JPS61195235A - Flow direction control device - Google Patents

Flow direction control device

Info

Publication number
JPS61195235A
JPS61195235A JP60036913A JP3691385A JPS61195235A JP S61195235 A JPS61195235 A JP S61195235A JP 60036913 A JP60036913 A JP 60036913A JP 3691385 A JP3691385 A JP 3691385A JP S61195235 A JPS61195235 A JP S61195235A
Authority
JP
Japan
Prior art keywords
flow
shunt
wall
nozzle
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60036913A
Other languages
Japanese (ja)
Other versions
JPH0354254B2 (en
Inventor
Kimiyoshi Mitsui
三井 公義
Norio Sugawara
範夫 菅原
Shotaro Ito
正太郎 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60036913A priority Critical patent/JPS61195235A/en
Publication of JPS61195235A publication Critical patent/JPS61195235A/en
Publication of JPH0354254B2 publication Critical patent/JPH0354254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F13/065Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser formed as cylindrical or spherical bodies which are rotatable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)

Abstract

PURPOSE:To make a flow blow out in an arbitrary direction or disperse uniformly in all directions and simultaneously reduce noise due to the turbulent flow developed by throttling and straightening the flow with a shunt provided in the flow and converging the flow by providing a control rod which tilts the shunt in any direction and at any angle. CONSTITUTION:The outer wall 6 of a flow passage guides the flow sent form a blower and leads it to an enlarged nozzle 5 provided at the end section of the outer wall 6. The enlarged nozzle 5 is constituted with a blow-out opening 7 with a smaller inner diameter than the outer diameter of the outer wall 6 and a guide wall 8 that opens to the downstream side and has a shape that becomes gradually larger to outside. On the upstream side of the enlarged nozzle 5 a shunt 9 is provided that disperses the flow outwards relative to the central axis of the flow passage. Further, a control rod 12 is provided between the top end face 10 and the shunt bottom face 11, and by extending and contracting this rod 12 the direction and angle of the shunt 9 is changed to change the flow direction.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空調装置等の吹出口に設けられ、送風源から
の流れを任意の方向に偏向させて吹き出(才2.奔めの
佑りす尚翻制御坊署r■1ナス&のでネる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is provided at the outlet of an air conditioner, etc., and deflects the flow from the air source in an arbitrary direction to blow out the air. Transparency control station r ■ 1 eggplant & sodeneru.

従来の技術 近年、空調機器が冷・暖房を兼ねるようになって、部屋
の温度分布を快適性と経済性の両面から、使用者の要望
に応じて自由に制御できることが望まれている。一般に
は、快適性のために空調機器の吹き出し風向は、暖房時
には温風を下向きに、冷房時には冷風を1向きに分散し
て送り、空調される部屋の温度分布を均一化させるほう
が良い。
BACKGROUND OF THE INVENTION In recent years, air conditioning equipment has come to serve both as a cooling and heating device, and it has become desirable to be able to freely control the temperature distribution in a room according to the user's needs from the standpoint of both comfort and economy. Generally, for comfort, it is better to uniformize the temperature distribution in the air-conditioned room by blowing hot air downwards during heating and dispersing cold air in one direction during cooling.

また、最近需要家から要望されているゾーン冷暖房のよ
うに、経済性を考慮して部屋の中で人が生活している空
間の一部領域だけをスポット的に空調できるように、空
調機器の設置位置に制約されずに広範囲に気流を偏向し
、集中送風もできることが望ましい。
In addition, as with zone heating and cooling, which has recently been requested by customers, air conditioning equipment can be used to spot air condition only a part of the space where people live, taking economic efficiency into consideration. It is desirable to be able to deflect the airflow over a wide range without being restricted by the installation location, and also be able to perform concentrated air blowing.

このような目的を達成するために、偏向板を用いた送風
制御根面が用いられてきた。
To achieve this objective, air control root planes using deflection plates have been used.

以下図面を参照しながら、丘述した従来の流れ方向制御
装置の一例について説明する。
An example of the conventional flow direction control device described above will be described below with reference to the drawings.

第6図、第7図は従来の流れ方向制御装置の正面断面図
および横断面図を示すものである。
6 and 7 show a front sectional view and a cross sectional view of a conventional flow direction control device.

第6図及び第7図において、1は案内壁、2は冷温風を
吹出すノズル、3は軸4によって回転する偏向板である
In FIGS. 6 and 7, 1 is a guide wall, 2 is a nozzle that blows out cold and hot air, and 3 is a deflection plate rotated by a shaft 4.

以とのように構成された従来の流れ方向制御装置につい
て、以下その動作について説明する。
The operation of the conventional flow direction control device configured as described above will be explained below.

