JPS6119703A - Preparation of copper infiltrated ferrous sintered body - Google Patents

Preparation of copper infiltrated ferrous sintered body

Info

Publication number
JPS6119703A
JPS6119703A JP14038884A JP14038884A JPS6119703A JP S6119703 A JPS6119703 A JP S6119703A JP 14038884 A JP14038884 A JP 14038884A JP 14038884 A JP14038884 A JP 14038884A JP S6119703 A JPS6119703 A JP S6119703A
Authority
JP
Japan
Prior art keywords
powder
copper
molded body
iron
infiltration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14038884A
Other languages
Japanese (ja)
Inventor
Akira Manabe
明 真鍋
Akira Miura
三浦 明良
Naoki Motooka
直樹 本岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Toyota Motor Corp
Original Assignee
Sumitomo Electric Industries Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Toyota Motor Corp filed Critical Sumitomo Electric Industries Ltd
Priority to JP14038884A priority Critical patent/JPS6119703A/en
Publication of JPS6119703A publication Critical patent/JPS6119703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a sintered body having stable quality by preventing the shift of a matrix and an infiltration material, by integrally molding a molded body of a copper powder on a molded body constituted of a ferrous metal powder and simultaneously applying sintering and infiltration to the resulting composite molded body at a specific temp. CONSTITUTION:A ferrous sintering powder (for example, a powder prepared by adding a predetermined amount of a copper powder and a graphite powder to an iron powder) being a matrix is moled in a mold to form a ferrous molded body 11. Subsequently, a copper powder molded body 12 comprising copper or a copper alloy (for example, an alloy prepared by adding a Mn powder and an iron powder to a copper powder) being an infiltration material is molded on the ferrous molded body by using a mold under pressure lower than that at the molding time of the ferrous molded body. To this composite molded body 10, sintering and infiltration are simultaneously applied at 1,000-1,250 deg.C. By this method, a copper infiltrated ferrous sintered body having stable quality is prepared inexpensively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は銅又は銅合金を溶浸した鉄系焼結体の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an iron-based sintered body infiltrated with copper or a copper alloy.

〔従来の技術〕[Conventional technology]

内燃機関のバルブシートのような摺動部材は耐摩耗性及
び高強度が必要とされており、一般に銅などを溶浸した
鉄系焼結体が用いられている。
Sliding members such as valve seats of internal combustion engines are required to have wear resistance and high strength, and generally, iron-based sintered bodies infiltrated with copper or the like are used.

従来、銅又は銅合金を溶浸した鉄系焼結体は、第2図に
示すように母材である鉄系焼結体又は粉末成形体21と
、溶浸材である銅又は銅合金(以下鋼という)粉末成形
体22をそれぞれ別個に成形し、溶浸する鉄系焼結体又
は粉末成形体21の上に、溶浸材である銅粉末成形体2
2を載せ、加熱して溶浸又は焼結・溶浸を行うことによ
り製造されている。− 〔発明が解決しようとする問題点〕 上記のような製造方法では、母材である鉄系焼結体又は
粉末成形体21上に溶浸材である銅粉末成形体22が十
分に固定されているわけではないことから、焼結連続炉
などで移動しなから溶浸又は焼結する際に母材と溶浸材
とがずれて、溶浸不良が生じることがあった。また、溶
浸材である銅粉末成形体22の強度が小さいため3母材
の上に銅粉末成形体22を載せる工程の自動化が困難で
あった。更に、異形部品の場合には。
Conventionally, an iron-based sintered body infiltrated with copper or a copper alloy is made of a base material, an iron-based sintered body or powder compact 21, and an infiltration material, copper or copper alloy ( The powder compacts 22 (hereinafter referred to as steel) are separately molded, and a copper powder compact 2 as an infiltration material is placed on top of the iron-based sintered compact or powder compact 21 to be infiltrated.
2 and heat it to perform infiltration or sintering/infiltration. - [Problems to be solved by the invention] In the above manufacturing method, the copper powder compact 22 as the infiltrant is not sufficiently fixed on the iron-based sintered body or the powder compact 21 as the base material. Therefore, when infiltrating or sintering without moving in a continuous sintering furnace, the base material and the infiltrant material may become misaligned, resulting in poor infiltration. Further, since the strength of the copper powder molded body 22, which is an infiltration material, is low, it is difficult to automate the process of placing the copper powder molded body 22 on the three base materials. Furthermore, in the case of irregularly shaped parts.

