JPS61197798A - Wind direction controlling type blower - Google Patents

Wind direction controlling type blower

Info

Publication number
JPS61197798A
JPS61197798A JP3691485A JP3691485A JPS61197798A JP S61197798 A JPS61197798 A JP S61197798A JP 3691485 A JP3691485 A JP 3691485A JP 3691485 A JP3691485 A JP 3691485A JP S61197798 A JPS61197798 A JP S61197798A
Authority
JP
Japan
Prior art keywords
flow
blade
rotary blade
wind direction
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3691485A
Other languages
Japanese (ja)
Inventor
Kimiyoshi Mitsui
三井 公義
Shotaro Ito
正太郎 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3691485A priority Critical patent/JPS61197798A/en
Publication of JPS61197798A publication Critical patent/JPS61197798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air-Flow Control Members (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To reduce resistance in a flow passage by providing a guide blade which focuses flow toward the axis of a wind direction control type blower immediately before the flow reaches the upstream point of a supply port on the lower site of the rotary blade of the blower. CONSTITUTION:Flow which is carried from a blow duct 12 is streamlined by a prepositive static blade 13. A rotary blade 11 is mounted to send the flow to a wind direction controlling part which is sited downstream. The flow going out of the rotary blade 11 is converted in direction to a bias flow toward a point on the axis of a blower by a guide blade 16 which is mounted in front of the rotary blade 11. The flow is then streamlined in a flow passage which consists of both the guide blade 16 and the arc-like throttling curved face of an integral type casing 15. Resistance in the flow passage in the vicinity of a supply port can then be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気調和装置等の吹出し口に設けられた吹出
し方向を任意に偏向させるための制御装置を有する送風
機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a blower having a control device provided at an outlet of an air conditioner or the like for arbitrarily deflecting the direction of the blower.

従来の技術 近年、空調機器が冷・暖房を兼ねるようになって、部屋
の温度分布を快適性と経済性の両面から、使用者の要望
に応じて自由に制御できることが望まれている。一般に
は、快適性のために空調機器の吹き出し風向は、暖房時
には温風を下向きに、冷房時には冷風を上向きに分散し
て送り、空調される部屋の温度分布を均一化させるほう
が良い。
BACKGROUND OF THE INVENTION In recent years, air conditioning equipment has come to serve both as a cooling and heating device, and it has become desirable to be able to freely control the temperature distribution in a room according to the user's needs from the standpoint of both comfort and economy. In general, for comfort, it is better to uniformize the temperature distribution in the room by distributing hot air downwards during heating and upwards when cooling.

また、最近需要家から要望されているゾーン冷暖房のよ
うに、経済性を考慮して部屋の中で人が生活している空
間の一部領域だけをスポット的に空調できるように、空
調機器の設置位置に制約されずに広範囲に気流を偏向し
、集中送風もできることが望ましい。
In addition, as with zone heating and cooling, which has recently been requested by customers, air conditioning equipment can be used to spot air condition only a part of the space where people live, taking economic efficiency into consideration. It is desirable to be able to deflect the airflow over a wide range without being restricted by the installation location, and also be able to perform concentrated air blowing.

このような目的を達成するために、偏向板を用いた送風
制御機構が用いられてきた。
To achieve this purpose, a blow control mechanism using a deflection plate has been used.

以下図面を参照しながら、上述した従来の風向制御型送
風機の一例について説明する。
An example of the conventional wind direction control type blower mentioned above will be described below with reference to the drawings.

第6図は従来の風向制御型送風機の断面図を示すもので
ある。
FIG. 6 shows a cross-sectional view of a conventional wind direction control type blower.

第6図において、1は前置静翼2に支持され、モータ部
3により駆動される軸流型回転翼である。
In FIG. 6, reference numeral 1 denotes an axial rotor blade supported by a front stationary blade 2 and driven by a motor section 3.

前記回転翼1の下流側に静止翼4が設けられ、前記前置
静翼2と前記静止翼4とは共用の一体型ケーシング5に
よって支持固定されている。6は静止翼4の中央部に設
けられた駆動装置7によって任意の角度及び任意の高さ
に移動可能な制御板で、前記制御板6を支持する同一軸
上で、上流側に分流器18が設けられている。前記制御
板6の下流側でfrrI記一体型ケーシング5の下流端
には漸次拡大形状を有する案内壁9を下流側に具備した
吹出口10が設置される。
A stationary blade 4 is provided downstream of the rotary blade 1, and the front stationary blade 2 and the stationary blade 4 are supported and fixed by a common integral casing 5. Reference numeral 6 denotes a control plate that can be moved to any angle and any height by a drive device 7 provided at the center of the stationary blade 4. A flow divider 18 is provided on the upstream side on the same axis that supports the control plate 6. is provided. At the downstream end of the integrated casing 5 on the downstream side of the control plate 6, there is installed an air outlet 10 having a guide wall 9 having a gradually enlarged shape on the downstream side.

