JPH0617519B2 - Method for producing steel plate or strip of ferritic stainless steel with good workability - Google Patents

Method for producing steel plate or strip of ferritic stainless steel with good workability

Info

Publication number
JPH0617519B2
JPH0617519B2 JP61042351A JP4235186A JPH0617519B2 JP H0617519 B2 JPH0617519 B2 JP H0617519B2 JP 61042351 A JP61042351 A JP 61042351A JP 4235186 A JP4235186 A JP 4235186A JP H0617519 B2 JPH0617519 B2 JP H0617519B2
Authority
JP
Japan
Prior art keywords
less
rolling
hot
stainless steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61042351A
Other languages
Japanese (ja)
Other versions
JPS62199721A (en
Inventor
美博 植松
和夫 星野
克久 宮楠
勇 清水
浩一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP61042351A priority Critical patent/JPH0617519B2/en
Publication of JPS62199721A publication Critical patent/JPS62199721A/en
Publication of JPH0617519B2 publication Critical patent/JPH0617519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は加工性の優れたフェライト系ステンレス鋼の鋼
板または鋼帯の製造法に関する。より詳しくは,プレス
成形時のリジングの発生が少なくまた深絞り加工後の二
次加工性に優れたフェライト系ステンレス鋼の鋼板また
は鋼帯の製造法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a ferritic stainless steel sheet or strip having excellent workability. More specifically, it relates to a method for producing a steel sheet or strip of ferritic stainless steel that has less ridging during press forming and is excellent in secondary workability after deep drawing.

〔従来の技術〕[Conventional technology]

SUS430に代表されるフェライト系ステンレス鋼は,SUS3
04に代表されるオーステナイト系ステンレス鋼に比べて
成形後に時期割れ現象がなくまた応力腐食割れ感受性が
小さいなどの特質を有し,そして,高価なニッケルを含
有しないので廉価である等から,耐久消費材として多用
されている。しかし,フェライト系ステンレス鋼はオー
ステナイト系ステンレス鋼に比べてプレス成形性および
耐食性が劣り,且つ深絞り加工時にしばしばリジングと
呼ばれる独特のシワ模様状の表面肌荒れが発生する。ま
た,一部のフェライト系ステンレス鋼種では大きな深絞
り加工を施した後の二次加工時に縦割れと呼ばれる脆化
割れが発生する。
Ferritic stainless steel typified by SUS430 is SUS3.
Compared with austenitic stainless steel represented by 04, it has characteristics such as no time cracking phenomenon after forming and low stress corrosion cracking susceptibility, and it is inexpensive because it does not contain expensive nickel. It is often used as a material. However, ferritic stainless steels are inferior in press formability and corrosion resistance to austenitic stainless steels, and when deep-drawn, they often have a unique wrinkle-like surface roughness called ridging. In addition, in some ferritic stainless steel grades, embrittlement cracks called vertical cracks occur during secondary processing after large deep drawing.

従来より,フェライト系ステンレス鋼の耐食性およびプ
レス成形性の向上に関しては,C,Nの低減並びにT
i,Nbなどの炭窒化物形成元素を比較的多量に添加し
た鋼が開発され,例えばJIS G 4305においてSUS430LXと
して規定されている。しかし,前述のリジングおよび縦
割れについては未だ問題は解決されていない。
Conventionally, regarding improvement of corrosion resistance and press formability of ferritic stainless steel, reduction of C, N and T
A steel containing a relatively large amount of carbonitride forming elements such as i and Nb has been developed, and is specified as SUS430LX in JIS G 4305, for example. However, the problems of ridging and vertical cracking have not been solved yet.

リジング現象についてはこれまでにも多くの報告がある
が,工業的にこれを解消するとなるとその技術は必ずし
も充分ではない。リジングの成因は例えば金属学会誌,
31(1967),P.519に報告されているように,熱延板中心層
に残存する粗大フェライトバンドにあると考えられてお
り,従って,リジングの改善にあたっては,この熱延板
の粗大フェライトバンドの分断および微細化に集約され
る。従来の発表されている報告または特許においてフェ
ライト系ステンレス鋼のリジング改善のための処法を要
約すれば,(1)スラブの等軸晶率を増す,(2)低温熱延を
施す,((3)熱延板焼鈍を施すなどが挙げられる。
There have been many reports on the ridging phenomenon, but when it comes to industrially solving it, the technology is not always sufficient. The origin of ridging is, for example, the Journal of Japan Institute of Metals,
31 (1967), P.519, it is considered to be in the coarse ferrite band remaining in the center layer of the hot-rolled sheet. Therefore, in improving ridging, the coarse ferrite band of this hot-rolled sheet was considered. The band is divided and miniaturized. To summarize the methods for improving ridging of ferritic stainless steels in previously published reports or patents, (1) increase the equiaxed crystal ratio of the slab, (2) perform low temperature hot rolling, (( 3) Examples include hot-rolled sheet annealing.

フェライト系ステンレス鋼の深絞り後の二次加工時に発
生する縦割れの問題については,本発明者らは特願昭60
-168626号において,鋼成分の面からこれを改善するこ
とを提案した。これはAl,TiまたはNbの含有量を
適切に規制することによって,二次加工性の改善を図っ
たものである。
Regarding the problem of vertical cracks that occur during secondary processing after deep drawing of ferritic stainless steel, the inventors of the present invention have proposed Japanese Patent Application No.
-168626 proposed to improve this from the aspect of steel composition. This is intended to improve the secondary workability by appropriately controlling the content of Al, Ti or Nb.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前述のように,フェライト系ステンレス鋼はリジングの
問題と二次加工性の問題が付随するが,この問題を同時
に且つ工業的に有利に解決する処方は未だ完成されてい
ない。本発明はこの点の解決を目的としたものである。
As described above, ferritic stainless steels are accompanied by ridging problems and secondary workability problems, but a formulation that simultaneously and industrially solves these problems has not been completed. The present invention aims to solve this problem.

〔問題点を解決する手段〕[Means for solving problems]

