JPS6119688B2 - - Google Patents

Info

Publication number
JPS6119688B2
JPS6119688B2 JP57119507A JP11950782A JPS6119688B2 JP S6119688 B2 JPS6119688 B2 JP S6119688B2 JP 57119507 A JP57119507 A JP 57119507A JP 11950782 A JP11950782 A JP 11950782A JP S6119688 B2 JPS6119688 B2 JP S6119688B2
Authority
JP
Japan
Prior art keywords
rolling
seconds
ridging
time
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57119507A
Other languages
Japanese (ja)
Other versions
JPS5913026A (en
Inventor
Seijiro Hara
Hiroe Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11950782A priority Critical patent/JPS5913026A/en
Publication of JPS5913026A publication Critical patent/JPS5913026A/en
Publication of JPS6119688B2 publication Critical patent/JPS6119688B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、フエライト系ステンレス薄鋼板の製
造法、特に加工性のすぐれたフエライト系ステン
レス薄鋼板の製造法に関するものである。 フエライト系ステンレス薄鋼板は通常絞り加工
して使用される。一般に深絞り性など加工性をあ
らわす指標としてr値及び加工に際して発生する
凹凸模様のリジングと称せられるものがある。こ
のr値、リジングは熱延条件によつても著しく変
化することが知られており、熱間圧延後熱延板焼
鈍を行つた後、冷延焼鈍して薄鋼板とする場合に
は、スラブ加熱温度が低い程、r値、リジングと
もに向上する。たとえばスラブ加熱温度を1000℃
という低温で行う場合はr値、リジング特性は良
好であるが、このような低温圧延では、熱間圧延
中の変形抵抗が大きくなる為、熱延中にいわゆる
スケール疵と称せられる表面疵の発生しやすい欠
点がある。 本発明者はこれらの欠点をなくすため、スラブ
加熱温度を高くして熱間圧延を行い、スケール疵
がなく且つr値、リジング特性の良好な熱間圧延
方法について種々研究した結果、粗圧延機により
900℃以上1200℃以下の温度範囲で15秒以上60秒
以下のパス間時間を有する少くとも2パス以上7
パス以下の粗圧延を行うことで、r値、リジング
特性が著しく向上することを見い出し、本発明を
完成したものである。 粗圧延工程のパス間時間を長くとることでr
値、リジング特性が向上する冶金的理由について
は明かではないが、現在のところ粗圧延工程のパ
ス間時間を長くすることで、静的再結晶が促進さ
れ、鋳造組織が微細ランダム化するためではない
かと考えている。 次に本発明の構成要件の限定理由について述べ
る。 粗圧延の温度範囲を900℃以上1200℃以下に限
定したのは次の理由による。スラブ加熱温度が
1200℃を超える場合には鋼組織の結晶粒が成長す
るため、本発明の方法で圧延しても成品板のリジ
ング特性の改善効果が少ないので粗圧延温度の上
限を1200℃とした。また、粗圧延温度の下限を
900℃とした理由は、これ以下の温度域では圧延
時の変形抵抗が高く、表面疵が発生し易くなり、
再結晶の進行も遅いからである。 次に、粗圧延のパス間時間を15秒以上60秒以下
に限定した理由は次の通りである。該パス間時間
が15秒未満の場合はリジング特性及びr値の向上
が認められず、また、60秒を超えると効果の向上
程度が少くなる上に長時間保持による生産性の低
下が生じ、且つ圧延温度の低下による圧延時の変
形抵抗が増加し、熱延中に表面疵(スケール疵)
が発生し易くなるからである。 また、このような圧延を2パス以上としたのは
1パスだけでは上記効果が少く上限を7パスとし
たのは、これ以上では生産性の低下、圧延温度の
低下による表面疵の発生等の欠点が生ずるからで
ある。本発明の上記パス間保持は通常複数のパス
で圧延されている粗圧延のいづれの複数パスにお
いても効果があるが、2パスのみ保持時間を長く
する場合は、粗圧延パススケジユールの後段のパ
スで行うことが有効であることを見い出した。そ
の理由は、前段のパスの圧下の累積効果が発揮さ
れ、静的再結晶が促進される為と考えている。粗
圧延のパス間時間を長くすることにより特性を向
上させる本発明の技術は、粗圧延工程の圧下率と
も密接に関係しており、保持する直前の圧下率は
少なくとも20%とするのが有利であり、高い程効
果的である。これは圧下率が高い程圧延後の保持
時に静的再結晶が進行するためと考えられる。 本発明に従つて得られた熱延板は続いて常法に
より薄鋼板とされるが後工程として通常の熱延板
焼鈍を行つて冷間圧延する工程あるいは熱延板焼
鈍なしで冷間圧延する工程のいづれを経由しても
本発明の効果が奏されるのは言うまでもない。 以下本発明を実施例に基づいて詳しく説明す
る。 実施例 1 C0.05%、Al 0.14%、Cr17%、N100p.p.m.そ
の他不可避的不純物を含んだSUS430の厚さ200mm
の鋳片をスラブ加熱温度1000℃及び1200℃の温度
で加熱後、粗圧延パス間時間を10秒〜30秒まで変
化させて粗圧延を行つた後、800℃及び650℃の温
度で仕上圧延を行つた。ついで1000℃×30秒の高
温短時間の焼鈍を行い、80%の圧下率で冷延後
840℃×2分の焼鈍を行い、焼鈍後のr値、リジ
ングの測定を行つた。熱延板焼鈍なしで熱延板を
直接冷延焼鈍した場合についても実験を行い、リ
ジングの測定を行つた。粗圧延の圧下スケジユー
ルは15%→29.4%→33.3%→50%→50%→50%
(条件A)及び15%→29.4%→33.3%→50%→75
%(条件B)の2条件で行つた。 表1に熱延板焼鈍をした工程の熱延条件とr
値、リジングの関係を示し、表2に熱延板焼鈍し
ない場合の熱延条件とリジングの関係を示した。 表1からスラブ加熱温度が1200℃と高い場合に
おいて、粗圧延のパス間時間が10秒と短い場合
は、仕上圧延温度に関係なく、r値が低く、リジ
ングが大きいが、本発明に従つてパス間時間が20
秒、30秒と長くなる程リジングが減少し、r値が
向上することがわかる。パス間時間が長くかつ粗
圧延の圧下率が大きい場合には、特にリジング特
性の改善効果が大きいことがわかる。スラブ加熱
温度1000℃の場合は、粗圧延のパス間時間10秒の
場合でもスラブ加熱温度1200℃でパス間時間10秒
の場合と比べるとr値のレベルは著しく良好であ
るが、パス間時間を20秒と長くして大圧下圧延す
ることで、r値、リジング特性が更に向上するこ
とがわかる。従つて本発明の方法に従つて熱間圧
延を行えば、比較的高いスラブ加熱温度の場合も
良好な加工性をもつた薄鋼板の製造が可能なこと
がわかる。 表2から熱延板焼鈍なしの工程の場合、スラブ
加熱温度1200℃の場合、粗圧延のパス間時間が10
秒の場合は、リジングが著しく大きいが、パス間
時間20秒、30秒と増す程リジングが小さくなり、
大圧下圧延と組合わせることにより特にリジング
特性の改善効果が大きくなることがわかる。スラ
ブ加熱温度1000℃の場合、粗圧延のパス間時間10
秒の場合もリジングは比較的小さいが、パス間時
間が20秒と増加する場合はリジングは軽減される
が、スラブ加熱温度1200℃の場合と比較すると、
リジングの軽減効果が若干少ない傾向がみられ
る。
The present invention relates to a method for manufacturing a ferritic stainless thin steel sheet, and particularly to a method for manufacturing a ferritic stainless thin steel sheet with excellent workability. Ferritic stainless thin steel sheets are usually used after being drawn. In general, there are indicators of workability such as deep drawability that are referred to as the r value and ridging, which is an uneven pattern that occurs during processing. It is known that the r value and ridging change significantly depending on the hot rolling conditions. The lower the heating temperature, the better both the r value and ridging are. For example, set the slab heating temperature to 1000℃.
