JPS61199233A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS61199233A
JPS61199233A JP4045985A JP4045985A JPS61199233A JP S61199233 A JPS61199233 A JP S61199233A JP 4045985 A JP4045985 A JP 4045985A JP 4045985 A JP4045985 A JP 4045985A JP S61199233 A JPS61199233 A JP S61199233A
Authority
JP
Japan
Prior art keywords
magnetic
layer
nonmagnetic
film
hardened layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4045985A
Other languages
Japanese (ja)
Inventor
Tomoji Morita
森田 知二
Mitsumasa Umezaki
梅崎 光政
Hirobumi Ouchi
博文 大内
Isato Nishinakagawa
西中川 勇人
Yasuhiro Okamura
康弘 岡村
Teruji Futami
二見 照治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4045985A priority Critical patent/JPS61199233A/en
Publication of JPS61199233A publication Critical patent/JPS61199233A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve the crystal orientability and magnetic characteristic of a magnetic layer and to increase the number of times of CSS by providing a nonmagnetic underlying layer consisting of one kind among In, Ir, Pd, Ru, Ta and Pt between a nonmagnetic hardened layer and magnetic medium layer. CONSTITUTION:An alumite film is coated as the nonmagnetic hardened layer 2 to about 4mum on a disk-shaped aluminum alloy substrate 1. After the film is finished to a specular surface, the film of one kind among In, Ir, Pd, Ru, Ta and Pt is formed as the nonmagnetic underlying layer 3 thereon to the thickness ranging 50-2,400Angstrom and a thin gamma-Fe2O3 film is formed as the magnetic medium layer 4 thereon. The adverse influence of the nonmagnetic hardened layer 2 is prevented and the crystal orientability and magnetic characteristic of the magnetic layer are improved by providing the nonmagnetic underlying layer 3 consisting of, for example, the In film in the above-mentioned manner. The increase in the number of times of the contact start stop CSS is thus made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明rlL、 fcとえばコバルト、コバルト合金
[Detailed Description of the Invention] [Industrial Application Field] This invention rlL, fc, such as cobalt and cobalt alloys.

鉄、鉄合金、ニッケル、ニッケル台金などの金属強磁性
体よりなる磁性層、あるいは酸化鉄、酸化クロムなどの
金属愼化物強磁性体よりなろ磁性層を肩Tる磁気記録媒
体に関するものである。
This relates to a magnetic recording medium in which the magnetic layer is made of a metal ferromagnetic material such as iron, iron alloy, nickel, or nickel base metal, or a magnetic layer made of a metal ferromagnetic material such as iron oxide or chromium oxide. .

〔従来の技術〕[Conventional technology]

近年、コンピュータ・システム/ci?ける磁気ディス
ク等の外部記1惹g、直り重要ヰが増大し、高記録摺度
化に対する要求はますます高まっている。
In recent years, computer systems/ci? The importance of external recording and repair of magnetic disks and the like is increasing, and the demand for high recording performance is increasing.

磁気記録装置は記録再生ヘッドおよび磁気ディスクの主
構成部から構成され、磁気ディスクば尚速で回転し記録
再生ヘッドハ蝿気ディスクより微小間隔浮上している。
A magnetic recording device is composed of the main components of a recording/reproducing head and a magnetic disk.The magnetic disk rotates at a high speed, and the recording/reproducing head floats a minute distance above the fly disk.

磁気記録装置の高性能化に伴い、この浮上間隔を小さく
rるため罠記録再生ヘッドの荷Xを小さくrるとともに
接触始動・停止(コンタクト・スタート・ストップ:C
BF3)I!ヘッド浮揚システムが採用されている。磁
気ディスクtなわち磁気記録媒体の高記録府度化、高性
能化を図るためには、記録媒体り薄層化、均−一様化、
磁気特性の改良(保磁力、角形比り向上)。
As the performance of magnetic recording devices improves, in order to reduce the flying distance, the load X of the trap recording/reproducing head is reduced and contact start/stop (contact start/stop: C
BF3) I! A head flotation system is used. In order to improve the recording density and performance of magnetic disks, that is, magnetic recording media, it is necessary to make the recording medium thinner, more uniform, and more efficient.
Improved magnetic properties (improved coercive force and squareness).