本発明は,前記の問題を解決するフェライト系ステンレ
ス鋼の鋼板または鋼帯の製造法として,熱間圧延温度で
実質上フェライト単相組織を呈するフェライト系ステン
レス鋼のスラブを粗熱間圧延および仕上熱間圧延して熱
延板を製造し,ついで冷間圧延するにあたり, 該粗圧延を多パスで実施すると共にこの粗圧延開始のス
ラブの温度を1050℃〜1180℃の範囲とすること,およ
び, 板厚が初期スラブの1/2になるまでの粗圧延前段パスに
おいて,圧下率が30%以上のパスを少なくとも一回行な
い,このパスのあと,30秒以上のディレイをおいてから
次パス粗圧延を行なうこと, そして,(1)以降は熱圧延焼鈍を含む1回冷延または中
間焼鈍を含む2回以上の冷延により冷間圧延を行うこ
と,または,(2)特に,耐縦割れ性が厳しく要求される
場合には,熱間圧延終了後,熱延板焼鈍を省略して一回
冷延または中間焼鈍を含む二回以上の冷延により冷間圧
延を行うこと, を特徴とする加工性の優れたフェライト系ステンレス鋼
の鋼板または鋼帯の製造法を提供するものである。
The present invention provides, as a method for producing a ferritic stainless steel sheet or strip that solves the above problems, a slab of ferritic stainless steel having a ferritic single-phase structure at the hot rolling temperature is subjected to rough hot rolling and finishing. Hot rolling to produce a hot rolled sheet, and then cold rolling, the rough rolling is performed in multiple passes, and the temperature of the slab at the start of the rough rolling is set in the range of 1050 ° C to 1180 ° C, and , In the pre-rough rolling pass until the plate thickness becomes half of the initial slab, at least one pass with a rolling reduction of 30% or more is performed, and after this pass, a delay of 30 seconds or more is applied before the next pass. Rough rolling and (1) and subsequent cold rolling by one cold rolling including hot rolling annealing or two or more cold rolling including intermediate annealing, or (2) When cracking is strictly required After completion of hot rolling, the hot rolling sheet annealing is omitted and cold rolling is performed by one cold rolling or two or more cold rollings including an intermediate annealing. A method of manufacturing a steel plate or strip of steel is provided.

本発明法は,熱間圧延工程で実質上フェライト単相組織
を呈するフェライト系ステンレス鋼であれば適用可能で
ある。そして,熱間圧延工程のあとでは,熱延板焼鈍を
実施してから通常の冷間圧延を実施することもできる
が,Tiおよび/またはNbを含む鋼の場合に特に二次
加工時の縦割れが著しく厳しい要求となる場合には,上
記の方法で熱延後,熱延板焼鈍を省略して冷間圧延を実
施することによって,かような縦割れの問題のない鋼板
または鋼帯を得ることができる。
The method of the present invention can be applied to any ferritic stainless steel that exhibits a ferritic single phase structure in the hot rolling process. After the hot rolling process, it is possible to perform hot rolling annealing and then ordinary cold rolling. However, in the case of steel containing Ti and / or Nb, the vertical rolling during secondary working is particularly important. When cracking is extremely demanding, after hot rolling by the above method, hot rolling annealing is omitted and cold rolling is performed to obtain a steel plate or steel strip having no such vertical cracking problem. Obtainable.

本発明はプレス成形性の良好な鋼に対して適用すること
が特に望ましく,本発明の目的が有利に達成できる鋼と
しては,C:0.03%以下,Si:0.75%以下,Mn:0.
40%以下,P:0.04%以下,S:0.01%以下,Cr:1
2.0%〜22.0%,Ni:0.5%以下,N:0.03%以下,
O:0.015%以下,sol.Al:0.05%以下,そして,0.04%
〜0.40%のTiまたは0.10%〜0.80%のNbの一種また
は二種を含有し,場合によっては,さらに2%以下のM
oまたは1%以下のCuを含有し,残部が鉄および不可
避的に混入する不純物からなる鋼がある 以下に本発明法の内容を具体的に説明する。
The present invention is particularly preferably applied to a steel having good press formability, and as a steel that can advantageously achieve the object of the present invention, C: 0.03% or less, Si: 0.75% or less, Mn: 0.
40% or less, P: 0.04% or less, S: 0.01% or less, Cr: 1
2.0% to 22.0%, Ni: 0.5% or less, N: 0.03% or less,
O: 0.015% or less, sol.Al: 0.05% or less, and 0.04%
.About.0.40% Ti or 0.10% to 0.80% Nb, or two or more, depending on the case, further 2% or less of M
There is steel containing O or 1% or less of Cu, and the balance being iron and impurities inevitably mixed in. The contents of the method of the present invention will be specifically described below.

リジングの成因は種々考えられるが、本発明者らは前述
したように熱延板中心層に残存する粗大フェライトバン
ドにあると考えられており,粗大フェライトバンドが形
成される熱延工程にまず注目した。SUS430のように一般
に高温でオーステナイトが析出し2相となる鋼では熱間
圧延中に析出したオーステナイトの分散などの効果によ
って組織が微細化されるが,本発明で対象とするような
高温まで(熱間加工温度で)実質上フェライト単相であ
るフェライト系ステンレス鋼では別の手段による組織の
微細化が必要である。本発明者らはこの点について系統
的な研究を行い,既に「鉄と鋼」70(1984),P2152におい
て,変形帯によって組織が分断される可能性について報
告した。しかし,これは鋳造材を対象としたものであ
り,十分な工業的技術にまでは至らなかった。
Although various causes of ridging can be considered, the present inventors are considered to be in the coarse ferrite band remaining in the center layer of the hot-rolled sheet as described above, and first focus on the hot rolling process in which the coarse ferrite band is formed. did. In a steel such as SUS430, which generally has austenite precipitated at high temperature to form two phases, the structure is refined by the effect of dispersion of austenite precipitated during hot rolling, but up to the high temperature targeted by the present invention ( Ferritic stainless steels that are essentially ferritic single phase (at hot working temperature) require microstructural refinement by other means. The present inventors have conducted a systematic study on this point and have already reported in “Iron and Steel” 70 (1984), P2152, the possibility that the structure is divided by the deformation zone. However, this was intended for cast materials, and it was not possible to achieve a sufficient industrial technology.

そこで、実際のフェライト系ステンレス鋼のスラブの板
厚中心部から,リジングの成因と考えられる柱状晶部を
採取し,これらの試料をもとにその組織を微細化する処
法を開発すべく種々の試験研究を重ねた。とくに,柱状
晶を微細化するには熱延工程での組織の微細化が必要で
あることから柱状晶の段圧過程の組織変化について,温
度,段圧過程の圧下率,圧下後の保持時間並びにその保
持時間の経時的な位置等の条件を種々に変動させてリジ
ングに及ぼす影響を詳細に調べた。その結果,第1図〜
第4図に示される興味深い関係を見出すことができた。
Therefore, various columnar crystal parts, which are considered to be the cause of ridging, were collected from the center of the plate thickness of an actual slab of ferritic stainless steel, and various methods were developed to refine the structure based on these samples. Repeated trial research. In particular, the refinement of the microstructure of the columnar crystals requires refinement of the microstructure in the hot rolling process. Therefore, regarding the microstructural change of the stage pressure process of the columnar crystals, the temperature, the reduction rate of the stage pressure process, and the holding time after reduction Also, the influence on the ridging was investigated in detail by varying the conditions such as the position of the holding time with time. As a result, Fig. 1 ~
We were able to find the interesting relationships shown in FIG.

