JPS61195407A - Processing method for numerical control data - Google Patents

Processing method for numerical control data

Info

Publication number
JPS61195407A
JPS61195407A JP3619685A JP3619685A JPS61195407A JP S61195407 A JPS61195407 A JP S61195407A JP 3619685 A JP3619685 A JP 3619685A JP 3619685 A JP3619685 A JP 3619685A JP S61195407 A JPS61195407 A JP S61195407A
Authority
JP
Japan
Prior art keywords
numerical control
steel plate
control data
normal position
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3619685A
Other languages
Japanese (ja)
Inventor
Masaki Murakami
村上 政喜
Kiyomi Oe
大江 清美
Akira Shimonohara
下野原 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP3619685A priority Critical patent/JPS61195407A/en
Publication of JPS61195407A publication Critical patent/JPS61195407A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/408Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by data handling or data format, e.g. reading, buffering or conversion of data
    • G05B19/4083Adapting programme, configuration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36503Adapt program to real coordinates, software orientation

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To improve the working efficiency as well as the cutting/printing accuracy by detecting a revolving angle shifted from the normal position of a steel plate by a revolving angle detecting means and correcting the input numerical control data based on the detected revolving angle. CONSTITUTION:A steel plate 2 put on a fixing board 1 is cut by a laser cutting machine, etc. along an alternate long and short dash line. Thus an oblong through-hole 3 is formed. The coordinates of the XY plane at each point of said oblong hole are supplied previously to a numerical control means as numerical control data. Then a revolving angle detecting means detects a revolving angle theta shifted from a normal position of the plate 2 in case the plate 2 is not parallel with the board 1 and shifted from its normal position. Then the numerical control data on the plate 2 at its normal position which is supplied previously to a numerical control means is corrected by the angle theta. Thus the numerical control means controls the cutting machine, a printer, etc. based on the corrected numerical control data.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、鋼板を切断機、印字機等により切断、印字
等を行なう際の数値制御データを補正処理する数値制御
データ処理方法に関する。 〔従来の技術〕 一般に、第3図に示すように定盤(1)上に載置された
鋼板(2)からレーザ切断機等により図中のI卓鎖線で
示す部分を切り取って長方形の透孔(3)を透設する場
合、透設すべき透孔(3)を長方形ABCDと考え、第
4図に示すように、長方形の点AをXY平面の原点0に
一致させるとともに、辺ABをX軸忙一致させた状態に
おいて、各点A、Dの前記XY平mKおGする各座mA
(0,O)、B(X+、0)。 C(X菖、Y+) l D(o + Y+)を導出し、
導出した各点A、Dの座標を鋼板(1)の切断のだめの
数値制御データ(以下NCデータという)として数値制
御手段(以下N0手段という)に予め入力しておく。 そして、前記N0手段に入力された前記NOデータであ
る各点A、Dの座標が、定盤(1)に対する切断機の相
対位置にもとづいて切断機の設置点を原点とする座標に
換算され、前記No手段によシ切断機が前記換算された
座標で表わされる鋼板(2)上の実際の各点A、Dを結
ぶ線に沿って移動され、鋼板(2]から第3図中の1点
鎖線で囲まれた部分が切り取られ、長方形の透孔(3)
が透設される。 〔発明が解決しようとする問題点〕 ところが、予め入力したNoデータは鋼板(2)が定盤
11)に平行な正規の位置に載置された場合におけるデ
ータであるため、鋼板(21が正規の位置に載置されて
いる場合には、前記したように、予め入力したNoデー
タに従って切断機が移動され、想定した通りの透孔(3
)が自動的に透設されることになるが、鋼板(2)が定
盤[1)に平行ではなく正規の位置からずれて定盤(1
)上に載置されている場合には、予め人力されたNoデ
ータに従って切断機を移動させると、鋼板(2)の定盤
(1)からのずれ回転角分だけ、鋼板(2)に透設され
る透孔(3)の位置が想定した位置からずれてしまうと
いう問題があり、印字機による印字等を行なう場合も同
様に、実際の文字の印字位置が想定した位置からずれて
しまうという問題がある。 そこで、鋼板(2)を定盤(1)上に載置したのち、バ
ール等により鋼板(2)を手動でずらし、鋼板(2]を
定盤(1)に平行にすることが行なわれているが、鋼板
(21をずらすごとにコンベックスあるいはメジャーに
より鋼板(2)が定盤11)に平行になったか否かを計
測しなければならず、非常に手間がかかり、作業能率の
低下を招き、しかも位置合わせ精度が悪く、切断精度、
印字精度等の低下を招くという不都合がある。 また、鋼板(2)を定盤(1)上に載置したのち、鉄鋼
・金属工業用E P C(Edge Po5ition
 Control)と呼ばれる耳端位置の自動位置合わ
せ装置により、鋼板(2]が定盤11)に平行になるよ
うに自動的に位置合わせすることも考えられているが、
前記したEPCの位置合わせ精度が±]Osm程度とさ
ほど高くないため、結局前記した手動による位置合わせ
が必要となり、作業能率および切断精度、印字精度の改
