pipe 4 of the emergency auxiliary equipment cooling seawater system 24, and further increase safety and earthquake resistance, the present invention provides a system that can be used even when the seawater outlet pipe 4 outside the building 51 is blocked. , provides an earthquake-resistant safety device for nuclear power plant piping (hereinafter referred to as an emergency water discharge device) that can maintain the function of cooling emergency auxiliary equipment. That is, the first objective is to maintain the function of the emergency auxiliary cooling system 23 regardless of the method of supporting the seawater outlet pipe 4 outside the Jill 151 that houses the heat exchanger 1 of the emergency auxiliary cooling system 23. The object of the present invention is to obtain an emergency water discharge system for piping that can be maintained and further increase reliability and earthquake resistance. The second objective is to shorten the construction process by simplifying the method of supporting the seawater outlet piping 4 outside the building 51, which is several tens of meters long.

以下図面を参照して本発明の一実施例を説明する。第6
図は、本発明の適用場所を示すものである。
An embodiment of the present invention will be described below with reference to the drawings. 6th
The figure shows the place of application of the invention.

この図かられかるように、配管の非常用放水装置101
を非常用補機冷却系23の熱交換器1を格納する建屋5
1内から@@@FA2の外部付近にわたり設置するもの
である。非常用補機冷却系水系寓  ′は、原子炉事故
時または原子炉停止時等に作動するものである。非常用
補fi21より伝達される熱は、非常用補機冷却系23
のポンプ22によって循環する淡水冷却水により冷却さ
れ、更に熱交換器1を介して非常用補機冷却海水系24
に伝達除去される。非常用補機冷却海水系24はポンプ
2により水源11から海水導入配管3を通じて熱交換器
1に冷却海水を送り込み、この冷却海水は熱交換器1で
熱を受け、海水導出配管4を通して放水口12に放出す
る。非常用補機冷却海水系24の海水導出配管4には、
本発明の非常用放水装置101が設置されており、その
実施例を第7図に示す。この図かられかるように非常用
補機冷却海水系24の建屋51内の海水導出配管4に建
屋51外に開口をす分岐放出管5を設置し、この分岐し
た分岐配管5を分岐点での通常運転水頭よりも高くした
立上り管151とし、その後建屋51の外へ導く構成で
ある。この構成では、通常運転時には、分岐配管5の分
岐点より放水口までの損水水頭分だけ立上り管151に
非常用補機冷却海水が上昇するが、頂上までは上昇しな
い。放水ライン4が建屋51の外で配管閉塞した時は、
非常用補機冷却海水ポンプ2の特性によって放水ライン
4内の圧力が上り、立上り管151の頂上まで上り4]
IF1.51の外へ放水される。立上り管151の高さ
および管径を適切に設計することによって、ひとたび立
上り管151頂上まで水位が上昇し放水された後は、サ
イフオンが形成されて、分岐配管5の系統抵抗は減少し
、非常用補機冷却海水系は放水ライン4の閉塞前の通常
運転水量を流す連転状態に自動的に戻る。よって非常用
補機冷却海水系24を通水継続運転することが可能とな
4)、原子炉等で発生する熱負荷の除去ができる。なお
分岐放出管5から放出される海水は建屋の外に流れ出る
が、兎子力発電所の機能にほとんど影響はない。また本
願の分岐放出管5は地震等により破損する確率が小さい
建屋内の海水導出配管4から分岐されているため安全性
が高い−即ち非常用補機冷却系23および非常用補機冷
却海水系24の信頼性および耐震性を増すことができ、
その結果原子力発電所の安全性を高める。さらにまた本
願の分岐配管5には可動部がないので、故障する要因は
ほとんどなく信頼性が非常に高い。
As you can see from this figure, the emergency water discharge device 101 for piping
The building 5 houses the heat exchanger 1 of the emergency auxiliary cooling system 23.
It is installed from inside FA1 to near the outside of FA2. The emergency auxiliary cooling system water system operates in the event of a nuclear reactor accident or reactor shutdown. The heat transferred from the emergency auxiliary equipment cooling system 23
It is cooled by the freshwater cooling water circulating by the pump 22, and is further cooled by the emergency auxiliary equipment cooling seawater system 24