まず第1図〜第4図に示した結果を得た試験条件につい
て説明する。供試鋼の化学成分値を第1表に示した。A
鋼はNbを含み,A鋼はTiを含むフェライト系ス
テンレス鋼である。これらの鋼は,40トン電気炉,転炉
および真空脱ガス装置を経て溶製され,これを連続鋳造
設備によって鋳造スラブとした。そして,このスラブの
断面をマクロエッチ後,柱状晶の部分より,40mm厚み×
100mm幅×lmm長さの圧延用試料を採取した。そして,
この試料を加熱後,ロール径が330mmφの熱間圧延機を
用いて第2表に示すように各種の熱延条件で板厚3.6mm
まで熱延した。熱延条件は圧延開始の温度(加熱炉から
のスラブの抽出温度),段圧1パス目の圧下率,段圧1
パス後,次パスまでの保持時間(ディレイ時間),のそ
れぞれを変動因子とした。得られた熱延板は,A鋼に
ついては1000℃×1分の均熱,A鋼については900℃
×1分の均熱の短時間焼鈍を実施,二回冷延二階焼鈍で
最終的に0.7mmの厚さの冷延焼鈍板とした。
First, the test conditions for obtaining the results shown in FIGS. 1 to 4 will be described. Table 1 shows the chemical composition values of the test steels. A
Steel 1 is a ferritic stainless steel containing Nb and steel A 2 is containing Ti. These steels were smelted through a 40-ton electric furnace, a converter and a vacuum degassing device, and this was made into a casting slab by a continuous casting facility. And after macro etching the cross section of this slab, from the columnar crystal part, 40mm thickness ×
A rolling sample having a width of 100 mm and a length of 1 mm was taken. And
After heating this sample, using a hot rolling mill with a roll diameter of 330 mmφ, the plate thickness was 3.6 mm under various hot rolling conditions as shown in Table 2.
Hot rolled. The hot rolling conditions are the temperature at the start of rolling (the temperature at which the slab is extracted from the heating furnace), the draft of the first pass of the stage pressure, and the stage pressure of 1.
The holding time (delay time) from one pass to the next pass was used as a variable. The obtained hot-rolled sheet is soaked at 1000 ℃ for 1 minute for A 1 steel, 900 ℃ for A 2 steel.
× 1 minute soaking was carried out for a short time to obtain a cold-rolled annealed sheet with a thickness of 0.7 mm by double cold-rolling second-stage annealing.

得られた冷延焼鈍板から,圧延方向と平行に平行部35mm
幅×120mm長さの引張試験片を採取し,これを20%引張
後に表面に現れるリジングを測定した。
From the obtained cold rolled annealed plate, the parallel part 35mm parallel to the rolling direction
A tensile test piece with a width of 120 mm was taken, and the ridging that appeared on the surface after 20% tension was measured.

リジングの測定は表面粗さ計を用いて中心線平均粗さRa
を測定すると共に表面の外観判定を行い,これらを次の
5段階で評価した。外観判定にあたっては,バックリン
グの大きいものについてはランクを1ランクダウンさせ
た。
Ridging is measured using a surface roughness meter and the centerline average roughness Ra
Was measured and the appearance of the surface was judged, and these were evaluated in the following 5 stages. When judging the appearance, the rank of the one with a large buckling was lowered by one rank.

第1図は第1表のA1鋼について抽出温度(粗圧延開始温
度)および1パス後のディレイの有無とリジング評点の
関係を示したものである。1パス後のディレイの間はパ
ス後の材温とほぼ等しい温度に保持し,ディレイ時間は
いずれも120秒である。
FIG. 1 shows the relationship between the extraction temperature (rough rolling start temperature), the presence or absence of delay after one pass, and the ridging score for the A 1 steel in Table 1 . During the delay after one pass, the material temperature after the pass is kept at a temperature almost equal to the delay time, and the delay time is 120 seconds in each case.

第1図の結果から明らかなように,抽出温度が低下する
と全体にリジングは改善され,またディレイを設けた場
合にはディレイ無しの場合に比べてリジングが改善され
ることがわかる。例えば,ディレイ無しの場合には抽出
温度が1100℃前後でリジング評点2以下が得られたもの
もあるが,平均すると評点は3近辺でありバラツキが大
きく工業的に安定した特性が得られないし,抽出温度を
さらに下げても十分なリジング評点は安定して得られな
い。これに対してディレイを設けた場合には抽出温度が
1050〜1180℃の範囲でリジング評点2が安定して得られ
ている。このリジング評点2のレベルはプレス成形用材
料において非常に厳しいリジング特性要件を満足する水
準である。
As is clear from the results shown in FIG. 1, the ridging is improved as a whole when the extraction temperature is lowered, and the ridging is improved when the delay is provided as compared with the case where no delay is provided. For example, in the case of no delay, there were some cases in which the ridging score was 2 or less when the extraction temperature was around 1100 ° C, but on the average, the score was around 3 and there were large variations, and industrially stable characteristics could not be obtained. Even if the extraction temperature is further lowered, a sufficient ridging score cannot be obtained stably. On the other hand, when a delay is provided, the extraction temperature
A ridging score of 2 is stably obtained in the range of 1050 to 1180 ° C. The level of this ridging score 2 is a level which satisfies very strict ridging characteristic requirements in press molding materials.

第2図はディレイを設けるパス位置とリジングとの関係
を示したものである。第2図において○印は各抽出温度
において1パス後に30〜120秒のディレイを設けたも
の,△印は3パス後に各抽出温度において30〜120秒の
ディレイを設けたものである。第3図はこのディレイの
位置を図解したものである。第2図の結果に見られるよ
うに,粗圧延前段のパスでディレイを設けた方がリジン
グ評点が全体によくなる。1050〜1180℃の抽出温度にお
いて1パス後にディレイを設けた場合では2点を除いて
リジング評点2が得られている。この評点2を外れたも
のの一つは例外的に圧下率が20%のものであり,それ以
外のものは圧下率が30%以上のものであり,他の一つは
例外的にディレイ時間が10秒のものであり,それ以外の
ディレイ時間は30秒以上のものであった。
FIG. 2 shows the relationship between the path position where the delay is provided and the ridging. In FIG. 2, a circle mark indicates a delay of 30 to 120 seconds after one pass at each extraction temperature, and a triangle mark indicates a delay of 30 to 120 seconds at each extraction temperature after three passes. FIG. 3 illustrates the position of this delay. As can be seen from the results shown in FIG. 2, the ridging score is better overall when the delay is provided in the pass before the rough rolling. When a delay is provided after one pass at an extraction temperature of 1050 to 1180 ° C, a ridging rating of 2 is obtained except for 2 points. One of those that deviated from this score 2 had an exceptional reduction rate of 20%, the others had a reduction rate of 30% or more, and the other one had an exceptional delay time. The delay time was 10 seconds and the other delay times were 30 seconds or longer.