When rolling is carried out at a low temperature of There is a drawback that it is easy to do. In order to eliminate these drawbacks, the present inventor performed various hot rolling methods by increasing the slab heating temperature to avoid scale defects and have good r-value and ridging properties.As a result, the present inventor developed a rough rolling mill. by
At least 2 passes or more with an interpass time of 15 seconds or more and 60 seconds or less in a temperature range of 900℃ or higher and 1200℃ or lower7
The present invention was completed based on the discovery that the r value and ridging properties are significantly improved by performing rough rolling below a pass. By increasing the time between passes in the rough rolling process, r
The metallurgical reason for the improvement in value and ridging properties is not clear, but at present it is likely that increasing the time between passes in the rough rolling process promotes static recrystallization and finely randomizes the cast structure. I'm thinking about it. Next, reasons for limiting the constituent elements of the present invention will be described. The reason why the temperature range for rough rolling was limited to 900°C or higher and 1200°C or lower is as follows. slab heating temperature
If the temperature exceeds 1200°C, the crystal grains of the steel structure will grow, so rolling by the method of the present invention will have little effect on improving the ridging properties of the finished sheet, so the upper limit of the rough rolling temperature was set at 1200°C. In addition, the lower limit of rough rolling temperature is
The reason for setting it at 900℃ is that in the temperature range below this, the deformation resistance during rolling is high and surface flaws are likely to occur.
This is because recrystallization progresses slowly. Next, the reason why the inter-pass time of rough rolling was limited to 15 seconds or more and 60 seconds or less is as follows. If the inter-pass time is less than 15 seconds, no improvement in the ridging properties and r value will be observed, and if it exceeds 60 seconds, the degree of improvement in the effect will decrease and productivity will decrease due to long-term holding. In addition, the deformation resistance during rolling increases due to the decrease in rolling temperature, and surface flaws (scale flaws) occur during hot rolling.
This is because it is more likely to occur. In addition, the above-mentioned effect is small if only one pass is used for such rolling, and the reason why the upper limit was set to seven passes is that if the rolling process is performed more than 2 passes, it may cause a decrease in productivity and the occurrence of surface defects due to a decrease in the rolling temperature. This is because defects arise. The above-mentioned inter-pass holding of the present invention is effective in any of the multiple passes of rough rolling, which is usually rolled in multiple passes, but when the holding time is lengthened for only 2 passes, the holding time in the latter stage of the rough rolling pass schedule is We found that it is effective to do so. The reason for this is thought to be that the cumulative effect of the reduction in the previous pass is exerted and static recrystallization is promoted. The technology of the present invention, which improves properties by increasing the time between rough rolling passes, is closely related to the reduction rate in the rough rolling process, and it is advantageous