まず、送風機(図示せず)より送られて来た流れは管内
流路(図示せず)を通って流路端に設置された流れ方向
制御装置の偏向板3により吹出し風の偏向作用を受けて
、ノズ)v2から出た流れは案内壁1に付着し偏向され
る。偏向板3を回転すると流れが付着する案内壁1が回
転し、吹出し風向が変化する。
First, the flow sent from the blower (not shown) passes through the pipe channel (not shown) and is deflected by the deflection plate 3 of the flow direction control device installed at the end of the channel. The flow coming out of the nozzle v2 adheres to the guide wall 1 and is deflected. When the deflection plate 3 is rotated, the guide wall 1 to which the flow adheres rotates, and the direction of the blowing air changes.

発明が解決しようとする問題点 しかしながら上記のような構成では、流路中で最も流路
断面蹟が狭くなるノズル2の入口部分の位置に偏向板3
を設けるために、高い通風抵抗になるとともに、風速が
高い位置での偏向のため偏向角度が大きくとれない、と
いう問題点を有していた。しかも、偏向角度を大きくと
ろうとして偏向板4の角度を増加させると、通風抵抗が
増大すると同時に偏向板3の下流に大きな乱流渦域が発
生し、乱流騒音の発生原因となっていた。
Problems to be Solved by the Invention However, in the above configuration, the deflection plate 3 is placed at the inlet portion of the nozzle 2 where the cross-sectional area of the flow path is the narrowest.
The problem is that this creates a high ventilation resistance and that a large deflection angle cannot be obtained because the deflection occurs at a position where the wind velocity is high. Moreover, when the angle of the deflection plate 4 is increased in an attempt to increase the deflection angle, ventilation resistance increases and, at the same time, a large turbulent vortex region is generated downstream of the deflection plate 3, causing turbulence noise. .

問題点を解決するための手段 上記問題点を解決するために本発明の流れ方向制御装置
は、管内流路の出口端に設けられ、流路の中心軸から流
路外壁へ向けて流れを分散させる分流器と、前記分流器
の下流側近傍に設けられ、前記分流器の外径寸法より小
さな吹出口を有し、かつ前記吹出口より下流側に漸次拡
大形状をした案内壁とで構成された拡大ノズルと、前記
拡大ノズルと前記分流器底面との間に設けられ、前記分
流器を支持し、かつ前記拡大ノズル内部に内蔵され、独
立して収納または伸長することにより前記分流器を任意
の方向へ任意の角度だけ自由に傾斜させる制御棒という
構成を備えたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the flow direction control device of the present invention is provided at the outlet end of a channel in a pipe, and disperses the flow from the central axis of the channel toward the outer wall of the channel. and a guide wall that is provided near the downstream side of the flow divider, has an outlet smaller than the outer diameter of the flow divider, and has a shape that gradually expands downstream from the outlet. an enlarged nozzle provided between the enlarged nozzle and the bottom surface of the flow divider, supporting the flow divider, and built inside the expansion nozzle so that the flow divider can be freely configured by being independently housed or extended; It is equipped with a control rod that can be freely tilted at any angle in the direction of.

作   用 本発明は上記の構成によって、管内流路の出口端まで流
出してきた流れは分流器によって管内流路周辺に分流さ
れ、その直後に前記分流器底面と拡大ノズル上流端面に
はさまれた流路によって再び中心方向へ向けられ、拡大
ノズル吹出口を通って外界へ放出される。このとき、前
記分流器によって上流からの流れの乱れが整流され、さ
らに前記制御棒の伸縮によって前記分流器が任意の方向
に任意の角度だけ傾き、流れの方向が制御される。
Effect of the Invention With the above-described configuration, the present invention has the flow flowing out to the outlet end of the pipe internal flow path to be diverted around the pipe internal flow path by the flow divider, and immediately after that, the flow is sandwiched between the bottom surface of the flow divider and the upstream end surface of the enlarged nozzle. It is again directed toward the center by the flow path and discharged to the outside world through the enlarged nozzle outlet. At this time, the turbulence of the flow from upstream is rectified by the flow divider, and the flow direction is controlled by tilting the flow divider by an arbitrary angle in an arbitrary direction by expanding and contracting the control rod.

即ち、前記分流器が中央に位置しているとき前記分流器
底面と前記拡大ノズル上流端面よ構成る流路によって中
心方向へ向かうバイアス流れが生成され、中心部分に集
められた流れはバイアス流れの全圧がつtあっているた
めに拡大ノカレ吹出口より鉛直方向に放出される。
That is, when the flow divider is located at the center, a bias flow toward the center is generated by the flow path formed by the bottom surface of the flow divider and the upstream end surface of the enlarged nozzle, and the flow collected in the center portion is the bias flow. Since the total pressure is equal, it is discharged vertically from the enlarged nokare outlet.