前記回転翼2の回転軸と、前記制御板6の旋回軸と、前
記吹出口10中心軸とはいずれも前記一体型ケーシング
5中心軸と一致して固定されている。
The rotation axis of the rotary blade 2, the pivot axis of the control plate 6, and the center axis of the air outlet 10 are all fixed to coincide with the center axis of the integrated casing 5.

以上のように構成された風向制御型送風機について以下
その動作について説明する。
The operation of the wind direction control type blower configured as above will be explained below.

第6図において、回転翼1が運転されることによって、
吸込ダクト(図示せず)から吸込まれた空気は前置静翼
2により整流されながら、一体型ケーシング5を通って
、静止翼4によって整流された後、分流器8によって一
体型ケーシング5壁面周辺に向けて絞シの作用を受け、
吹出口10へと導かれる。ここで前記吹出口10まで達
した流れは、吹出口10で中心へ向くバイアス流れに変
えられ放出されるが、このとき制御板6を駆動袋、置7
で任意の方向で任意の高さ方向に向けると、バイアス流
れに不均合いが生じ、その結果、吹出し流れはコアンダ
効果により案内壁9を伝って、任意の方向へ偏向される
In FIG. 6, when the rotor 1 is operated,
Air sucked in from a suction duct (not shown) is rectified by the front stationary vane 2, passes through the integral casing 5, is rectified by the stationary vane 4, and is then distributed around the wall surface of the integral casing 5 by the flow divider 8. Under the action of a squeezer towards
It is guided to the air outlet 10. Here, the flow that has reached the outlet 10 is changed into a bias flow directed toward the center at the outlet 10 and is discharged.
If it is directed in an arbitrary direction and at an arbitrary height, an imbalance will occur in the bias flow, and as a result, the blowing flow will be deflected in an arbitrary direction along the guide wall 9 due to the Coanda effect.

発明が解決しようとする問題点 しかしながら上記のような構造では、流れがバイアス流
れに変えられる時、一体型ケーシング壁面上を伝ってき
た流れが吹出口で遮られ、一体型ヶーシング歇吹出口の
接する付近の流れは澱み点を持った流れとなる。そのた
め、この領域での流路抵抗が大きくなシ、本送風機全体
の性能が低下するという問題点を有していた。
Problems to be Solved by the Invention However, in the structure described above, when the flow is changed to a bias flow, the flow that has traveled on the wall surface of the integral casing is blocked by the outlet, and the flow that is in contact with the outlet of the integral casing is interrupted. The nearby flow has a stagnation point. Therefore, there was a problem in that the flow path resistance in this region was large and the performance of the entire blower was degraded.

ア また、J:記のパイ木ス流れを発生させるためには、吹
出口の上流側に長い助走区間を設ける必要があり、その
ために一体型ケーシングの外寸を長くとらねばならず、
本送風機の小型化に限界があるという問題点を有してい
た。
A: Also, in order to generate the piston flow described in J:, it is necessary to provide a long run-up section on the upstream side of the air outlet, and for this purpose, the outer dimension of the integrated casing must be made long.
There was a problem in that there was a limit to the miniaturization of this blower.

本発明は上記問題点に鑑み、バイアス流れを安定して発
生させ、しかも流路抵抗を大幅に低下させると同時に、
さらに小型化した風向制御型送風機を提供するものであ
る。
In view of the above-mentioned problems, the present invention stably generates a bias flow, significantly reduces flow path resistance, and at the same time,
The present invention provides a more compact wind direction control type blower.