以上の基礎試験からフェライト系ステンレス鋼のリジン
グを改善するには,熱間圧延工程における熱延開始温度
(加熱炉からのスラブ抽出温度)を1050〜1180℃の範囲
とし,粗圧延の段階で少なくとも30秒のディレイ時間を
採ること,そしてそのディレイは粗圧延での早いパス回
数の時点で採ることが必要であり,このディレイ前のパ
スでは少なくとも30%以上の圧下率とすることが良いこ
とが判明した。これを実操業の条件で云えば,粗圧延の
過程でスラブの抽出温度を1050℃〜1180℃の範囲とし,
板厚が初期スラブ厚の1/2になるまでの粗圧延前段パス
において圧下率が30%以上のパスを少なくとも一回行な
い,このパスのあと,30秒以上のディレイをおいてから
次パス粗圧延を行うことがよいことになる。
From the above basic tests, in order to improve the ridging of ferritic stainless steel, the hot rolling start temperature (slab extraction temperature from the heating furnace) in the hot rolling process should be in the range of 1050 to 1180 ℃, and at least during the rough rolling stage. It is necessary to take a delay time of 30 seconds, and to take the delay at the time of the number of early passes in rough rolling, and it is good to set a reduction rate of at least 30% or more in the pass before this delay. found. In terms of actual operation, the slab extraction temperature should be in the range of 1050 ℃ to 1180 ℃ during the rough rolling process.
Perform a pass with a rolling reduction of 30% or more at least once in the preceding pass of rough rolling until the plate thickness becomes half of the initial slab thickness, and after this pass, delay for 30 seconds or more before the next pass roughing. It would be better to carry out rolling.

このような有益な結果が得られた理由については,第4
図〜第7図の組織写真から判断すると次のように考える
ことができる。第4図および第5図は,40mmから12mmま
で3パス圧延したさいに,第4図では抽出温度を1200
℃,第5図では抽出温度を1100℃とし,各々1パス後に
120秒のディレイをおいた場合の圧延組織(3パス圧延
後の熱延組織)を示したものである。第4図の1200℃抽
出のものはディレイを施しても粗大な回復フェライト組
織であるが,第5図の1100℃抽出でディレイを施したも
のは多数の変形帯(第5図の写真で斜め方向に橋状に見
える)を含む回復組織(一部再結晶)となっている。す
なわち,抽出温度が低下したことにより熱延で変形帯が
導入され組織が著しく細分化され,つぎにディレイを置
くことによりこの変形帯を中心にして回復(一部再結
晶)が進行したことを示唆している。この変形帯を利用
して熱延中の組織を微細化することおよびその後のディ
レイ中の回復・再結晶の進行により得られた組織がリジ
ング改善に寄与するようになることは,次の第6図およ
び第7図の写真からわかる。第6図および第7図は,そ
れぞれ第4図および第5図の熱延組織のものから熱延板
を作製し,1000℃×1分の均熱後水冷の焼鈍を施した場
合の再結晶の状態を調べた写真である。第6図の熱延焼
鈍板では板厚中心部に粗大な未再結晶フェライトが存在
するのに対し,第7図の熱延焼鈍板では板厚中心部まで
十分に再結晶していることがわかる。すなわち,本発明
法による熱延条件では変形帯組織の導入と回復が行われ
微細な熱延組織を得ることができ,これがリジング改善
に寄与することになると考えられる。
For the reason why such beneficial results were obtained, see Chapter 4.
Judging from the organizational photographs shown in FIGS. 7 to 7, it can be considered as follows. Figures 4 and 5 show the extraction temperature of 1200 mm in Fig. 4 when rolling three passes from 40 mm to 12 mm.
℃, the extraction temperature is 1100 ℃ in Fig. 5, and after 1 pass each
It shows a rolling structure (hot rolling structure after 3-pass rolling) when a delay of 120 seconds is set. The 1200 ° C-extracted one in Fig. 4 has a coarse recovery ferrite structure even after delaying, but the delayed-out 1100 ° C-extracted one in Fig. 5 has many deformation zones (oblique in the photograph in Fig. 5). It has a recovery structure (partly recrystallized) including a bridge-like structure in the direction. That is, the deformation zone was introduced by hot rolling due to the lowering of the extraction temperature, the structure was remarkably subdivided, and the delay (later placed) led to the progress of recovery (partly recrystallization) around this deformation zone. Suggests. The fact that the structure obtained by refining the structure during hot rolling by utilizing this deformation zone and the progress of recovery and recrystallization during the delay after that contributes to the improvement of ridging is described in the following It can be seen from the photographs of the figure and FIG. Figures 6 and 7 show recrystallization when hot-rolled sheets were made from the hot-rolled microstructures of Figures 4 and 5, respectively, and subjected to soaking at 1000 ° C for 1 minute and then water-cooled annealing. It is a photograph that examined the state of. In the hot-rolled annealed sheet shown in Fig. 6, coarse unrecrystallized ferrite exists in the center of the sheet thickness, whereas in the hot-rolled annealed sheet shown in Fig. 7, it is found that recrystallization is sufficiently performed up to the sheet thickness center. Recognize. That is, it is considered that under the hot rolling conditions according to the method of the present invention, the introduction and recovery of the deformation zone structure can be performed and a fine hot rolling structure can be obtained, which contributes to the improvement of ridging.

このようにして従来より問題のあったフェライト系ステ
ンレス鋼のリジングは解決することができたが,本発明
者らが抱えた次の問題は二次加工時に発生する縦割れの
問題であった。この縦割れは高度の一次絞り加工後に形
状修正などの二次加工を行ったさいに発生し,特に冬場
に多発する傾向がある。フェライト系ステンレス鋼の加
工性および耐食性の改善にはTiやNbの添加が有益で
あるが,かようなTi,Nb添加鋼では著しくこの縦割
れが助長される。本発明者らはこの問題を解決すべく成
分面のみならず冷延配分率や焼鈍条件などの製造条件の
面から試験研究を行ったが,前記のリジング改善の熱延
条件をそのまま採用し,得られた熱延板を焼鈍すること
なく,つまり熱延板焼鈍を省略して,通常の冷延を行う
ならば,この縦割れ遷移温度を約20℃下げることができ
ることが判明した。第8図にその結果を示す。
In this way, the ridging of ferritic stainless steel, which had been problematic in the past, could be solved, but the next problem that the present inventors had was the problem of vertical cracking that occurs during secondary processing. These vertical cracks occur when secondary processing such as shape correction is performed after high-level primary drawing, and tend to occur frequently especially in winter. The addition of Ti and Nb is useful for improving the workability and corrosion resistance of ferritic stainless steel, but such vertical cracking is significantly promoted in such Ti and Nb-added steel. In order to solve this problem, the present inventors have conducted a test study not only in terms of compositional aspects but also in terms of manufacturing conditions such as cold rolling distribution ratio and annealing conditions. However, the above hot rolling conditions for improving ridging were adopted as they were, It was found that the longitudinal crack transition temperature can be reduced by about 20 ° C without annealing the obtained hot-rolled sheet, that is, by omitting the hot-rolled sheet annealing and performing ordinary cold rolling. The results are shown in FIG.