transmission is removed. The emergency auxiliary equipment cooling seawater system 24 uses a pump 2 to send cooling seawater from a water source 11 to a heat exchanger 1 through a seawater inlet pipe 3, and this cooling seawater receives heat in the heat exchanger 1 and passes through a seawater outlet pipe 4 to a water outlet. Released on 12th. The seawater outlet pipe 4 of the emergency auxiliary equipment cooling seawater system 24 includes:
An emergency water spray system 101 of the present invention is installed, and an embodiment thereof is shown in FIG. As can be seen from this figure, a branch discharge pipe 5 that opens outside the building 51 is installed in the seawater outlet pipe 4 in the building 51 of the emergency auxiliary cooling seawater system 24, and this branch pipe 5 is connected to the branch point. The structure is such that the riser pipe 151 is set higher than the normal operating water head of the pipe, and is then led to the outside of the building 51. In this configuration, during normal operation, the emergency auxiliary cooling seawater rises to the riser pipe 151 by the water head loss from the branch point of the branch pipe 5 to the water outlet, but does not rise to the top. When the water discharge line 4 becomes blocked outside the building 51,
Due to the characteristics of the emergency auxiliary equipment cooling seawater pump 2, the pressure in the water discharge line 4 increases and rises to the top of the riser pipe 151 4]
Water is discharged outside of IF1.51. By appropriately designing the height and pipe diameter of the riser pipe 151, once the water level rises to the top of the riser pipe 151 and water is discharged, a siphon is formed and the system resistance of the branch pipe 5 is reduced, resulting in an emergency situation. The auxiliary equipment cooling seawater system automatically returns to the continuous operation state in which the normal operating amount of water flows before the water discharge line 4 was blocked. Therefore, it is possible to continue operating the emergency auxiliary equipment cooling seawater system 24 through water flow4), and the heat load generated in a nuclear reactor or the like can be removed. Although the seawater discharged from the branch discharge pipe 5 flows out of the building, it has almost no effect on the functions of the Ushiko Power Plant. In addition, the branch discharge pipe 5 of the present application is highly safe because it is branched from the seawater outlet pipe 4 in the building, which has a low probability of being damaged by earthquakes, etc. - that is, the emergency auxiliary equipment cooling system 23 and the emergency auxiliary equipment cooling seawater system. 24 reliability and earthquake resistance,
As a result, the safety of nuclear power plants will be increased. Furthermore, since the branch piping 5 of the present invention has no moving parts, there are almost no causes of failure and the reliability is very high.