銅粉末成形体22を成形することが、不可能であったり
、成形できても母材の上に配置することができない場合
があった。
There were cases in which it was impossible to mold the copper powder compact 22, or even if it could be molded, it could not be placed on the base material.

本発明は母材と溶浸材とがずれないで、しがも焼結及び
溶浸を同時に行うことができる銅溶浸鉄系焼結体の製造
方法を提供することを目的とするものである。
An object of the present invention is to provide a method for manufacturing a copper-infiltrated iron-based sintered body, which allows simultaneous sintering and infiltration without causing the base material and the infiltrant to shift. be.

〔問題点を解決するための手段〕[Means for solving problems]

−I−記問題点を解決するための手段として、本発明は
、第1層として、母材である鉄系焼結体を構成する鉄系
金属粉末を金型成形し、次いでこの第1層の上に、溶浸
材である銅又は銅合金よりなる第2層を第1層成形時の
圧力より低い圧力で一体的に金型成形して複合成形体と
し、この複合成形体を1,100〜1,250 ’Oの
温度にて′ 焼結及び溶浸を同時にすることを特徴とす
る。
As a means for solving the problem described in -I-, the present invention provides a first layer in which iron-based metal powder constituting an iron-based sintered body as a base material is molded in a mold, and then this first layer On top of this, a second layer made of copper or copper alloy as an infiltrant is integrally molded with a mold at a pressure lower than the pressure during molding of the first layer to form a composite molded body, and this composite molded body is It is characterized by simultaneous sintering and infiltration at a temperature of 100 to 1,250 °C.

lす材である鉄系焼結体用の粉末としては、通−常この
種の焼結体に用いられるものが用いられ、例えば鉄粉に
2%の銅粉及び0.8%の黒鉛粉を添加してなる混粉、
鉄粉に3%の銅粉、2%のニッケル粉及び0.8%の黒
鉛粉を添加してなる混粉などを用いることができる。(
本発明において%は特記しないかぎり重量%を表わす。
Powders for iron-based sintered bodies, which are lumber materials, are those normally used for this type of sintered bodies, such as iron powder with 2% copper powder and 0.8% graphite powder. Mixed flour made by adding
A mixed powder made by adding 3% copper powder, 2% nickel powder, and 0.8% graphite powder to iron powder can be used. (
In the present invention, % represents weight % unless otherwise specified.

) 溶浸材としては銅又は銅合金粉末を用いることができ、
銅合金粉末としては、例えばMn4%、Fe4%及び残
部Cuからなる銅合金粉末、C00,5%、Fe4%及
び残部Guからなる銅合金粉末などを用いることができ
る。
) Copper or copper alloy powder can be used as the infiltrant,
As the copper alloy powder, for example, a copper alloy powder consisting of 4% Mn, 4% Fe, and the balance Cu, a copper alloy powder consisting of C00.5%, 4% Fe, and the balance Gu, etc. can be used.

母材である鉄系焼結体用粉末と溶浸材である銅粉末の割
合を変えて、焼結体の空孔率及び溶浸量を適当に調節す
ることにより、銅溶浸鉄系焼結体の特性を容易に変える
ことができる。
Copper-infiltrated iron-based sintering can be achieved by changing the ratio of iron-based sintered body powder, which is the base material, and copper powder, which is the infiltration material, and by appropriately adjusting the porosity and infiltration amount of the sintered body. The properties of the aggregate can be easily changed.