第8図は第1表の二種の鋼について,熱延板焼鈍を省略
した場合(As Hot),850℃×1時間(炉冷)の焼鈍を
行った場合,950℃×1分(空冷)の焼鈍を行った場合
の,冷延の焼鈍板の縦割れ遷移温度(T0.2あを調べたも
のである。焼鈍の有無とその条件を変えた以外の製造条
件は同一である。すなわち熱延条件,冷延条件は前述の
リジング試験の項で述べた範囲で同一とした。また縦割
れ遷移温度(T0.2)は第9図に示すような落重試験法に
よって決定した。この落重試験は供試冷延焼鈍板を段絞
りによって絞り比3.1,外径27mmの深絞りカップとし,
耳を落としてカップ高さを42mmとした試験カップ1を,
第9図のように横置きにし,その上に重錘2を落下させ
て縦割れの発生の有無を調べるものである。そのさい,
重錘2の落下高さを変えることにより衝撃エネルギーを
変化させると共に試験温度を変化させ,衝撃エネルギー
が0.2Kgf・mとなる温度を「縦割れ遷移温度(T0.2」と
した。
Figure 8 shows the two types of steel in Table 1 when hot-rolled sheet annealing is omitted (As Hot), when annealing is performed at 850 ° C for 1 hour (furnace cooling), 950 ° C for 1 minute (air cooling). ), The vertical crack transition temperature (T 0.2 ) of the cold rolled annealed sheet was examined. The manufacturing conditions were the same except that the presence or absence of annealing and the conditions were changed. The rolling conditions and cold rolling conditions were the same within the range described in the ridging test section, and the vertical crack transition temperature (T 0.2 ) was determined by the drop weight test method shown in Fig. 9. In the test, a cold-rolled annealed sample was used as a deep drawing cup with a drawing ratio of 3.1 and an outer diameter of 27 mm by step drawing.
Test cup 1 with the ear dropped and the cup height set to 42 mm
As shown in FIG. 9, it is placed horizontally and the weight 2 is dropped on it to check whether vertical cracks occur. At that time,
The impact energy was changed by changing the drop height of the weight 2 and the test temperature was changed, and the temperature at which the impact energy reached 0.2 Kgf · m was defined as the “vertical crack transition temperature (T 0.2) ”.

第8図の結果に見られるように,熱延板焼板を省略した
方が焼鈍を実施した場合よりもむしろ縦割れ遷移温度
(T0.2)が低下し,その低下の程度も約20℃に達する。
したがって,二次加工性が特に問題となる場合には,前
記のリジング改善処法を採用した上で熱延板焼鈍を省略
すればよいことになる。
As can be seen from the results in Fig. 8, the transition temperature (T 0.2 ) of longitudinal cracks was lower when the hot-rolled sheet was omitted, rather than when annealing was performed, and the degree of the reduction was about 20 ° C. Reach
Therefore, when the secondary workability is a particular problem, it is sufficient to omit the hot-rolled sheet annealing after adopting the ridging improvement treatment method described above.

この意味で本発明法が有利に適用できるフェライト系ス
テンレス鋼は加工性および耐食性を向上させたTi,N
b添加鋼であり,本発明においては重量%で,C:0.03
%以下,Si:0.75%以下,Mn:0.40%以下,P:0.
04%以下,S:0.01%以下,Cr:12.0%〜22.0%,N
i:0.5%以下,N:0.03%以下,O:0.015%以下,s
ol.Al:0.05%以下,そして,0.04%〜0.40%のT
iまたは0.10%〜0.80%のNbの一種または二種を含有
し,場合によっては,さらに2%以下のMoまたは1%
以下のCuを含有し,残部が鉄および不可避的に混入す
る不純物からなるフェライト系ステンレス鋼が推奨され
る。この鋼の成分範囲を限定する理由を概説すると次の
とおりである。
In this sense, the ferritic stainless steel to which the method of the present invention can be advantageously applied is Ti, N having improved workability and corrosion resistance.
b added steel, in the present invention, in% by weight, C: 0.03
% Or less, Si: 0.75% or less, Mn: 0.40% or less, P: 0.
04% or less, S: 0.01% or less, Cr: 12.0% to 22.0%, N
i: 0.5% or less, N: 0.03% or less, O: 0.015% or less, s
ol. Al: 0.05% or less, and 0.04% to 0.40% T
i or 0.10% to 0.80% of one or two kinds of Nb, and in some cases, 2% or less of Mo or 1%
A ferritic stainless steel containing the following Cu with the balance being iron and impurities inevitably mixed in is recommended. The reason for limiting the composition range of this steel is as follows.

Cは成形性および耐食性に有害な元素であり,またCを
高くすることはそれだけTi,Nbの量を増すことにな
り,ひいては二次加工性の低下につながるので上限を0.
03%とする。Siは脱酸剤として添加されるが,その含
有量が高いと材料が硬化するので0.75%以下とする。M
nはMnSとしてSを固定して熱間加工性を向上させる
が,一方でMnSは孔食の起点となって耐食性を劣化さ
せる。そのために,Sを厳しく制限してMn添加量を低
く抑えるのが有利となり,この意味で0.40%以下とす
る。Pは二次加工性に悪影響を及ぼすので低い方が好ま
しく0.04%以下とする。Sは耐食性に有害で低い方が好
ましいので0.01%以下とする。Crの下限は熱間圧延温
度で実質上フェライト単相組織を得るうえから,また耐
食性の見地から12.0%以上とし,一方,22%を越えると
熱延板の靫性が低下するので12.0〜22.0%の範囲とす
る。Niはスクラップなどの副原料から混入するが,0.
5%を越える量ではコスト上昇となるので0.5%以下とす
る。NはCと共に成形性および耐食性に有害なので0.03
%以下とする。Oは鋼中の非金属介在物を増し加工性に
有害であるが,二次加工性の見地からAlを制限する関
係上,酸素の上限を規制する必要がある。靫性および成
形特性,曲げ加工性からみて酸素が0.015%を越える
と,これらの特性が低下するので0.015%以下とする。
Alは脱酸剤として添加するが,加工性の向上にも有用
である。しかし縦割れを助長する元素でもあり,この意
味から0.05%以下とする。Tiは加工性および耐食性の
向上を目的として添加するが0.40%を越えて添加すると
耐縦割れ性が著しく低下する。NbTiと同様に加工性
および耐食性の向上を目的として添加するが,Tiに比
べて縦割れの害がすくないことから,高Nbまで添加す
ることができるが,0.80%を越えるようになると熱延板
の靫性が低下するので0.08%以下とする。
C is an element that is harmful to formability and corrosion resistance, and increasing C increases the amounts of Ti and Nb accordingly, which in turn lowers the secondary workability, so the upper limit is 0.
03% Si is added as a deoxidizing agent, but if its content is high, the material will be hardened, so the content should be 0.75% or less. M
While n fixes MnS as MnS and improves hot workability, MnS becomes a starting point of pitting corrosion and deteriorates corrosion resistance. Therefore, it is advantageous to strictly limit S to keep the amount of Mn added low, and in this sense, it is 0.40% or less. Since P adversely affects the secondary workability, its lower content is preferable and 0.04% or less is preferable. Since S is harmful to corrosion resistance and is preferably low, it is set to 0.01% or less. The lower limit of Cr is 12.0% or more from the viewpoint of obtaining a ferrite single-phase structure at the hot rolling temperature and from the viewpoint of corrosion resistance. On the other hand, if it exceeds 22%, the hot rolling sheet's drossiness deteriorates, so 12.0 to 22.0%. The range is%. Ni is mixed from scraps and other auxiliary materials, but
If the amount exceeds 5%, the cost will increase, so 0.5% or less. 0.03 because N is harmful to formability and corrosion resistance together with C
% Or less. O increases the amount of non-metallic inclusions in the steel and is harmful to the workability. However, from the viewpoint of secondary workability, it is necessary to control the upper limit of oxygen in order to limit Al. Oxygen exceeds 0.015% in terms of wettability, forming characteristics, and bending workability, and these characteristics deteriorate, so the content should be 0.015% or less.
Although Al is added as a deoxidizer, it is also useful for improving workability. However, it is also an element that promotes vertical cracking, and in this sense, it should be 0.05% or less. Ti is added for the purpose of improving workability and corrosion resistance, but if it is added in excess of 0.40%, the vertical cracking resistance is markedly reduced. Like NbTi, it is added for the purpose of improving workability and corrosion resistance, but since it is less harmful to vertical cracks than Ti, it is possible to add up to high Nb, but when it exceeds 0.80%, hot rolled sheet However, it is 0.08% or less.