問題点を解決するだめの手段 上記問題点を解決するために本発明の風向制御型送風機
は回転翼と、前記回転翼を駆動するモータと、前記モー
タを支持固定し、前記回転翼の流路を構成する一体型ケ
ーシングと、前記回転翼の下流側に設けられ前記一体型
ケーシングの内寸より小さい内寸の吹出口を有し、吹出
口の下流側に漸次拡大形状を有する案内壁から成る拡大
ノズルと、前記回転翼と前記拡大ノズルの間に設けられ
、任意の方向と高さに変位できる制御板と、前記一体型
ケーシングに前記回転翼の下流直下に前記吹出口の上流
直前に、流れ分中心方向に向ける案内翼を設けたもので
ある。
Means for Solving the Problems In order to solve the above problems, the wind direction control type blower of the present invention includes a rotary blade, a motor for driving the rotary blade, a motor for supporting and fixing the motor, and a flow path of the rotor blade. and a guide wall that is provided downstream of the rotor blade and has an air outlet having an inner size smaller than the internal size of the integrated casing, and has a gradually expanding shape on the downstream side of the air outlet. an expanding nozzle, a control plate that is provided between the rotary blade and the expanding nozzle and can be displaced in any direction and height; It is equipped with guide vanes that direct the flow toward the center.

作  用 本発明は上記した構成によって、吹出口付近の流れを案
内翼によって回転翼直後で整流させ強制子 的にバイ双ス流れを生成させ澱み点の発生を防ぐととも
に、流路抵抗を低下させ、モータの負荷を低下させるこ
とによって送風機全体の効率が上昇することとなる。ま
た、案内翼に流れの乱れを抑える働きがあるため、乱流
騒音の発生が抑制されるとともに、制御翼による流れの
偏向特性が向上することとなる。
Effect: With the above-described configuration, the present invention rectifies the flow near the outlet using the guide vane immediately after the rotor blade, generates a bi-directional flow in a forced force manner, prevents the occurrence of stagnation points, and lowers the flow path resistance. , the overall efficiency of the blower increases by reducing the load on the motor. Furthermore, since the guide vanes have the function of suppressing flow turbulence, the generation of turbulent flow noise is suppressed, and the flow deflection characteristics by the control vanes are improved.

実施例 以下本発明の一実施例の風向制御型送風機にっいて、そ
の構成と、風向偏向の動作原理をそれぞれ図面を参照し
ながら説明する。
EXAMPLE Hereinafter, the structure and operating principle of wind direction deflection of a wind direction control type blower according to an embodiment of the present invention will be explained with reference to the drawings.

第1図は本発明の実施例における風向制御型送風機の構
成を表わす断面図を示すものである。
FIG. 1 is a cross-sectional view showing the configuration of a direction-controlled blower according to an embodiment of the present invention.

第1図において11は送風ダクト12より送られてきた
流れを前置静翼13により整流した後、下流に設けられ
た風向制御部分に送る回転翼であシ、前記前置静翼13
によって支持固定されたモータ部14により駆動される
。前記静止翼13は一体型ケーシング15内壁に固定さ
れ、前記回転翼110ケーシングを兼ねるようになって
いる。
In FIG. 1, reference numeral 11 denotes a rotary blade that rectifies the flow sent from the air duct 12 by a front stator vane 13 and then sends it to a wind direction control section provided downstream.
It is driven by a motor section 14 that is supported and fixed by. The stationary blade 13 is fixed to the inner wall of the integral casing 15, and serves also as a casing for the rotary blade 110.

前記一体型ケーシング15の下流端内壁には太きな円弧
状の絞り曲面を設け、流れが滑らかに絞られるようにな
っている。16は前記回転翼11前後に設けられ、断面
が円弧翼形状をした案内翼で、前記一体型ケーシング1
5壁面上に支持棒17により固定される。回転翼11を
出た流れは案内翼下 16によって中心軸方向に向かうバイNス流れに変換さ
れ、かつ案内翼16と前記一体型ケーシング15の円弧
状絞り曲面とから成る流路により整流され、下流側に設
けられた吹出口18へと導かれる。19は前記回転翼1
1のポヌ部外径と同一径を持ち、前記支持棒17により
中央部で支持固定された駆動装置20により任意の方向
及び任意の高さに移動可能な制御板で、バイアス流を制
御し、吹出口18を流出する流れの偏向を制御する。
The downstream end inner wall of the integrated casing 15 is provided with a thick arc-shaped constriction curved surface so that the flow is smoothly constricted. Reference numeral 16 denotes a guide blade which is provided before and after the rotary blade 11 and whose cross section is in the shape of an arcuate blade.
5 is fixed on the wall surface by a support rod 17. The flow exiting the rotary blade 11 is converted into a bias flow directed toward the central axis by the lower guide blade 16, and is rectified by a flow path consisting of the guide blade 16 and the arc-shaped constriction curved surface of the integrated casing 15, and then flows downstream. The air is guided to an air outlet 18 provided on the side. 19 is the rotor blade 1
The bias flow is controlled by a control plate which has the same diameter as the outer diameter of the ponnu part of 1 and is movable in any direction and at any height by a drive device 20 supported and fixed at the center by the support rod 17, The deflection of the flow exiting the outlet 18 is controlled.