および低浮上量に2ける安定したヘッド浮揚状1憾を確
保しヘッドとディスクの新突(ヘッド・クラッシュ)を
防止tろためのディスク表面精度0同上、)耐ヘッドク
ラッシュ性等の向上が必要でめろ。
Also, it is necessary to improve head crash resistance, etc. to ensure a stable head flying condition at low flying heights and prevent new head-to-disk collisions (head crashes). Stop it.

それに1#−い磁性媒体層を支持する基板り品質の同上
が重要となっている。
In addition, the quality of the substrate supporting the 1#-thick magnetic medium layer is also important.

高密度記録に適す石基板の条件としては機械的平坦性お
よび表面粗さが良好であり、欠陥が小さくその数も少な
いことが挙げられる。さらに、記録媒体の薄層化に伴い
基板の十分な硬度も必要とされてきた。−tなわち、基
板が軟かいと磁気ヘッドが磁気ディスクに接続した際に
陥没など、’)K形を起こし、磁気ヘッドの安定した浮
揚状態が得られないばかりか、磁気記録4直の信頼性を
表すコンタクトスタートストップ(088)回数が小さ
くなるという問題かめる。
Conditions for a stone substrate suitable for high-density recording include good mechanical flatness and surface roughness, and a small number of defects. Furthermore, as the recording medium becomes thinner, the substrate needs to have sufficient hardness. -t In other words, if the substrate is soft, when the magnetic head is connected to the magnetic disk, it will cause a K-shape such as a depression, which will not only make it difficult to obtain a stable floating state of the magnetic head, but also make it difficult to achieve reliable 4-speed magnetic recording. The problem is that the number of contact start/stop (088) times that indicate gender is decreasing.

従来、磁気ディスクの基板にはアルミ合金が使われてい
るが2表面硬化や表面積度をだtため。
Traditionally, aluminum alloys have been used for the substrates of magnetic disks, but this is due to the need for surface hardening and surface area.

その上に硬化層を被覆している。この硬化層は研磨性の
良好なN1−Pめつき膜やアルマイト膜が用いられてき
た(たとえば、戒々公社研究実用化報告第31巻第9号
1131〜1744貞、先行技術 脣祇昭59−886
33号、〜禎昭59−111468号8A[′4)。こ
の膜を形成した後2機械加工を行い表面積度をめげ、磁
性媒体l―を形成する0この磁性媒体I−の磁気特性と
結晶配向性には密接な関係がわり、、結晶配向性はイみ
性媒体層の下地膜の種類忙影響されることがわかってい
る(たとえば、太田ら。
A hardened layer is coated thereon. For this hardened layer, an N1-P plated film or an alumite film with good abrasive properties has been used (for example, Kaishu Kosha Research and Practical Report Vol. 31, No. 9, 1131-1744 Tei, Prior Art) -886
No. 33, ~ Sada Sho 59-111468 No. 8A ['4). After forming this film, mechanical processing is performed to reduce the surface area and form a magnetic medium I. There is a close relationship between the magnetic properties and crystal orientation of this magnetic medium I. It is known that the type of underlying film of the medium layer is influenced by the type of substrate (for example, Ota et al.

第8回日本ん6用磁気学会学術講演概要集、 15pB
−d(19d4))。たとえば、γ−Fe203薄膜の
場合はrtttrua向、  coおよびCO合金4腺
の場合rtc@配向した場合が磁気特性が良好でめるこ
とがわめ・つている。
Summary of the 8th Japan Magnetics Society Academic Lectures, 15pB
-d(19d4)). For example, it is said that magnetic properties are better when the γ-Fe203 thin film is oriented in the rtttrua orientation, and in the case of co and CO alloys, the rtc@ orientation is achieved.

〔発明が解決しようとをる問題点〕[Problem that the invention seeks to solve]

しかし、擁々の硬化層を形成し磁性媒体層を形成t″る
と IIよとんどの場合望ましい結晶配向性になりに〈
<、その結果磁化曲線から求められる角形比S*が悪化
するなど磁気時性が良くならないという問題点がめった
However, when a hardened layer is formed and a magnetic medium layer is formed, the desired crystal orientation is achieved in most cases.
As a result, problems such as deterioration of the squareness ratio S* determined from the magnetization curve and failure to improve magnetic time characteristics were encountered.