以下に実際操業により本発明法を実施した代表的な実施
例を挙げる。
Typical examples in which the method of the present invention is carried out by actual operation will be described below.

実施例 溶製した鋼の化学成分を第3表に示す。これらの鋼を連
続鋳造によりスラブを製造し,第4表に示す条件でホッ
トコイルを製造した。粗圧延は6〜8パスで200mmから2
5mmまでの圧下を行い,仕上圧延は6パスで25mmから3.6
mmまでの圧下を行なった。第4表において,圧下率の欄
はディレイを置いたパス(ディレイ処置前のパス)での
圧下率を示している。得られら熱延板1000℃で連続焼鈍
し,中間焼鈍を含む二回冷延で0.7mm厚の冷延焼鈍板を
製造した。ホットコイルの表面状態並びに冷延焼鈍板の
リジング評点を第4表に併記した。リジング評点は本文
に記載した基準である。
Example The chemical composition of molten steel is shown in Table 3. Slabs were manufactured by continuous casting of these steels, and hot coils were manufactured under the conditions shown in Table 4. Rough rolling is from 6 to 8 passes from 200 mm to 2
Rolling down to 5mm, finish rolling from 6mm to 25mm to 3.6mm.
A reduction of up to mm was performed. In Table 4, the column of the rolling reduction shows the rolling reduction in the path with the delay (the path before the delay treatment). The hot-rolled sheet obtained was continuously annealed at 1000 ° C, and cold rolled annealed sheet with a thickness of 0.7 mm was manufactured by double cold rolling including intermediate annealing. Table 4 also shows the surface condition of the hot coil and the ridging rating of the cold rolled annealed plate. The ridging score is the standard described in the text.

第4表から,本発明で規定する熱延条件によって製造し
た冷延焼鈍板のリジング評点はいずれも2以下であり,
優れたリジング特性を示すことがわかる。これに対し抽
出温度が高いNo.1や,ディレイ直前のパスでの圧下率
が低いNo.2や,またディレイを採ったパスが後段であ
るNo.3,ディレイ時間の短いNo.4ではリジング評点が
高く本発明のような効果は得られていない。また,ホッ
トコイルの表面状態について見ると,No.5のように抽
出温度が1050℃以下の場合には線状の表面疵が多発して
くる。この表面疵が発生すると次工程で研磨が必要とな
り,コスト上昇の原因となる。No.5ではリジング評点
は2以下と良好であるが,この表面疵の点から問題があ
り,本発明の実施においては,抽出温度は1050℃以上と
するのがよい。
From Table 4, the cold rolling annealed sheets produced under the hot rolling conditions specified in the present invention all have ridging scores of 2 or less,
It can be seen that it exhibits excellent ridging characteristics. On the other hand, No. 1 with a high extraction temperature, No. 2 with a low reduction rate in the path immediately before the delay, No. 3 in which the delayed path is in the latter stage, and No. 4 with a short delay time The score is high and the effect of the present invention is not obtained. Also, looking at the surface condition of the hot coil, as in No. 5, when the extraction temperature is 1050 ° C or less, linear surface defects frequently occur. If this surface flaw occurs, polishing will be required in the next step, which will increase the cost. In No. 5, the ridging score is as good as 2 or less, but there is a problem in terms of this surface flaw, and in the practice of the present invention, the extraction temperature is preferably 1050 ° C or higher.

第5表は熱延板焼鈍の有無(焼鈍有は前記の連続焼鈍を
行った場合,焼鈍無はこれを行わなかった場合)による
冷延焼鈍板の機械的性質,深絞り製の指標であるランク
フオード値r,および二次加工割れ発生率〔本文に記載
した縦割れ遷移温度(T0.2)〕を示したものである。第
5表の結果から明らかなように,いずれの鋼も伸びおよ
びランクフオード値が良好で優れた加工性を示すが,T
iを過剰に添加したA4鋼は熱延板焼鈍を行った場合には
二次加工割れ発生率が高いのに対し,熱延板焼鈍を省略
した場合には(T0.2)値が0℃以下となっている。な
お,この熱延板焼鈍を省略した冷延板焼鈍板はリジング
評点は2であった。
Table 5 shows the mechanical properties of cold-rolled annealed sheets with and without annealing of the hot-rolled sheet (with annealing, with continuous annealing as described above, without annealing, and with deep-drawing). The rank field value r and the secondary work crack occurrence rate [vertical crack transition temperature (T 0.2 ) described in the text] are shown. As is clear from the results shown in Table 5, all steels have good elongation and rank field values and show excellent workability.
i excessively added was A 4 the steel whereas higher secondary processing cracking incidence when performing hot-rolled sheet annealing, if you omit the hot rolled sheet annealing is (T 0.2) value 0 ℃ It is below. The ridging score of the cold-rolled sheet annealed without the hot-rolled sheet annealing was 2.