前記吹出口18の下流側には漸次拡大形状を有する案内
壁21が設けられている。
A guide wall 21 having a gradually expanding shape is provided on the downstream side of the air outlet 18 .

以上のように構成された風向制御型送風機について、以
下第2図から第5図を用いてその動作原理を説明する。
The principle of operation of the wind direction control type blower configured as described above will be explained below with reference to FIGS. 2 to 5.

まず第2図は風向制御型送風機の断面図を示すものであ
って、制御板19が吹出口18上流端面左側上に接触し
ている場合について説明する。この場合、回転翼11に
よって送り出された流れF。
First, FIG. 2 shows a sectional view of the wind direction control type blower, and the case where the control plate 19 is in contact with the upper left side of the upstream end surface of the air outlet 18 will be described. In this case, the flow F delivered by the rotor 11.

は一体型ケーシング15に沿って流れ、案内翼16軸方
向へ向かうバイアス流(向心流)FBとなる。
flows along the integrated casing 15 and becomes a bias flow (centripetal flow) FB directed toward the axial direction of the guide vane 16.

ここで図の左側においてもバイアス流が発生するが、吹
出口18上流端面に接触している制御板19の遮蔽効果
により、バイアス流FBは遮られる。
Here, a bias flow also occurs on the left side of the figure, but the bias flow FB is blocked by the shielding effect of the control plate 19 that is in contact with the upstream end surface of the air outlet 18.

このため吹出口18から出る流れFAは図の右側からの
バイアス流FBの作用により押されて左側の案内壁21
の側へ曲げられる。この結果、吹出口18から出る流れ
2人は案内壁21と干渉しコアンダ効果によって案内壁
21面上に沿って流れ、風量低下をほとんど引き起こさ
ずに大きく偏向される。この場合、最大偏向角度は案内
壁21の形状によって任意に設定できる。
Therefore, the flow FA coming out of the air outlet 18 is pushed by the action of the bias flow FB from the right side of the figure, and is pushed toward the left guide wall 22.
bent to the side. As a result, the two flows coming out of the air outlet 18 interfere with the guide wall 21, flow along the surface of the guide wall 21 due to the Coanda effect, and are largely deflected with almost no reduction in air volume. In this case, the maximum deflection angle can be arbitrarily set depending on the shape of the guide wall 21.

次に第3図に示すように、制御板19を吹出口18上流
端面右側で接触させた場合について説明する。この場合
、図の右側のバイアス流FBが遮られ、吹出口18から
出る流れ2人は右側に傾き、右側の案内壁21に沿って
右側に大きく偏向される。
Next, as shown in FIG. 3, a case will be described in which the control plate 19 is brought into contact with the right side of the upstream end surface of the air outlet 18. In this case, the bias flow FB on the right side of the figure is blocked, and the two flows exiting from the air outlet 18 are inclined to the right side and are largely deflected to the right side along the right guide wall 21.

すなわち、制御板19の遮蔽位置に応じて、遮蔽位置の
存在する方向に流れは広角に偏向することになる。
That is, depending on the shielding position of the control plate 19, the flow is deflected over a wide angle in the direction of the shielding position.

また、流れFQよりも上流の流れについては全て第2図
と同一であるため、以下は省略する。
Furthermore, since all the flows upstream of the flow FQ are the same as those in FIG. 2, the following description will be omitted.

次に第4図に示すように、制御板19をわずかに持ち上
げ、吹出口18上流端面と制御板19の間に小さな間隙
dを設けた場合について説明する。
Next, as shown in FIG. 4, a case will be described in which the control plate 19 is slightly lifted and a small gap d is provided between the upstream end surface of the air outlet 18 and the control plate 19.

この場合、このわずかな間隙を通過する流れF”nt。In this case, the flow F"nt passes through this small gap.