善を図ることができないという問題がある。 〔問題点を解決するための手段〕 この発明は、前記の諸点に留意してなされたものであり
、数値制御手段に予め定盤上の正規の位置に載置された
状態における鋼板を切断機、印字機等によ多切断。印字
等を行なう数値制御データを入力し、前記定盤上に載置
された鋼板が前記正規の位置からずれているときに、回
転角検出手段によジ前記鋼板の前記正規の位置からのず
れ回転角を検出し、処理手段により前記数値制御手段に
入力した前記数値制御データを前記1d転・色分だけ補
正処理することを特徴とする数値制御データ処理方法で
ある。 〔作用〕 したがって、この発明では、定盤上に載置された鋼板が
定盤に平行ではなく正規の位置からずれているときに、
回転角検出手段により鋼板の正規の位置からのずれ回転
角が検出され、処理手段により数値制御手段に予め入力
された正規の位置に載置された鋼板の切断、印字等のた
めの数値制御データが前記回転角分だけ補正処理され、
補正処理された新たな数値制御データに従い数値制御手
段により切断機、印字機等が制御される。 〔実施例〕 つぎK、この発明の1実施例を示す第1図および第2図
について説明する。 いま、第1図に示すように、鋼板(21が定盤+1)K
平行な正規の位置からθだけずれて載置されている状態
で、第3図の場合と同様の長方形の透孔(3)を鋼板(
2)に透設する場合、回転角検出手段により、鋼板(2
)の左側面の後端から所定距離lの点P+および前端か
ら前記所定距離lの点P2それぞれの定盤(1)の左側
面からの距離dz、dzがそれぞれ測定され、鋼板(2
1と定盤jttとのずれ回転角0が次式に従って前記検
出手段により算出される。 0w 1dt−d21 /D  (rad)あるいは θ−tu−’ ldt −d21 / D (’)ただ
し、Dは点P+ 、P2から定盤(1]の左側面に垂し
た垂線の足P 、/、P 21間の距離である。 つぎに、図示されていない処理手段により、XY平面に
おいて前記第4図に示す長方形ABCDを前記回転角θ
だけ回転した長方形A′B′σdの各点に〜D′の座標
が導出され、N0手段に予め入力されたN(3データと
しての前記各点A、Dの座標が前記回転角θ分だけ補正
処理され、前記N0手段により、補正処理して得られた
前記各点A′〜D′の座標A’(0、0) 、 B’(
Xb、Yb) 、σ(Xc 、Yc) 、 D’(Xd
、Yd)が定盤
[Industrial Application Field] The present invention relates to a numerical control data processing method for correcting numerical control data when cutting, printing, etc. on a steel plate using a cutting machine, a printing machine, etc. [Prior art] Generally, as shown in Fig. 3, a rectangular transparent section is cut out from a steel plate (2) placed on a surface plate (1) using a laser cutting machine or the like. When making a transparent hole (3), consider that the transparent hole (3) is a rectangle ABCD, and as shown in Figure 4, align the point A of the rectangle with the origin 0 of the XY plane, and In the state where the X-axis coordinates are aligned, each point mA on the XY plane mK and G of each point A and D
(0, O), B(X+, 0). Derive C(X irises, Y+) l D(o + Y+),
The coordinates of the derived points A and D are input in advance to the numerical control means (hereinafter referred to as N0 means) as numerical control data (hereinafter referred to as NC data) for cutting the steel plate (1). Then, the coordinates of the points A and D, which are the NO data inputted to the N0 means, are converted into coordinates with the installation point of the cutting machine as the origin based on the relative position of the cutting machine with respect to the surface plate (1). , the cutting machine is moved along the line connecting the actual points A and D on the steel plate (2) represented by the converted coordinates, and the cutting machine is moved from the steel plate (2) to the point shown in FIG. The area surrounded by the dashed line is cut out to form a rectangular hole (3)
is installed transparently. [Problem to be solved by the invention] However, the No. data entered in advance is the data when the steel plate (2) is placed at the normal position parallel to the surface plate 11). If the cutting machine is placed in the position of
) will be automatically installed transparently, but the steel plate (2) is not parallel to the surface plate [1] and deviates from its normal position, causing the surface plate (1)
), if the cutting machine is moved according to the No. data manually entered in advance, the steel plate (2) will be cut through by the angle of deviation of the steel plate (2) from the surface plate (1). There is a problem in that the position of the provided through hole (3) deviates from the expected position, and similarly when printing with a printing machine, the actual printed position of the character deviates from the expected position. There's a problem. Therefore, after placing the steel plate (2) on the surface plate (1), the steel plate (2) is manually shifted using a crowbar or the like to make the steel plate (2) parallel to the surface plate (1). However, each time the steel plate (21) is shifted, it is necessary to measure whether the steel plate (2) is parallel to the surface plate 11 using a convex or tape measure, which is very time-consuming and reduces work efficiency. , Moreover, the alignment accuracy is poor, the cutting accuracy is poor,