【図面の簡単な説明】[Brief description of drawings]

第1図はフェライト系ステンレス鋼の粗熱間圧延におけ
る粗圧延開始温度(抽出温度)および1パス後のディレ
イの有無とリジング評点との関係図,第2図は該抽出温
度並びにディレイ位置とリジング評点との関係図,第3
図は第2図のディレイの位置を図解的に示した図,第4
図は,フエライト系ステンレス鋼のスラブを1200℃で抽
出後,40→24mmに熱延し1200℃で120秒のデイレイを施
した後,さらに24→18→12mmまで熱延し急冷した試料の
金属組織を示す顕微鏡写真,第5図は,同じくフエライ
ト系ステンレス鋼のスラブの抽出温度を1100℃とし,40
→24mmに熱延し1100℃で120秒デイレイを施した後さら
に24→18→12mmまで熱延し急冷した試料の金属組織を示
す顕微鏡写真,第6図は同じくフエライト系ステンレス
鋼のスラブを1200℃で抽出後,40→24mmに熱延し1200℃
で120秒のデイレイを施した後さらに3.6mmまで5パスで
熱延し,この熱延板を1000℃×1分の均熱後水冷の焼鈍
を施した場合の再結晶の状態(金属組織)を示した顕微
鏡写真,第7図は同じくフエライト系ステンレス鋼のス
ラブを1100℃で抽出後,40→24mmに熱延し1100℃で120
秒のデイリイを施した後さらに3.6mmまで5パスで熱延
し,この熱延板を1000℃×1分の均熱後水冷の焼鈍を施
した場合の再結晶の状態(金属組織)を示した顕微鏡写
真,第8図は熱延板焼鈍の有無と縦割れ遷移温度T0.2
の関係図,第9図は第8図の縦割れ遷移温度試験におけ
る試験カップと重錘との関係を示す図である。 1……試験カップ,2……重錘。
Fig. 1 is a diagram showing the relationship between the rough rolling start temperature (extraction temperature) and the presence or absence of delay after one pass and the ridging score in the rough hot rolling of ferritic stainless steel, and Fig. 2 is the extraction temperature, delay position and ridging. Relationship with score, 3rd
The figure shows the position of the delay in Fig. 2 diagrammatically, and Fig. 4
The figure shows the metal of a sample obtained by extracting a slab of ferritic stainless steel at 1200 ° C, hot rolling it at 40 → 24 mm, laying it for 120 seconds at 1200 ° C, and further hot rolling it to 24 → 18 → 12 mm. Fig. 5 is a micrograph showing the structure, and the extraction temperature of the slab of ferritic stainless steel was 1100 ° C.
→ A micrograph showing the metallographic structure of a sample that was hot-rolled to 24 mm, laid for 120 seconds at 1100 ° C, then further hot-rolled to 24 → 18 → 12 mm and rapidly cooled. Fig. 6 shows a slab of ferritic stainless steel for 1200 Extracted at ℃, hot-rolled from 40 to 24mm, 1200 ℃
Relay state (metallographic structure) when hot-rolled to 3.6 mm in 5 passes for 5 seconds, and then hot-rolled at 1000 ° C for 1 minute and then annealed by water cooling Fig. 7 is a photomicrograph showing the same. A slab of ferritic stainless steel was also extracted at 1100 ° C, then hot-rolled from 40 to 24 mm, and 120 ° C at 1100 ° C.
After re-depositing for 2 seconds, it is hot-rolled to 3.6mm for 5 passes and shows the recrystallized state (metallic structure) when this hot-rolled sheet is soaked at 1000 ℃ for 1 minute and then annealed by water cooling. Fig. 8 shows the relationship between the presence or absence of hot-rolled sheet annealing and the vertical crack transition temperature T 0.2 . Fig. 9 shows the relationship between the test cup and the weight in the vertical crack transition temperature test of Fig. 8. It is a figure. 1 ... Test cup, 2 ... Weight.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/28 (72)発明者 清水 勇 山口県新南陽市大字富田4976番地 日新製 鋼株式会社周南研究所内 (72)発明者 山崎 浩一 山口県新南陽市大字富田4976番地 日新製 鋼株式会社周南研究所内 (56)参考文献 特開 昭59−13026(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location C22C 38/28 (72) Inventor Isamu Shimizu 4976 Tomita, Shinnanyo-shi, Yamaguchi Nisshin Steel Co., Ltd. Company Shunan Research Institute (72) Inventor Koichi Yamazaki 4976 Tomita, Shinnanyo City, Yamaguchi Prefecture Shunan Research Institute, Nisshin Steel Co., Ltd. (56) Reference JP-A-59-13026 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】熱間圧延温度で実質上フェライト単相組織
を呈するフェライト系ステンレス鋼のスラブを粗熱間圧
延および仕上熱間圧延して熱延板を製造し,ついで通常
の焼鈍および冷間圧延によりフェライト系ステンレス鋼
の鋼板または鋼帯を製造する方法において, 該粗圧延を多バスで実施すると共にこの粗圧延開始のス
ラブの温度を1050℃〜1180℃の範囲とすること,およ
び, 板厚が初期スラブ厚の1/2になるまでの粗圧延前段パス
において,圧下率が30%以上のパスを少なくとも一回行
ない,このパスのあと,30秒以上のディレイをおいてか
ら次パス粗圧延を行うこと, を特徴とする加工性の良好なフェライト系ステンレス鋼
の鋼板または鋼帯の製造法。
1. A slab of ferritic stainless steel exhibiting a ferritic single-phase structure at a hot rolling temperature is roughly hot-rolled and finish hot-rolled to produce a hot-rolled sheet, followed by ordinary annealing and cold-rolling. In a method for producing a steel plate or strip of ferritic stainless steel by rolling, the rough rolling is carried out in a multi-bath and the temperature of the slab at the start of the rough rolling is set in the range of 1050 ° C to 1180 ° C. In the first pass of rough rolling until the thickness becomes half of the initial slab thickness, a pass with a reduction rate of 30% or more is performed at least once, and after this pass, a delay of 30 seconds or more is applied before the next pass roughening. A method for producing a ferritic stainless steel sheet or strip with good workability, characterized by rolling.
【請求項2】フェライト系ステンレス鋼は、重量%で,
C:0.03%以下,Si:0.75%以下,Mn:0.40%以
下,P:0.04%以下,S:0.01%以下,Cr:12.0%〜
22.0%,Ni:0.5%以下,N:0.03%以下,O:0.015
%以下,sol.Al:0.05%以下,そして,0.04%〜0.40%
のTiまたは0.10%〜0.80%のNbの一種または二種を
含有し、場合によっては,さらに2%以下のMoまたは
1%以下のCuを含有し,残部が鉄および不可避的に混
入する不純物からなる鋼である特許請求の範囲第1項記
載の製造法。
2. The ferritic stainless steel, in wt%,
C: 0.03% or less, Si: 0.75% or less, Mn: 0.40% or less, P: 0.04% or less, S: 0.01% or less, Cr: 12.0% to
22.0%, Ni: 0.5% or less, N: 0.03% or less, O: 0.015
% Or less, sol.Al: 0.05% or less, and 0.04% to 0.40%
Of Ti or 0.10% to 0.80% of Nb, or, in some cases, 2% or less of Mo or 1% or less of Cu, and the balance of iron and inevitable impurities. The manufacturing method according to claim 1, wherein the manufacturing method is steel.
【請求項3】熱間圧延温度で実質上フェライト単相組織
を呈するフェライト系ステンレス項のスラブを粗熱間圧
延および仕上熱間圧延して熱延板を製造し,ついで冷間
圧延によりフェライト系ステンレス鋼の鋼板または鋼帯
を製造する方法において, 該粗圧延を多パスで実施すると共にこの粗圧延開始のス
ラブの温度を1050℃〜1180℃の範囲とすること, 板厚が初期スラブ厚の1/2になるまでの粗圧延前段パス
において,圧下率が30%以上のパスを少なくとも一回行
ない,このパスのあと,30秒以上のディレイをおいてか
ら次パス粗圧延を行うこと,そして, 熱間圧延終了後,熱延板焼鈍を省略して一回冷延または
中間焼鈍を含む二回以上の冷延により冷間圧延を行うこ
と, を特徴とする加工性の優れたフェライト系ステンレス鋼
の鋼板または鋼帯の製造法。
3. A slab of ferritic stainless steel exhibiting a substantially ferritic single phase structure at the hot rolling temperature is subjected to rough hot rolling and finish hot rolling to produce a hot rolled sheet, and then cold rolling to produce a ferritic stainless steel. In the method for producing a steel plate or strip of stainless steel, the rough rolling is performed in multiple passes, and the temperature of the slab at the start of the rough rolling is set in the range of 1050 ° C to 1180 ° C. Performing a pass with a rolling reduction of 30% or more at least once in the first pass of rough rolling until it becomes 1/2, and performing a next pass rough rolling after a delay of 30 seconds or more after this pass, and After completion of hot rolling, the hot rolling sheet annealing is omitted and cold rolling is performed by one cold rolling or two or more cold rollings including an intermediate annealing. Steel plate or steel Obi manufacturing method.
【請求項4】フェライト系ステンレス鋼は,重量%で,
C:0.03%以下,Si:0.75%以下,Mn:0.40%以
下,P:0.04%以下,S:0.01%以下,Cr:12.0%〜
22.0%,Ni:0.5%以下,N:0.03%以下,O:0.015
%以下,sol.Al:0.05%以下,そして,0.04%〜
0.40%のTiまたは0.10%〜0.80%のNbの一種または
二種を含有し、場合によっては,さらに2%以下のMo
または1%以下のCuを含有し,残部が鉄および不可避
的に混入する不純物からなる鋼である特許請求の範囲第
3項記載の製造法。
4. A ferritic stainless steel, in% by weight,
C: 0.03% or less, Si: 0.75% or less, Mn: 0.40% or less, P: 0.04% or less, S: 0.01% or less, Cr: 12.0% to
22.0%, Ni: 0.5% or less, N: 0.03% or less, O: 0.015
% Or less, sol. Al: 0.05% or less, and 0.04% ~
It contains one or two of 0.40% Ti or 0.10% to 0.80% Nb, and in some cases 2% or less of Mo.
The method according to claim 3, wherein the steel is a steel containing 1% or less of Cu and the balance being iron and impurities inevitably mixed.
JP61042351A 1986-02-27 1986-02-27 Method for producing steel plate or strip of ferritic stainless steel with good workability Expired - Lifetime JPH0617519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61042351A JPH0617519B2 (en) 1986-02-27 1986-02-27 Method for producing steel plate or strip of ferritic stainless steel with good workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61042351A JPH0617519B2 (en) 1986-02-27 1986-02-27 Method for producing steel plate or strip of ferritic stainless steel with good workability