to set the reduction rate immediately before holding to at least 20%. The higher the value, the more effective it is. This is considered to be because static recrystallization progresses during holding after rolling as the rolling reduction rate increases. The hot-rolled sheet obtained according to the present invention is then made into a thin steel sheet by a conventional method, but as a post-process, a conventional hot-rolled sheet annealing is performed and then cold-rolled, or a hot-rolled sheet is cold-rolled without annealing. It goes without saying that the effects of the present invention can be achieved through any of these steps. The present invention will be explained in detail below based on examples. Example 1 200mm thick SUS430 containing C0.05%, Al 0.14%, Cr17%, N100p.pm and other unavoidable impurities
After heating the slab at slab heating temperatures of 1000°C and 1200°C, rough rolling was performed by varying the time between rough rolling passes from 10 seconds to 30 seconds, and then finish rolling at temperatures of 800°C and 650°C. I went there. Then, it was annealed at 1000°C for 30 seconds at a high temperature for a short time, and after cold rolling at a rolling reduction of 80%.
Annealing was performed at 840°C for 2 minutes, and the r value and ridging after annealing were measured. Experiments were also conducted in the case where hot-rolled sheets were directly cold-rolled and annealed without hot-rolled sheet annealing, and ridging was measured. The reduction schedule for rough rolling is 15% → 29.4% → 33.3% → 50% → 50% → 50%
(Condition A) and 15% → 29.4% → 33.3% → 50% → 75
% (condition B). Table 1 shows the hot rolling conditions and r of the hot rolled sheet annealing process.
Table 2 shows the relationship between hot rolling conditions and ridging when hot rolled sheets are not annealed. Table 1 shows that when the slab heating temperature is as high as 1200°C and the rough rolling interpass time is as short as 10 seconds, the r value is low and ridging is large regardless of the finish rolling temperature. Interpass time is 20
It can be seen that as the time increases to 30 seconds and 30 seconds, ridging decreases and the r value improves. It can be seen that when the inter-pass time is long and the rolling reduction ratio of rough rolling is large, the effect of improving the ridging properties is particularly large. When the slab heating temperature is 1000℃, even when the interpass time of rough rolling is 10 seconds, the level of r value is significantly better than when the slab heating temperature is 1200℃ and the interpass time is 10 seconds, but the interpass time is It can be seen that by increasing the rolling time to 20 seconds and performing large reduction rolling, the r value and ridging properties are further improved. Therefore, it can be seen that by hot rolling according to the method of the present invention, it is possible to produce a thin steel sheet with good workability even at a relatively high slab heating temperature. From Table 2, in the case of a process without hot-rolled plate annealing, when the slab heating temperature is 1200℃, the interpass time of rough rolling is 10
In the case of seconds, the ridging is significantly large, but as the interpass time increases to 20 or 30 seconds, the ridging becomes smaller.
It can be seen that the effect of improving ridging properties is particularly large when combined with large reduction rolling. When the slab heating temperature is 1000℃, the time between rough rolling passes is 10
Although the ridging is relatively small when the pass time is increased to 20 seconds, the ridging is reduced when the interpass time is increased to 20 seconds, but compared to the case where the slab heating temperature is 1200℃,
There is a tendency that the effect of reducing ridging is slightly less.