This has the disadvantage of causing a decrease in printing accuracy, etc. In addition, after placing the steel plate (2) on the surface plate (1), it is
It is also considered that an automatic positioning device for the edge end position called ``Control'' is used to automatically position the steel plate (2) so that it is parallel to the surface plate 11).
Since the alignment accuracy of the EPC described above is not so high as about ±]Osm, the above-mentioned manual alignment is eventually required, and there is a problem that it is impossible to improve work efficiency, cutting accuracy, and printing accuracy. [Means for Solving the Problems] The present invention has been made with the above-mentioned points in mind, and includes a numerical control means that cuts a steel plate in a state where it has been placed in advance on a regular position on a surface plate. , multiple cutting by printing machine, etc. When numerical control data for printing etc. is input and the steel plate placed on the surface plate deviates from the normal position, the rotation angle detection means detects the deviation of the steel plate from the normal position. This numerical control data processing method is characterized in that a rotation angle is detected, and a processing means corrects the numerical control data input to the numerical control means by the 1d rotation/color. [Operation] Therefore, in this invention, when the steel plate placed on the surface plate is not parallel to the surface plate but is deviated from the normal position,
The deviation rotation angle of the steel plate from the normal position is detected by the rotation angle detection means, and the numerical control data for cutting, printing, etc. of the steel plate placed at the normal position is inputted in advance to the numerical control means by the processing means. is corrected by the rotation angle,
The cutting machine, printing machine, etc. are controlled by the numerical control means according to the new numerical control data that has been corrected. [Embodiment] Next, FIG. 1 and FIG. 2, which show one embodiment of the present invention, will be described. Now, as shown in Figure 1, a steel plate (21 is a surface plate + 1) K
The steel plate (3) is inserted into the rectangular through hole (3) similar to that shown in Fig.
2), the rotation angle detection means detects the rotation angle of the steel plate (2).
The distances dz and dz from the left side surface of the surface plate (1) at a point P+ at a predetermined distance l from the rear end of the left side surface of the steel plate (2) and at a point P2 at a predetermined distance l from the front end of the steel plate (1) are respectively measured.
1 and the surface plate jtt is calculated by the detection means according to the following equation. 0w 1dt-d21 /D (rad) or θ-tu-' ldt -d21 / D (') where D is the point P+, the foot of the perpendicular line hanging from P2 to the left side of the surface plate (1), /, P 21.Next, a processing means (not shown) converts the rectangle ABCD shown in FIG. 4 on the XY plane into the rotation angle θ.
The coordinates ~D' are derived for each point of the rectangle A'B'σd rotated by The coordinates A' (0, 0), B' (
Xb, Yb), σ(Xc, Yc), D'(Xd
, Yd) is the surface plate