この発明に上記のような問題点を解決するためになされ
たもって、結晶配向性すなわち磁気特性が良好で088
回数が増大する信頼性の高い磁気記録媒体を得ることを
目的とをる。
This invention was made to solve the above-mentioned problems, and the crystal orientation, that is, the magnetic properties are good, and the 088
The purpose is to obtain a highly reliable magnetic recording medium that can be used repeatedly.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の磁気記録媒体に、非磁性硬化層と磁性媒体f
−の間にIn、工r、Pd、Ru、Ta、およびptの
うちのいずれか1種よりなる非磁性下地層を形成したも
のでめ6゜ 〔作用〕 この発明に係るIn、工r、Pd、Ru、Ta、および
ptのうちのいずれρ)1種より成る非磁性下地層の形
成により、非磁性硬化層の悪影響を防止し、磁性媒体t
Mの結晶配向性を艮くすることができ、非磁性硬化層の
硬く表噛、fI#度の良好な特性?:減することがない
The magnetic recording medium of the present invention includes a nonmagnetic hardened layer and a magnetic medium f.
- A non-magnetic underlayer made of any one of In, Al, Pd, Ru, Ta, and PT is formed between In, Al, Pd, Ru, Ta, and PT. By forming a non-magnetic underlayer made of one of Pd, Ru, Ta, and pt, the adverse effects of the non-magnetic hardened layer can be prevented and the magnetic medium t
Can the crystal orientation of M be changed, and the non-magnetic hardened layer has a hard surface texture and good fI# properties? : There is no decrease.

〔央my+j] 以下、この発明の一天雄桝Jを図について説明する。第
1図において、(!lは非磁性基板でるるアルミニウム
合金基板、(2)は非磁性硬化層、 !314dPt非
磁性下地層、(4)は磁性媒体層でるる。
[Omy + j] Hereinafter, the Ichiten Yumasu J of this invention will be explained with reference to the drawings. In FIG. 1, (!l is a nonmagnetic substrate, an aluminum alloy substrate, (2) is a nonmagnetic hardened layer, !314dPt nonmagnetic underlayer, and (4) is a magnetic medium layer.

以下、具体的実施例によりこの発明をより詳細に説明す
るが、この発明はこれに限定されるものではない〇 実施例 ディスク状アルミニウム合金基板(1)上に非磁性硬化
/l@121としてアルマイト膜を4μm被援被覆。ア
ルマイト膜を鏡面仕上げした後、非磁性下地ノ釦31と
してpt膜を反応スパッタ法により形成した0さらに、
磁性媒体Nl1t4+としてγ−Pa20.. ?l膜
を形成した。
Hereinafter, the present invention will be explained in more detail with reference to specific examples, but the present invention is not limited thereto.〇Example: Anodized aluminum as non-magnetic hardening/l@121 was applied on a disk-shaped aluminum alloy substrate (1). The membrane was coated with a 4 μm coating. After mirror-finishing the alumite film, a PT film was formed as a non-magnetic base button 31 by a reactive sputtering method.
As the magnetic medium Nl1t4+, γ-Pa20. .. ? 1 film was formed.

Ptgの膜厚を変えた試料を作製し1種々の測定を行い
、結果を表にまとめたo=M晶配面配向性いて框、X線
回折法により測定し、  r Fe203(スピネル型
LDzzz方向のピーク1 (222)と311方向の
ピーク1(311)の比によって表現した。角形比S*
は磁化曲線より求めた0 さらに、非磁性下地層の膜厚と各特性1+1の変化を、
非磁性下地層がptの場合の例fj!:42図に。
Samples with different Ptg film thicknesses were prepared and various measurements were performed, and the results are summarized in the table below. It is expressed by the ratio of peak 1 (222) in the direction to peak 1 (311) in the 311 direction.Square ratio S*
is 0 obtained from the magnetization curve.Furthermore, the change in the thickness of the non-magnetic underlayer and each characteristic 1+1 is
Example when the non-magnetic underlayer is PT fj! : On figure 42.