が発生し、この作用により吹出口18から出る流れFA
の傾き力が小さくなる。この結果、案内壁21への付着
の度合も減少し、偏向角度も第3図に比較して小さくな
る。そして、この間隙を序々に大きくしていくように間
隙dを大きくしていくと、流れの偏向角度はしだいに小
さくなり、最終的には第5図に示すように偏向角度はつ
いに零となる。即ち、制御板19の高さdを変化させる
ことによって、流れの偏向角度を任意に設定することが
できる。
is generated, and due to this action, the flow FA exiting from the outlet 18
The tilting force of becomes smaller. As a result, the degree of adhesion to the guide wall 21 also decreases, and the deflection angle also becomes smaller compared to FIG. 3. As the gap d is gradually increased, the deflection angle of the flow gradually becomes smaller, and eventually the deflection angle reaches zero as shown in Figure 5. . That is, by changing the height d of the control plate 19, the deflection angle of the flow can be arbitrarily set.

発明の効果 以上のように本発明は回転翼と、前記回転翼を駆動する
モータと、前記モータを支持固定し、前記回転翼の流路
を構成する一体型ケーシングと、前記回転翼の下流側に
設けられ前記一体型ケーシングの内寸より小さい内寸の
吹出口を有し、吹出口の下流側に漸次拡大形状を有する
案内壁から成る拡大ノズルと、前記回転翼と前記拡大ノ
ズルの間に設けられ、任意の方向と高さに変位できる制
御板と、前記一体型ケーシング上に固定支持するように
前記回転翼の下流直下に設けられ、前記側流直前に、流
れを中心方向に向ける案内翼を設けたもので、吹出口付
近の流れを回転翼直後に案内翼分設けることによって、
強制的に整流されたバイアス流を発生させ、吹出口付近
で流れの澱み点の発生を防ぐとともに、吹出口付近での
流路抵抗を減少させ、モータの負荷を低下させることが
できる。また、風向を大きく偏向した場合でも風量の低
下がほとんどないため、全体として送風機効率を上げる
ことができる。しかも、案内翼と一体型ケーシング下流
端の絞シ曲面の作用により上流側の流れの乱れを抑制す
る働きがあるため、吹出口からの乱流騒音の発生が抑制
されるとともに、制御翼と案内壁による流れの偏向特性
を向とさせることができる。
Effects of the Invention As described above, the present invention includes a rotary blade, a motor that drives the rotary blade, an integrated casing that supports and fixes the motor and configures a flow path for the rotary blade, and a downstream side of the rotary blade. an enlarged nozzle provided in the rotary blade and the enlarged nozzle, which has an air outlet having an inner size smaller than the inner size of the integrated casing, and includes a guide wall having a gradually expanding shape on the downstream side of the air outlet; a control plate that is provided and can be displaced in any direction and height, and a guide that is provided directly downstream of the rotary blade so as to be fixedly supported on the integral casing and directs the flow toward the center immediately before the side flow. It is equipped with blades, and by installing a guide blade immediately after the rotor to control the flow near the outlet,
By generating a forcibly rectified bias flow, it is possible to prevent the occurrence of stagnation points in the vicinity of the outlet, reduce flow path resistance in the vicinity of the outlet, and reduce the load on the motor. Furthermore, even if the wind direction is greatly deflected, there is almost no decrease in the air volume, so the efficiency of the blower can be increased as a whole. In addition, the turbulence of the flow on the upstream side is suppressed by the action of the constriction curved surface at the downstream end of the integrated casing with the guide vanes, so turbulence noise from the outlet is suppressed, and the control vanes and guide The deflection characteristics of the flow by the wall can be adjusted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における風向制御型送風機の断
面図、第2図から第5図はそれぞれ同実施例の異なる方
向への送風を行う動作原理の説明図、第6図は従来の風
向制御型送風機の断面図である。 11・・・・・・回転翼、14・・・・・・モータ、1
5・・・・・・一体型ゲージング、16・・・・・・案
内翼、18・・・・・・吹出口、19・・・・・・制御
板、20・・・・・・駆動装置、21・・・・・・案内
壁。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第3図 第4図 第5図 第6図
Fig. 1 is a sectional view of a wind direction control type blower according to an embodiment of the present invention, Figs. It is a sectional view of a wind direction control type blower. 11...Rotary blade, 14...Motor, 1
5... Integrated gauging, 16... Guide vane, 18... Air outlet, 19... Control board, 20... Drive device , 21...Guidance wall. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Figure 4 Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)回転翼と、前記回転翼を駆動するモータと、前記
モータを支持固定し、前記回転翼の流路を構成する一体
型ケーシングと、前記回転翼の下流側に設けられ前記一
体型ケーシングの内寸より小さい内寸の吹出口を有し、
吹出口の下流側に漸次拡大形状を有する案内壁から成る
拡大ノズルと、前記回転翼と前記拡大ノズルの間に設け
られ、任意の方向と高さに変位できる制御板と、前記一
体型ケーシング上に固定支持するように前記回転翼の下
流直下に設けられ、前記制御板を駆動させる駆動装置よ
り構成された送風機において、前記回転翼の下流側で、
前記吹出口の上流直前に、流れを中心方向に向ける案内
翼を設けた風向制御型送風機。
(1) A rotary blade, a motor that drives the rotary blade, an integrated casing that supports and fixes the motor and configures a flow path for the rotary blade, and the integrated casing provided on the downstream side of the rotary blade. It has an air outlet with an inner dimension smaller than the inner dimension of
an expanding nozzle consisting of a guide wall having a gradually expanding shape on the downstream side of the air outlet; a control plate provided between the rotary blade and the expanding nozzle and movable in any direction and height; In a blower configured with a drive device that is provided directly downstream of the rotary blade so as to be fixedly supported on the rotor blade and drives the control plate, on the downstream side of the rotor blade,
A wind direction control type blower that is provided with a guide blade that directs the flow toward the center immediately before the upstream side of the blower outlet.
(2)回転翼形状が、軸流あるいは斜流ファンである特
許請求の範囲第1項記載の風向制御型送風機。
(2) The wind direction control type blower according to claim 1, wherein the rotor blade shape is an axial flow fan or a mixed flow fan.
JP3691485A 1985-02-26 1985-02-26 Wind direction controlling type blower Pending JPS61197798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3691485A JPS61197798A (en) 1985-02-26 1985-02-26 Wind direction controlling type blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3691485A JPS61197798A (en) 1985-02-26 1985-02-26 Wind direction controlling type blower