【1】に対する切断機の相対位置にもと
づいて切断機の設置点を原点とする座標に換算され、前
。 記NO手段により、切断機が前記換算された座標で表わ
される鋼板(2)上の実際の各点を結ぶ線に沿って移動
され、鋼板(2)が正規の位置から回転角θだけずれて
定盤(1)上罠載置されていても、鋼板(2)から第1
図中の1点鎖線で囲まれた部分が切り取られ、鋼板(2
)が正規の位置にある場合と同じ位置に同じ形状の透孔
(3)が透設される。 このとき、前記回転角検出手段により検出された回転角
θが30°(rad)であるとき、前記第4図に示す長
方形ABCDの辺AB、Beの長さL+。 L2をそれぞれL+ = 100国IL2=70(至)
とすると、前記第4図に示す点CのX軸成分X+、Y軸
成分YlがそれぞれX菖=100 、 Yl=−70と
なるため、前記第4図に示す各点A、Dの座標はそれぞ
れA(0,0)。 B(100,0) 、 C(100,−70) 、 D
(0,−70)となり、第2図に示すように、前記第4
図に示す長方形ABODを点Aを中心にして+300回
転した長方・形A’ B’ C’ D’の各点A′〜D
′の座標を算出すると点B′のX軸成分xbおよびY軸
成分Yb2点σのX軸成分XcおよびY軸成分Yc 、
点D′のX軸成分XdおよびY軸成分Ydはそれぞれ、 Xb = Lrasfl  、  Yb =Llsxn
θ   ・・・■Xc = Xb+Lztma  、 
 Yc = Yb−LzasO・−@Xd =−L2s
inθ、  Yd = −L200g1θ  −・・@
で与えられ、各式[株]〜■にLl=1001 L2=
70  。 θ=30° を代入して演算することにより、各点A′
〜D′の座標はそれぞれA’(0、O’) 、 B’(
86,6、50)。 σ(121,6、−10,6) 、 D’(−85、−
60,6)となり、前記処理手段により、第4図で示し
た長方形ABCDを点Aを中心に+30°回転した長方
形A’ B’σdの各点A′〜D′の座標が導出されて
予めNC手段に入力したNCデータである前記各点A、
Dの座標が回転角θ分だけ補正処理され、補正処理によ
シ得られた各点A′〜dの座標が新たなNCデータとさ
れることになる。 なお、印字機による印字の際にも、前記したNCデータ
の補正処理が同様に行なわれることは勿論である。 〔発明の効果〕 以上のように、この発明の数値制御データ処理方法によ
ると、鋼板(2)が正規の位置からずれて定盤(1]上
に載置されている場合に、鋼板(2)を正規の位置に位
置合わせをしなくても、鋼板(2)が正規の位置にある
場合と同じ位置において鋼板(2)を切断し、同じ位置
に所定の文字を印字することができ、作業能率の向上を
図ることが可能となり、しかも切断精度、印字精度を従
来に比べて大幅に向上することが可能となり、その効果
は非常に顕著である。
[1] Based on the relative position of the cutting machine to [1], the coordinates are converted to the origin with the installation point of the cutting machine as the origin. By the NO means, the cutting machine is moved along the line connecting the actual points on the steel plate (2) represented by the converted coordinates, and the steel plate (2) is deviated from the normal position by the rotation angle θ. Even if the trap is placed on the surface plate (1), the first
The part surrounded by the dashed line in the figure is cut out, and the steel plate (2
) is in the normal position, and a through hole (3) of the same shape is provided in the same position. At this time, when the rotation angle θ detected by the rotation angle detection means is 30° (rad), the lengths L+ of the sides AB and Be of the rectangle ABCD shown in FIG. L2 for each L+ = 100 countries IL2 = 70 (to)
Then, the X-axis component X+ and Y-axis component Yl of the point C shown in FIG. A(0,0) respectively. B(100,0), C(100,-70), D
(0, -70), and as shown in Figure 2, the fourth
Each point A' to D of the rectangle/shape A'B'C'D' obtained by rotating the rectangle ABOD shown in the figure +300 around point A
When the coordinates of ' are calculated, the X-axis component xb and Y-axis component Yb of point B' are X-axis component Xc and Y-axis component Yc of two points σ,
The X-axis component Xd and Y-axis component Yd of point D' are respectively Xb = Lrasfl, Yb = Llsxn
θ...■Xc = Xb+Lztma,
Yc = Yb-LzasO・-@Xd =-L2s
inθ, Yd = −L200g1θ −・・@
For each formula [stock]~■, Ll=1001 L2=
70. By substituting θ=30° and calculating, each point A'
The coordinates of ~D' are A'(0, O') and B'(
86, 6, 50). σ(121,6,-10,6), D'(-85,-
60, 6), and the processing means derives the coordinates of each point A' to D' of rectangle A'B'σd, which is obtained by rotating the rectangle ABCD shown in FIG. Each point A is NC data input to the NC means;
The coordinates of D are corrected by the rotation angle θ, and the coordinates of each point A' to d obtained through the correction process are used as new NC data. It goes without saying that the above-mentioned NC data correction process is performed in the same way when printing by a printing machine. [Effects of the Invention] As described above, according to the numerical control data processing method of the present invention, when the steel plate (2) is placed on the surface plate (1) with a deviation from the normal position, the steel plate (2) ) can be cut at the same position as when the steel plate (2) is at the normal position, and predetermined characters can be printed at the same position, without aligning the steel plate (2) to the normal position. It is possible to improve work efficiency, and it is also possible to significantly improve cutting accuracy and printing accuracy compared to the conventional method, and the effects are very remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明の数値制御データ処理方
法の1実施例を示し、第1図は正面図、第2図は動作説
明図、第3図は正規の位置の鋼板切断時の正面図、第4
図は第3図の動作説明図である。 (1)・・・定盤、(2)・・・鋼板、(3)・・・透
孔。
1 and 2 show one embodiment of the numerical control data processing method of the present invention, in which FIG. 1 is a front view, FIG. 2 is an explanatory diagram of the operation, and FIG. 3 is when cutting a steel plate at a normal position. Front view, 4th
The figure is an explanatory diagram of the operation of FIG. 3. (1)...Surface plate, (2)...Steel plate, (3)...Through hole.