【表】【table】

【表】【table】

【表】 実施例 2 C0.05%、Al 0.16%、Cr17%、N100ppmその
他不可避的不純物を含んだSUS430の厚さ200mmの
鋳片をスラブ加熱温度1200℃で2時間加熱後15%
→16%→16%→22%→30%→45%→45%の7パス
で厚さ20mmの粗圧延片とした。粗圧延のパス間時
間は条件Aは各12秒とし、条件Bは6パスと7パ
スの間のみの保持時間を40秒とした。ついで仕上
圧延を行い、3.7mmの熱延板とした後1000℃×30
秒の高温短時間の焼鈍を行い、80%の圧下率で冷
延後840℃×2分の焼鈍を行い、焼鈍後のr値、
リジングの測定を行つた。熱延板焼鈍なしで熱延
板を直接冷延焼鈍した場合についても実験を行
い、リジングの測定を行つた。 表3に熱延条件とr値、リジングの測定結果を
示した。表に示す如く、本発明の方法に従つて圧
延した場合は、r値、リジング特性ともに向上す
ることがわかる。 以上本発明は1回冷延法の場合について説明し
たが、2回冷延法についても効果があるのは言う
までもない。
[Table] Example 2 A slab of SUS430 with a thickness of 200 mm containing 0.05% C, 0.16% Al, 17% Cr, 100 ppm N and other unavoidable impurities was heated at a slab heating temperature of 1200°C for 2 hours and then reduced to 15%.
→ 16% → 16% → 22% → 30% → 45% → 45% in 7 passes to obtain a rough rolled piece with a thickness of 20 mm. The inter-pass time of rough rolling was 12 seconds each for condition A, and the holding time only between the 6th and 7th passes was 40 seconds for condition B. Then, finish rolling was performed to make a 3.7 mm hot rolled sheet, and then rolled at 1000℃ x 30
After annealing at a high temperature for 2 minutes at a high temperature for a short time, and after cold rolling at a rolling reduction rate of 80%, annealing was performed at 840℃ for 2 minutes.
Rigging was measured. Experiments were also conducted in the case where hot-rolled sheets were directly cold-rolled and annealed without hot-rolled sheet annealing, and ridging was measured. Table 3 shows the hot rolling conditions, the r value, and the measurement results of ridging. As shown in the table, when rolled according to the method of the present invention, both the r value and ridging properties are improved. Although the present invention has been described above in the case of the one-time cold rolling method, it goes without saying that the two-time cold rolling method is also effective.

【表】 以上、本実施例では代表的なフエライト系ステ
ンレス鋼であるSUS430鋼を用いて説明したが、
前記したように、本発明は他の一般的なフエライ
ト系ステンレス鋼に適用しても効果はある。即ち
本発明によれば、粗熱延時の静的再結晶で鋳造組
織がランダム化されるものと考えられているの
で、変態率が高く、変態により鋳造組織が破壊さ
れる例えばマルテンサイト系ステンレス鋼以外の
Cr系ステンレス鋼についても本発明の適用によ
る成品板の加工性の向上効果は大きいと考えられ
る。
[Table] In the above example, SUS430 steel, which is a typical ferritic stainless steel, was used.
As described above, the present invention is also effective when applied to other general ferritic stainless steels. That is, according to the present invention, since it is thought that the cast structure is randomized by static recrystallization during rough hot rolling, the transformation rate is high and the cast structure is destroyed by transformation, such as martensitic stainless steel. Other than
It is thought that application of the present invention to Cr-based stainless steel also has a significant effect of improving workability of finished plates.