Publications (1)

Publication Number Publication Date
JPS61197798A true JPS61197798A (en) 1986-09-02

Family

ID=12483033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3691485A Pending JPS61197798A (en) 1985-02-26 1985-02-26 Wind direction controlling type blower

Country Status (1)

Country Link
JP (1) JPS61197798A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100411217B1 (en) * 1995-07-05 2004-03-31 지이씨 알스톰 트랜스포트 에스에이 Motor-driven cooling ventilator
JP2008080307A (en) * 2006-09-29 2008-04-10 Fulta Electric Machinery Co Ltd Nozzle structure
JP2012506514A (en) * 2008-10-24 2012-03-15 モセン エルティーディー Improved tunnel ventilator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100411217B1 (en) * 1995-07-05 2004-03-31 지이씨 알스톰 트랜스포트 에스에이 Motor-driven cooling ventilator
JP2008080307A (en) * 2006-09-29 2008-04-10 Fulta Electric Machinery Co Ltd Nozzle structure
JP2012506514A (en) * 2008-10-24 2012-03-15 モセン エルティーディー Improved tunnel ventilator

Similar Documents

Publication Publication Date Title
RU2484383C2 (en) Fan
JP5170710B2 (en) Blower
US11680581B2 (en) Nozzle for a fan assembly
CA1160095A (en) Fume exhauster device
JP2012031806A (en) Fan
US5772399A (en) Apparatus and method for efficiency and output capacity matching in a centrifugal fan
JPH0534567B2 (en)
KR101870365B1 (en) Cooling fan apparatus having structure for reducing circulation flow
JPS61197798A (en) Wind direction controlling type blower
JP3092371B2 (en) Outdoor unit for air conditioner
JPH0642768A (en) Air conditioner
US20210356142A1 (en) Air conditioner indoor unit, air conditioner, and method for controlling air conditioner
US4462750A (en) Electric fan assembly
JPH07208396A (en) Centrifugal blower
JPH0354254B2 (en)
JP2001091007A (en) Tornade type intake/air supply device
JP3482231B2 (en) Air volume adjustment device
JP3158543B2 (en) Air conditioner
JP3526156B2 (en) Air conditioner wind direction control device and ceiling cassette type air conditioner wind direction control method
JPS62757A (en) Airflow direction control type ventilating device
JP3304212B2 (en) Air outlet for underfloor air conditioning
JPS61195236A (en) Flow direction control device
JPS61197799A (en) Wind direction controlling type blower
JP3283712B2 (en) Ventilation equipment
CN115143142A (en) Net cover assembly and air supply equipment