Claims (1)

【特許請求の範囲】[Claims] (1)数値制御手段に予め定盤上の正規の位置に載置さ
れた状態をける鋼板を切断機、印字機等により切断、印
字等を行なう数値制御データを入力し、前記定盤上に載
置された鋼板が前記正規の位置からずれているときに、
回転角検出手段により前記鋼板の前記正規の位置からの
ずれ回転角を検出し、処理手段により前記数値制御手段
に入力した前記数値制御データを前記回転角分だけ補正
処理することを特徴とする数値制御データ処理方法。
(1) Enter numerical control data into the numerical control means for cutting, printing, etc. using a cutting machine, printing machine, etc. on a steel plate that has been placed at a regular position on the surface plate in advance, and then place the steel plate on the surface plate. When the placed steel plate deviates from the normal position,
A rotation angle detection means detects a deviation rotation angle of the steel plate from the normal position, and a processing means corrects the numerical control data input to the numerical control means by the rotation angle. Control data processing method.
JP3619685A 1985-02-25 1985-02-25 Processing method for numerical control data Pending JPS61195407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3619685A JPS61195407A (en) 1985-02-25 1985-02-25 Processing method for numerical control data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3619685A JPS61195407A (en) 1985-02-25 1985-02-25 Processing method for numerical control data