非磁性下地層がInの場合の例を第3図にそれぞれ示す
。図中9曲線11はI(222)/1(311)の変化
An example in which the nonmagnetic underlayer is made of In is shown in FIG. In the figure, curve 11 represents the change in I(222)/1(311).

曲線12はS*の変化1曲線13はass回数、O比り
変化を表す。
A curve 12 represents a change in S*, and a curve 13 represents a change in the number of assaults compared to O.

庄)Ptd厚が0λ(形成しない)の時のC8C85l
数を1として比で表した。
Sho) C8C85l when Ptd thickness is 0λ (not formed)
Expressed as a ratio, with the number being 1.

表および42図より明らかなように、 ptの膜厚が5
0λを越えると、結晶配向性およびS*の値が向上して
い〈〇一方、  Ptの膜厚が24001を越え300
0^以上になると、  aSSl数の悪化がみられた。
As is clear from the table and Figure 42, the film thickness of pt is 5
When it exceeds 0λ, the crystal orientation and S* value improve.〇On the other hand, when the Pt film thickness exceeds 24001
When the value exceeded 0^, deterioration of the aSSl count was observed.

ptの膜厚が厚すぎると、非磁性硬化層の効果が薄れて
しまい、  csslj121数の悪化につながったと
考えられる。また、  30001以上だと熱膨張係数
の違いからクラックがはいることが多く、  3000
λ以上は望ましくない。
It is thought that if the PT film thickness was too thick, the effect of the nonmagnetic hardened layer was weakened, leading to a deterioration in the csslj121 number. Also, if it is over 30001, cracks will often occur due to the difference in thermal expansion coefficient.
λ or more is not desirable.

上=e実施例では、 pt換の場合について説明したが
、In、工r 、 PeL 、 Ru 、 Ta  の
場合であっても同様の結果が得られ、上記実施νりと同
様の効果を奏する。
In the above example, the case of pt exchange was explained, but similar results can be obtained even in the case of In, E, PeL, Ru, Ta, and the same effect as in the above-mentioned embodiment is achieved.

〔発明の効果〕〔Effect of the invention〕

以上のよう:(、この発明によれば、非磁性基板と、こ
の非両性基板に被覆された非感性硬化層と。
As mentioned above: (According to the present invention, a non-magnetic substrate and a non-sensitive hardened layer coated on the non-ampholytic substrate.

この非磁性硬化層に被覆された工n、Ir、Pd、Ru
This non-magnetic hardened layer is coated with iron, Ir, Pd, Ru.
.

Ta、、&−よびpt /)うちのいずれか1種よりな
る非磁性F地層と、この非磁性下池1−に抜機された磁
性媒体層を備えたので、結晶−向性および磁気%性が同
上し、  assl!l!l数が増大し、信頼性の^い
磁気記録媒体が得られる効果かめる。
Since the non-magnetic F layer made of any one of Ta, , &- and pt/) and the magnetic medium layer cut out from this non-magnetic lower pond 1- are provided, the crystal orientation and magnetic % Same as above, assl! l! The effect of increasing the l number and obtaining a highly reliable magnetic recording medium can be seen.

ま次、In、■r、Pd、Ru、Ta、およびptのう
ちDいずれか1種よりなる非磁性下地層の厚さを50〜
2400^の範囲にすると、一層上述の効果が増大する
The thickness of the non-magnetic underlayer made of one of In, ■r, Pd, Ru, Ta, and PT is 50~
If the range is 2400^, the above effect will be further increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例により得られた磁気記録媒
体を示す断面図でるり、第2図および第3図は非磁性下
地層の膜厚と各特性値の変化を示す特注図でりる。 山・・・非磁性基板、(2)・・・非磁性硬化層、I3
)・・・pt非磁性下地層、(4)・・・磁性媒体層。
Fig. 1 is a cross-sectional view showing a magnetic recording medium obtained by an embodiment of the present invention, and Figs. 2 and 3 are custom-made drawings showing changes in the thickness of the nonmagnetic underlayer and each characteristic value. Rir. Mountain...Nonmagnetic substrate, (2)...Nonmagnetic hardened layer, I3
)...PT nonmagnetic underlayer, (4)...magnetic medium layer.