第1層の母材である鉄系成形体の上に、第2層の溶浸材
である銅粉末を重ねて一体的に成形する際の圧力を第1
層の鉄系焼結体用粉末を成形した圧力より低くする理由
は第2層を成形する際に第1層の鉄系成形体が変形する
ことを防ぐためである。
The pressure when stacking the copper powder, which is the infiltration material of the second layer, on the iron-based molded body, which is the base material of the first layer, and molding it integrally is
The reason why the pressure is lower than the pressure at which the iron-based sintered body powder of the layer is molded is to prevent the iron-based molded body of the first layer from being deformed when molding the second layer.

焼結及び溶浸を同時に行う際の温度は1,100ないし
1,250℃の範囲から選ぶことができる。
The temperature for simultaneous sintering and infiltration can be selected from a range of 1,100 to 1,250°C.

1、+00°C以下では鉄系粉末成形体の焼結が不充分
であり、また銅合金によっては溶浸されず、また!、2
50°C以上では銅の蒸気による炉の汚染か問題となる
ため1.250°C以下である必要がある。
1. If the temperature is below +00°C, the sintering of the iron-based powder compact will be insufficient, and some copper alloys will not be infiltrated. ,2
If it exceeds 50°C, there is a problem of contamination of the furnace due to copper vapor, so the temperature needs to be below 1.250°C.

〔作用〕[Effect]

第1層として、st材である鉄系焼結体用粉末を成形し
て、その上に第2層として溶浸材である銅粉末を重ねて
成形して複合成形体10とするため、一体化しており、
母材である鉄系成形体11と溶浸材である銅粉末成形体
12とのずれは生しない。また、銅粉末を重ねて同一金
型を用いて成形するため、第1層の鉄系成形体11の上
面の形状か複雑であってもそれに影響されずに成形でき
、その際の成形圧を鉄系成形体11を成形する際の圧力
より低くしているため、第1層の鉄系成形体+1の形は
くずれない。
As the first layer, powder for an iron-based sintered body, which is an ST material, is molded, and on top of that, copper powder, which is an infiltration material, is layered and molded as a second layer to form a composite molded body 10. It has become
There is no misalignment between the iron-based compact 11, which is the base material, and the copper powder compact 12, which is the infiltration material. In addition, since the copper powder is layered and molded using the same mold, molding can be performed without being affected by the complicated shape of the top surface of the iron-based molded body 11 of the first layer, and the molding pressure at that time can be reduced. Since the pressure is lower than that used when molding the iron-based molded body 11, the shape of the first layer of iron-based molded body +1 does not collapse.

[、’JL k例〕 以下実施例により詳細に説明する。[,’JL k example] This will be explained in detail below using examples.

還元鉄粉(−100メ・ンシュ)に2%の電解銅粉(−
100メツシユ)及び 0.8%の天然黒鉛(平均粒径
lOト)を加え、V型混合機で30分間混合して鉄系焼
結体用粉末を得た。
2% electrolytic copper powder (-
100 mesh) and 0.8% natural graphite (average particle size lOt) were added and mixed for 30 minutes using a V-type mixer to obtain a powder for iron-based sintered bodies.

次いで外径3[f■、内径30mmの成形キャビティを
有する金型内に上記鉄系焼結体用粉末を充てんし、上型
パンチ加圧面が第1図に示すように鉄系成形体11の上
面が段のついた形状となるような形の金型を用いて、6
ton/cm’の成形圧で高さが61!1mとなるよう
に加圧成形した。次いで、このようにして得られた第1
層の鉄系成形体11の上に、溶浸材としてCu−45M
n−4%Feからなるアトマイズ銅合金粉(−100メ
Next, a mold having a molding cavity with an outer diameter of 3 [f] and an inner diameter of 30 mm is filled with the powder for the iron-based sintered body, and the pressurizing surface of the upper mold punch forms the iron-based molded body 11 as shown in FIG. Using a mold with a stepped top surface, 6
Pressure molding was performed at a molding pressure of ton/cm' to a height of 61!1 m. Then, the first
Cu-45M is applied as an infiltrant on the iron-based molded body 11 of the layer.
Atomized copper alloy powder (-100m) consisting of n-4% Fe.