Claims (1)

【特許請求の範囲】[Claims] 1 フエライト系ステンレス鋼スラブを粗圧延機
と複数台の連続仕上圧延機とからなる連続熱延機
で熱間圧延し、得られた熱延板を次いで冷間圧
延、焼鈍して薄鋼板を製造するにあたり、上記粗
圧延機により900℃以上1200℃以下の温度範囲で
15秒以上60秒以下のパス間時間を有する少くとも
2パス以上7パス以下の圧延を行うことを特徴と
する加工性のすぐれたフエライト系ステンレス薄
鋼板の製造法。
1. A ferritic stainless steel slab is hot rolled in a continuous hot rolling mill consisting of a rough rolling mill and multiple continuous finishing rolling mills, and the resulting hot rolled sheet is then cold rolled and annealed to produce a thin steel sheet. In order to do this, the rough rolling mill mentioned above is used in a temperature range of 900℃ or higher and 1200℃ or lower.
A method for manufacturing a ferritic stainless thin steel sheet with excellent workability, which comprises rolling at least 2 passes and 7 passes with an interpass time of 15 seconds and 60 seconds.
JP11950782A 1982-07-09 1982-07-09 Manufacture of ferritic stainless steel sheet with superior workability Granted JPS5913026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11950782A JPS5913026A (en) 1982-07-09 1982-07-09 Manufacture of ferritic stainless steel sheet with superior workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11950782A JPS5913026A (en) 1982-07-09 1982-07-09 Manufacture of ferritic stainless steel sheet with superior workability

Publications (2)

Publication Number Publication Date
JPS5913026A JPS5913026A (en) 1984-01-23
JPS6119688B2 true JPS6119688B2 (en) 1986-05-19

Family

ID=14762968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11950782A Granted JPS5913026A (en) 1982-07-09 1982-07-09 Manufacture of ferritic stainless steel sheet with superior workability

Country Status (1)

Country Link
JP (1) JPS5913026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119796A1 (en) 2013-02-04 2014-08-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent workability and process for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617519B2 (en) * 1986-02-27 1994-03-09 日新製鋼株式会社 Method for producing steel plate or strip of ferritic stainless steel with good workability
JP2005279714A (en) * 2004-03-30 2005-10-13 Jfe Steel Kk Method for manufacturing hot-rolled steel plate free from scaly defect
FR2947566B1 (en) * 2009-07-03 2011-12-16 Snecma PROCESS FOR PRODUCING A MARTENSITIC STEEL WITH MIXED CURING

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247513A (en) * 1975-10-14 1977-04-15 Nippon Steel Corp Method of hot rolling of ferritic stainless steel
JPS54114423A (en) * 1978-02-27 1979-09-06 Nippon Steel Corp Production of ferritic stainless steel free of ridging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247513A (en) * 1975-10-14 1977-04-15 Nippon Steel Corp Method of hot rolling of ferritic stainless steel
JPS54114423A (en) * 1978-02-27 1979-09-06 Nippon Steel Corp Production of ferritic stainless steel free of ridging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119796A1 (en) 2013-02-04 2014-08-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent workability and process for producing same
US10358689B2 (en) 2013-02-04 2019-07-23 Nippon Steel & Sumikin Stainless Steel Corporation Method of producing ferritic stainless steel sheet

Also Published As

Publication number Publication date
JPS5913026A (en) 1984-01-23

Similar Documents

Publication Publication Date Title
JPH09111354A (en) Production of ferritic stainless steel sheet
GB1592274A (en) Method for producing continuously cast steel slabs
JPS6119688B2 (en)
WO1979000100A1 (en) A process for the production of sheet and strip from ferritic,stabilised,stainless chromium-molybdenum-nickel steels
USRE28494E (en) Method of processing stainless steel strips or sheets
JPS6234802B2 (en)
JPS6234804B2 (en)
KR100613472B1 (en) Method for producing cold-rolled bands or sheets
JPH0564212B2 (en)
JPH11302739A (en) Production of ferritic stainless steel excellent in surface property and small in anisotropy
JPS5983725A (en) Preparation of ferrite type stainless steel thin plate free from surface flaw and low in ridging
JPS6024325A (en) Production of ferritic stainless steel plate having less ridging and excellent formability
JPS63162818A (en) Manufacture of ferritic stainless steel sheet extremely excellent in press formability
JPH0694575B2 (en) Method for producing ferritic stainless steel sheet having excellent surface properties and press formability
JPH03226544A (en) Manufacture of baking hardening type steel sheet for working excellent in aging resistance
JPH0160531B2 (en)
JPH04160117A (en) Manufacture of ferritic stainless steel sheet excellent in gloss, corrosion resistance and ridging resistance
JPS60255921A (en) Manufacture of hot rolled austenitic stainless steel strip
JPH0841546A (en) Production of high chromium cold rolled steel strip excellent in ridging resistance and workability and production of hot rolled steel strip for the same stock
JP2756531B2 (en) Manufacturing method of soft steel bar
JP2526122B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing by strip casting
JPH07118754A (en) Production of ferritic stainless steel sheet excellent in ribbing characteristic
JPH05179358A (en) Production of ferritic stainless steel strip excellent in ridging resistance
JPS6320889B2 (en)
JPS6326177B2 (en)