また、海水導出配管4の建J[51の外での配管の支持
方法が簡易なものですむため、建設工程の短縮をはかる
ことができる。
Further, since the method of supporting the seawater outlet piping 4 outside the building 51 is simple, the construction process can be shortened.

以上説明のように本発明は構成されているため、大地震
時に建屋外の海水導出配管に閉塞が生じたとしても非常
用補機冷却系23および非常用補機冷却海水系24は連
続通水運転が可能となり、信頼性および耐震性を更に増
すことができる。また屋外での配管支持方法が簡単にな
るため建設工程の短縮をはかることができる。
Since the present invention is constructed as described above, even if a blockage occurs in the seawater outlet piping outside the building during a major earthquake, the emergency auxiliary equipment cooling system 23 and the emergency auxiliary equipment cooling seawater system 24 will continue to have water flow. It becomes possible to operate the system, and further increases reliability and earthquake resistance. Furthermore, since the method of supporting the pipes outdoors is simplified, the construction process can be shortened.

なお、水源11は海水だけでなく淡水でも同様となる。Note that the water source 11 may be not only seawater but also freshwater.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の非常用補機冷却系及び非常用補機冷却海
水系の概略系統構成を示す説明図、第2図、第3図、第
4図、第5図は従来の非常用補機冷却海水系の建屋外で
の配管支持方法を説明するための断面図、第6図は本発
明の配管の耐震安全装置を設けた非常用補機冷却系およ
び非常用補機冷却海水系の概略系統構成を示す説明図、
第7図は本発明の実施例を示す系統構成図である。 1・・・熱交換器    2・・・ポンプ3・・・海水
導入配管  4・・・海水導出配管5・・・分岐攻出管
   11・・・水源12・・・放水口     21
・・・非常用補機22・・・ポンプ     23・・
1F常用補m冷却系24・・・非常用補機冷却海水系 31・・・地表 101・・・非常用放水装置(耐震安全装置)代理人 
弁理士 則 近 憲 佑 第1図 ! ] 第2図   第3図 第4図 第5図
Figure 1 is an explanatory diagram showing a schematic system configuration of a conventional emergency auxiliary cooling system and an emergency auxiliary cooling seawater system, and Figures 2, 3, 4, and 5 are diagrams of conventional emergency auxiliary cooling systems. Fig. 6 is a cross-sectional view for explaining the piping support method outside the building for the machine cooling seawater system, and shows the emergency auxiliary cooling system and the emergency auxiliary cooling seawater system equipped with the piping seismic safety device of the present invention. An explanatory diagram showing a schematic system configuration,
FIG. 7 is a system configuration diagram showing an embodiment of the present invention. 1... Heat exchanger 2... Pump 3... Seawater introduction pipe 4... Seawater outlet pipe 5... Branch outflow pipe 11... Water source 12... Water outlet 21
...Emergency auxiliary equipment 22...Pump 23...
1F regular auxiliary cooling system 24...Emergency auxiliary cooling seawater system 31...Ground surface 101...Emergency water discharge system (seismic safety device) agent
Patent Attorney Noriyuki Chika Figure 1! ] Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 原子力発電所の建屋内に設置された非常用補機設備の熱
を熱交換器を介して海水で冷却する非常用補機冷却海水
系において、前記熱交換器の建屋内の海水導出配管から
分岐して建屋外に開口する分岐放出管を設け、この分岐
放出管の一部が海水導出配管の分岐点から海水導出配管
の放水口までの損失水頭よりも高く立ち上がっているこ
とを特徴とする非常用補機冷却海水系。
In the emergency auxiliary equipment cooling seawater system that cools the heat of the emergency auxiliary equipment installed in the building of a nuclear power plant with seawater via a heat exchanger, a branch from the seawater outlet pipe inside the building of the heat exchanger is used. A branch discharge pipe that opens outside the building is installed, and a part of the branch discharge pipe rises higher than the water head loss from the branch point of the seawater discharge pipe to the discharge port of the seawater discharge pipe. Auxiliary equipment cooling seawater system.
JP58038958A 1983-03-11 1983-03-11 Emergency auxiliary machine cooling sea water system Pending JPS58193492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58038958A JPS58193492A (en) 1983-03-11 1983-03-11 Emergency auxiliary machine cooling sea water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58038958A JPS58193492A (en) 1983-03-11 1983-03-11 Emergency auxiliary machine cooling sea water system

Publications (1)

Publication Number Publication Date
JPS58193492A true JPS58193492A (en) 1983-11-11

Family

ID=12539689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58038958A Pending JPS58193492A (en) 1983-03-11 1983-03-11 Emergency auxiliary machine cooling sea water system

Country Status (1)

Country Link
JP (1) JPS58193492A (en)

Similar Documents

Publication Publication Date Title
KR102020908B1 (en) Main steam system that reduces the release of radioactive material to the atmosphere under severe accident
JP2983290B2 (en) Heat release equipment for nuclear reactors, especially pressurized water reactors
JP2013036921A (en) Nuclear power plant support vessel
JPH05307094A (en) Reactor cooling system of boiling water type nuclear reactor
JPS58193492A (en) Emergency auxiliary machine cooling sea water system
JPS6119956B2 (en)
JP2004061192A (en) Nuclear power generation facilities
US10446279B2 (en) Boiling water type nuclear power plant
JP3449583B2 (en) Condensate storage equipment
JPS58193493A (en) Emergency auxiliary machine cooling sea water system
JP2883938B2 (en) ▲ high ▼ stand type nuclear power plant
JP4960200B2 (en) Fire-extinguishing system for nuclear power plants
JPH02157699A (en) Sea water collecting facility
KR101565547B1 (en) Coping methods for extreme natural events in nuclear power plants
JP2020531812A (en) Decompression and coolant injection system for a very simplified boiling water reactor
JP4974258B1 (en) Nuclear power plant with radioactive decontamination facility
CN210606657U (en) Automatic relieving device for spent fuel pool pipeline breach accident
JPS63121797A (en) Nuclear reactor auxiliary cooling seawater system
RU2106025C1 (en) Shielding system for water-moderated reactor containment
JP2992076B2 (en) Emergency core water injection system
JP3353708B2 (en) Nuclear power station makeup water facilities
JPH0212319Y2 (en)
RU2038445C1 (en) Undergroungd nuclear power plant
JPS60162987A (en) Main steam relief and safety valve exhaust device
JPS6390795A (en) In-housing piping leakage detector