シュ)を」二記鉄系焼結体用粉末100重量部に対して
X5重量部の割合で充てんし、上記の上型パンチを用い
て4 ton/ 、c m’の成形圧で一緒に加圧成形
して第2層の銅粉末成形体12を形成し、第1図に示す
ような鉄系成形体11と銅粉末成形体12からなる一体
化複合成形体を得た。
Filled with X5 parts by weight per 100 parts by weight of powder for iron-based sintered bodies, and pressed together using the above-mentioned upper die punch at a molding pressure of 4 ton/cm'. A second layer of copper powder molded body 12 was formed by pressure molding, and an integrated composite molded body consisting of iron-based molded body 11 and copper powder molded body 12 as shown in FIG. 1 was obtained.

この複合成形体10をアンモニウム分解ガス雰囲気中で
 1 、150°Cにて30分間焼結・溶浸して銅溶浸
鉄系焼結体を得た。
This composite molded body 10 was sintered and infiltrated at 150° C. for 30 minutes in an ammonium decomposition gas atmosphere to obtain a copper-infiltrated iron-based sintered body.

〔発明の効果〕〔Effect of the invention〕

本発明の製造方法は、上記したように第1層として母材
である鉄系焼結体用粉末を成形し、そのにに第2層とし
て溶浸材である銅粉末を重ねて成形して複合成形体とし
たため、母材である鉄系成形体と溶浸材である銅粉末成
形体がずれるということがなくなり、安定した品質の銅
溶浸鉄系焼結体を得ることができる。更に、母材である
鉄系焼結体又は成形体の上に溶浸材である銅粉末成形体
を重ねる工程が必要なくなり、また異形部品においても
銅粉末成形体の成形か不+i77ffiであったり、配
置できない場合があるといった問題が解消された。更に
また、焼結及び溶浸を同時に行うことができ、工程を簡
略化できる。」二記のこれらの理由により製造コストを
低減できる。
As described above, the manufacturing method of the present invention is to form the powder for iron-based sintered body as the base material as the first layer, and overlay and shape the copper powder as the infiltration material as the second layer. Since the composite molded body is made, there is no possibility that the iron-based molded body that is the base material and the copper powder molded body that is the infiltrant material are misaligned, and it is possible to obtain a copper-infiltrated iron-based sintered body of stable quality. Furthermore, the process of stacking the copper powder molded body as an infiltration material on the iron-based sintered body or molded body as the base material is no longer necessary, and even for irregularly shaped parts, it is possible to mold the copper powder molded body or not. , the problem of sometimes not being able to be placed has been resolved. Furthermore, sintering and infiltration can be performed simultaneously, simplifying the process. ” Manufacturing costs can be reduced for these reasons mentioned above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す複合成形体の断面図、 第2図は従来のは材の焼結体又は成形体の上に溶浸材の
銅粉末成形体を配置した例を示す断面図である。 図中、 10・・・複合成形体  11・・・鉄系成形体12・
・・銅粉末成形体
Fig. 1 is a cross-sectional view of a composite molded body showing an embodiment of the present invention, and Fig. 2 is an example in which a copper powder molded body as an infiltration material is placed on a conventional sintered body or molded body of steel. FIG. In the figure, 10... Composite molded body 11... Iron-based molded body 12.
・・Copper powder compact

Claims (1)