Claims (2)

【特許請求の範囲】[Claims] (1)非磁性基板と、この非磁性基板に被覆された非磁
性硬化層と、この非磁性硬化層に被覆されたIn、Ir
、Pd、Ru、Ta、およびptのうちのいずれか1種
よりなる非磁性下地層と、この非磁性下地層に被覆され
た磁性媒体層を備えた磁気記録媒体。
(1) A nonmagnetic substrate, a nonmagnetic hardened layer coated on the nonmagnetic substrate, and an In, Ir coated nonmagnetic hardened layer.
, Pd, Ru, Ta, and pt, and a magnetic medium layer coated on the nonmagnetic underlayer.
(2)In、Ir、Pd、Ru、Ta、およびptのう
ちのいずれか1種より形成された非磁性下地層の膜厚を
50〜2400Åの範囲にしたことを特徴とをる特許請
求の範囲第1項記載の磁気記録媒体。
(2) The non-magnetic underlayer made of any one of In, Ir, Pd, Ru, Ta, and pt has a thickness in the range of 50 to 2400 Å. The magnetic recording medium according to scope 1.
JP4045985A 1985-03-01 1985-03-01 Magnetic recording medium Pending JPS61199233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4045985A JPS61199233A (en) 1985-03-01 1985-03-01 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4045985A JPS61199233A (en) 1985-03-01 1985-03-01 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61199233A true JPS61199233A (en) 1986-09-03

Family

ID=12581225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4045985A Pending JPS61199233A (en) 1985-03-01 1985-03-01 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61199233A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227222A (en) * 1985-03-30 1986-10-09 Sony Corp Magnetic recording medium
US5750270A (en) * 1995-02-07 1998-05-12 Conner Peripherals, Inc. Multi-layer magnetic recording media
US5863661A (en) * 1994-10-07 1999-01-26 Carnegie Mellon University Method of enhancing the c-axis perpendicular orientation of barium hexaferrite thin films and barium hexaferrite thin film recording media produced thereby

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227222A (en) * 1985-03-30 1986-10-09 Sony Corp Magnetic recording medium
US5863661A (en) * 1994-10-07 1999-01-26 Carnegie Mellon University Method of enhancing the c-axis perpendicular orientation of barium hexaferrite thin films and barium hexaferrite thin film recording media produced thereby
US5750270A (en) * 1995-02-07 1998-05-12 Conner Peripherals, Inc. Multi-layer magnetic recording media

Similar Documents

Publication Publication Date Title
JPH11149628A (en) Perpendicular magnetic recording medium
JPH0714142A (en) Thin film magnetic recording medium
JPH0566647B2 (en)
JPS61199224A (en) Magnetic recording medium
JPH10228620A (en) Perpendicular magnetic recording medium
JPS61199233A (en) Magnetic recording medium
KR100403536B1 (en) Magnetic alloy and magnetic recording medium and method for preparation thereof, and target for forming magnetic film and magnetic recording device
JPS61199236A (en) Magnetic recording medium
JPH06243451A (en) Magnetic recording medium and magnetic recorder
JP2644994B2 (en) Disk-shaped magnetic recording medium
JPS61199231A (en) Magnetic recording medium
US6686069B1 (en) Magnetic recording medium with improved control layer
JP2000339657A (en) Magnetic recording medium
JPH06187628A (en) Magnetic recording medium and magnetic memory device
JPH06103554A (en) Perpendicular magnetic recording medium
JPH11250438A (en) Magnetic recording medium, production of magnetic recording medium and magnetic recorder
JPS61188732A (en) Magnetic recording medium
JPH08138228A (en) Magnetic recording medium, its production and magnetic recorder
JPS61199232A (en) Magnetic recording medium
JPS61199225A (en) Magnetic recording medium
JPS61188733A (en) Magnetic recording medium
JPS61199227A (en) Magnetic recording medium
JPS61199230A (en) Magnetic recording medium
JPS62141628A (en) Magnetic recording medium
JPS61199226A (en) Magnetic recording medium