Publications (1)

Publication Number Publication Date
JPS61195407A true JPS61195407A (en) 1986-08-29

Family

ID=12462973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3619685A Pending JPS61195407A (en) 1985-02-25 1985-02-25 Processing method for numerical control data

Country Status (1)

Country Link
JP (1) JPS61195407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0626896A1 (en) * 1992-02-19 1994-12-07 Trumpf Inc. Laser work station guidance system calibration
NL1005318C2 (en) * 1997-02-20 1998-08-24 Johan Massee Device for machining a workpiece, as well as methods for use with such a device.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211825A (en) * 1982-05-11 1983-12-09 Mitsubishi Electric Corp Electric discharge machining device
JPS59140510A (en) * 1983-02-01 1984-08-11 Mitsubishi Electric Corp Numerical controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211825A (en) * 1982-05-11 1983-12-09 Mitsubishi Electric Corp Electric discharge machining device
JPS59140510A (en) * 1983-02-01 1984-08-11 Mitsubishi Electric Corp Numerical controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0626896A1 (en) * 1992-02-19 1994-12-07 Trumpf Inc. Laser work station guidance system calibration
EP0626896A4 (en) * 1992-02-19 1994-12-14 Trumpf Inc. Laser work station guidance system calibration.
NL1005318C2 (en) * 1997-02-20 1998-08-24 Johan Massee Device for machining a workpiece, as well as methods for use with such a device.
EP0860760A1 (en) * 1997-02-20 1998-08-26 Johan Massée Apparatus for working a workpiece, as well as methods to be used with such an apparatus

Similar Documents

Publication Publication Date Title
CN111776164B (en) High-precision rapid positioning method for side outer plate body
JPS63191041A (en) Density measurement positioning method
JPS61195407A (en) Processing method for numerical control data
CN108747041A (en) A kind of N Reference Alignment method of dimension laser cutting plate
US20050217185A1 (en) Building framework, method for making the same and components used in the framework
US10710198B2 (en) Laser processing device and laser processing method
CN113543460B (en) PCB and identification method thereof
JPS60163110A (en) Positioning device
JP2002052413A (en) Rail machining apparatus and rail machining method
CN110430670B (en) Edge-finding positioning correction method for PCB processing path
JP2003039347A (en) Work positioning method
JPS62124858A (en) Clam dislocation quantity correcting device
KR20010001981U (en) Cutmark line marking a block
CN111645827A (en) Rapid positioning method for hull component
CN219028003U (en) 360-degree omnibearing edge measuring device
CN113697061B (en) Method for improving precision of ship bilge rib plate splicing plate
JPS63278693A (en) Laser beam trimming device
JPH09178429A (en) Work identifying method
US20240233162A1 (en) Systems and Methods for Construction with Detection, Guidance, and/or Feedback
JPH04237304A (en) Simple plotter
JP2545069B2 (en) Plate-shaped work method
JPS61253506A (en) Method for correcting teaching point of industrial robot
JPS6161937B2 (en)
JPH11277275A (en) Coordinate adjusting method for laser beam machine in laser/punch combined machining
JPH0117819B2 (en)