Publications (2)

Publication Number Publication Date
JPS62199721A JPS62199721A (en) 1987-09-03
JPH0617519B2 true JPH0617519B2 (en) 1994-03-09

Family

ID=12633610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61042351A Expired - Lifetime JPH0617519B2 (en) 1986-02-27 1986-02-27 Method for producing steel plate or strip of ferritic stainless steel with good workability

Country Status (1)

Country Link
JP (1) JPH0617519B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772327B2 (en) * 1987-09-17 1995-08-02 川崎製鉄株式会社 Ferrite stainless steel with excellent overhang and weldability
ES2021257A6 (en) * 1989-08-22 1991-10-16 Acos Especiais Itabira Acesita Process for the production of ferritic stainless steel
WO1993022471A1 (en) * 1992-04-30 1993-11-11 Kawasaki Steel Corporation Fe-Cr ALLOY EXCELLENT IN WORKABILITY
JP3771639B2 (en) * 1996-08-08 2006-04-26 新日本製鐵株式会社 Method for producing ferritic stainless steel sheet with excellent roping resistance, ridging properties and formability
JP3309386B2 (en) * 1997-09-24 2002-07-29 住友金属工業株式会社 Method of manufacturing cold rolled ferritic stainless steel sheet
EP1219719B1 (en) * 2000-12-25 2004-09-29 Nisshin Steel Co., Ltd. A ferritic stainless steel sheet good of workability and a manufacturing method thereof
US11377702B2 (en) 2018-07-18 2022-07-05 Jfe Steel Corporation Ferritic stainless steel sheet and method of producing same
CN112400031B (en) * 2018-07-18 2022-03-01 杰富意钢铁株式会社 Ferritic stainless steel sheet and method for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266816A (en) * 1975-12-01 1977-06-02 Nippon Steel Corp Preparation of rigging free ferritic stainless steel plate
JPS5913026A (en) * 1982-07-09 1984-01-23 Nippon Steel Corp Manufacture of ferritic stainless steel sheet with superior workability
JPH0629421B2 (en) * 1984-07-06 1994-04-20 株式会社東芝 Blue light emitting phosphor and blue light emitting cathode ray tube for color projection type image device using the same

Also Published As

Publication number Publication date
JPS62199721A (en) 1987-09-03

Similar Documents

Publication Publication Date Title
JP5687624B2 (en) Stainless steel, cold-rolled strip made from this steel, and method for producing steel plate products from this steel
WO2016068139A1 (en) Ferrite-based stainless steel plate, steel pipe, and production method therefor
EP1571227B1 (en) Cr-CONTAINING HEAT-RESISTANT STEEL SHEET EXCELLENT IN WORKABILITY AND METHOD FOR PRODUCTION THEREOF
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
JPH0647694B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
JP3610883B2 (en) Method for producing high-tensile steel sheet with excellent bendability
EP1083237A2 (en) Ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties, and method of producing the same
JP7268182B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
US20200385835A1 (en) Hot-rolled and annealed ferritic stainless steel sheet and method for manufacturing the same
JP4239257B2 (en) Method for producing Ti-containing ferritic stainless steel sheet having excellent ridging resistance
JP5353578B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and method for producing the same
JP2010100877A (en) Method for manufacturing hot-rolled ferritic stainless steel sheet excellent in toughness
TWI686486B (en) Fat grain iron series stainless steel plate and manufacturing method thereof
CN111868282A (en) Steel plate
JP2011214063A (en) Ferritic stainless steel sheet and method for manufacturing the same
JPH0617519B2 (en) Method for producing steel plate or strip of ferritic stainless steel with good workability
JP2016113670A (en) Ferritic stainless steel and method for producing the same
JP2001192735A (en) FERRITIC Cr-CONTAINING COLD ROLLED STEEL SHEET EXCELLENT IN DUCTILITY, WORKABILITY AND RIDGING RESISTANCE AND PRODUCING METHOD THEREFOR
JP2011214060A (en) Ferritic stainless steel sheet and method for manufacturing the same
JP4010131B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP2001098328A (en) Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
KR102463485B1 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JPH08296000A (en) Ferritic stainless steel excellent in workability and corrosion resistance and its production
CN111868283B (en) Steel plate