【特許請求の範囲】[Claims] 第1層として母材である鉄系焼結体を構成する鉄系金属
粉末を金型成形し、次いでこの第1層の上に溶浸材であ
る銅又は銅合金粉末よりなる第2層を第1層成形時の圧
力より低い圧力で一体的に金型成形して複合成形体とし
、この複合成形体を1,100〜1,250℃の温度に
て焼結及び溶浸を同時にすることを特徴とする銅溶浸鉄
系焼結体の製造方法。
As the first layer, iron-based metal powder constituting the iron-based sintered body, which is the base material, is molded, and then a second layer made of copper or copper alloy powder, which is the infiltration material, is formed on top of this first layer. A composite molded body is formed by integral molding at a pressure lower than the pressure during molding of the first layer, and this composite molded body is simultaneously sintered and infiltrated at a temperature of 1,100 to 1,250°C. A method for producing a copper-infiltrated iron-based sintered body, characterized by:
JP14038884A 1984-07-06 1984-07-06 Preparation of copper infiltrated ferrous sintered body Pending JPS6119703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14038884A JPS6119703A (en) 1984-07-06 1984-07-06 Preparation of copper infiltrated ferrous sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14038884A JPS6119703A (en) 1984-07-06 1984-07-06 Preparation of copper infiltrated ferrous sintered body

Publications (1)

Publication Number Publication Date
JPS6119703A true JPS6119703A (en) 1986-01-28

Family

ID=15267647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14038884A Pending JPS6119703A (en) 1984-07-06 1984-07-06 Preparation of copper infiltrated ferrous sintered body

Country Status (1)

Country Link
JP (1) JPS6119703A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0174376U (en) * 1987-11-09 1989-05-19
JPH03153801A (en) * 1989-09-27 1991-07-01 Brico Eng Ltd Method for impregnating tubular element made of iron-base material with other metal, and valve guide
JP2007520635A (en) * 2004-02-04 2007-07-26 ジーケーエヌ シンター メタルズ, インコーポレーテッド Sheet material infiltration of powder metal parts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0174376U (en) * 1987-11-09 1989-05-19
JPH03153801A (en) * 1989-09-27 1991-07-01 Brico Eng Ltd Method for impregnating tubular element made of iron-base material with other metal, and valve guide
JP2007520635A (en) * 2004-02-04 2007-07-26 ジーケーエヌ シンター メタルズ, インコーポレーテッド Sheet material infiltration of powder metal parts
US20080107558A1 (en) * 2004-02-04 2008-05-08 Gkn Sinter Metals, Inc. Sheet Material Infiltration of Powder Metal Parts

Similar Documents

Publication Publication Date Title
JP4252625B2 (en) High density forming process using ferroalloy and prealloy
US5453242A (en) Process for producing sintered-iron molded parts with pore-free zones
JP2799235B2 (en) Valve seat insert for internal combustion engine and method of manufacturing the same
JP3378012B2 (en) Manufacturing method of sintered product
JP2002146403A (en) Alloy steel powder for powder metallurgy
JP5588879B2 (en) Pre-alloyed copper alloy powder forged connecting rod
JPH04231404A (en) Method for powder metallurgy by means of optimized two-times press-two-times sintering
JP3007868B2 (en) Porous metal body, light alloy composite member, and production method thereof
JP2008069384A (en) Fe-BASED SINTERED METAL BEARING AND ITS MANUFACTURING METHOD
US20090129964A1 (en) Method of forming powder metal components having surface densification
GB1598816A (en) Powder metallurgy process and product
US20240157439A1 (en) Process for manufacturing toroid parts
JP2001523763A (en) High density molding method by powder blending
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JPS6119703A (en) Preparation of copper infiltrated ferrous sintered body
JP2008214664A (en) Method for manufacturing sintered body, and sintered body
JPS6345306A (en) Production of sintered member
JP2006503981A (en) Method for controlling dimensional changes during sintering of iron-based powder mixtures
JPH0233848B2 (en) KOONTAIMAMOSEIBARUBUSHIITO
US6534191B2 (en) Sintered alloy and method for the hardening treatment thereof
US4964909A (en) Heat-insulating component and a method of making same
JPS6330392B2 (en)
WO2005053882A2 (en) Process for complex transient liquid phase sintering of powder metal
JP2945115B2 (en) Method for producing large sintered body made of iron-based metal powder
JPS62202044A (en) Manufacture of sintered alloy superior in high temperature wear resistance