ところが、分流器が制御棒により傾けられると、傾けた
方向の分流器と拡大ノズル上流端面とで成る流路が挟ま
り、その領域を流れるバイアス流れの一部が遮られ、そ
のために吹出口での周方向全圧分布がアンバランスとな
る その結果、流路の挟まりによって遮られた領域近傍の拡
大ノズル案内壁の吹出口付近に、周囲からのバイアス流
れが全圧力差分だけ作用を大ノズル吹出口から吹出した
流れは拡大ノズル案内壁上をコアンダ効果による流れの
付着現象を引き起こして、傾いた分流器の方向へ大きく
偏向される。
However, when the flow divider is tilted by the control rod, the flow path consisting of the flow divider in the tilted direction and the upstream end face of the enlarged nozzle is pinched, and a portion of the bias flow flowing through that area is blocked, resulting in a reduction in the flow at the outlet. As a result, the total pressure distribution in the circumferential direction becomes unbalanced.As a result, the bias flow from the surroundings acts on the large nozzle outlet by the total pressure difference near the outlet of the enlarged nozzle guide wall near the area blocked by the flow path. The flow blown out from the nozzle causes a flow adhesion phenomenon due to the Coanda effect on the enlarged nozzle guide wall, and is largely deflected toward the inclined flow divider.

また、分流器の角度が変化することにより、流路の間隙
が変化し、案内壁への流れの付着の強さが変化する。こ
の結果、吹出し流れは分流器の偏向角度および翼の偏向
位置に応じて3次元的に全ての方向に流れの吹出し風向
を制御することが可能となる。
Furthermore, by changing the angle of the flow divider, the gap in the flow path changes, and the strength of the flow adhesion to the guide wall changes. As a result, the blowing direction of the blowing flow can be controlled three-dimensionally in all directions according to the deflection angle of the flow divider and the deflection position of the blade.

実施例 以下本発明の一実施例の流れ方向制御装置について、図
面を参照しながら説明する。
EXAMPLE Hereinafter, a flow direction control device according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における流れ方向制御装置の
斜視図を示すものである。
FIG. 1 shows a perspective view of a flow direction control device in one embodiment of the present invention.

81図において、5は送風機(図示せず)より送られて
きた流れを誘導する流路外壁6の端部に設けられ、かつ
前記流路外壁6の外径より小さな内径を有する吹出ロア
と、前記吹出口7より下流側へ漸次拡大形状を有する案
内壁8とで構成された拡大ノズルである。この拡大ノズ
/I15の上流側に、前記流路外壁6内の流れを流路の
中心軸に対して外方向へ分散させる分流器9が設けられ
、前記拡大ノズル5の上流端面10と前記分流器9の底
面11とで構成された流路の絞りの作用により中心方向
へ向けて流れるバイアス流れが再び集められ、流れが整
流される。さらに前記分流器9内に内蔵され、各々独立
して伸縮できる制御棒12が埋め込まれ、この制御棒1
2によって、前記分流器9が前記拡大ノズ/l’h流端
面1o上に連動して、あるいは単独に伸縮長の変化を駆
動・制御することによって任意の方向及び任意の角度に
傾斜できるように固定される。
In FIG. 81, reference numeral 5 denotes a blowing lower which is provided at the end of an outer wall 6 of the flow path for guiding the flow sent from a blower (not shown), and has an inner diameter smaller than the outer diameter of the outer wall 6 of the flow path; This is an expanding nozzle configured with a guide wall 8 that gradually expands downstream from the air outlet 7. A flow divider 9 is provided on the upstream side of the enlarged nozzle/I15 to disperse the flow in the outer wall 6 of the flow path outward with respect to the central axis of the flow path, and the flow divider 9 is arranged between the upstream end face 10 of the enlarged nozzle 5 and the flow splitter 9. The bias flow flowing toward the center is gathered again by the action of the flow channel constriction formed by the bottom surface 11 of the container 9, and the flow is rectified. Furthermore, control rods 12 are embedded in the flow divider 9 and can be expanded and contracted independently.
2, the flow divider 9 can be tilted in any direction and at any angle by interlocking with the enlarged nozzle/l'h flow end surface 1o or by independently driving and controlling the change in expansion/contraction length. Fixed.

以上のようK11l成された流れ方向制御装置について
、以下第2図から第5図を用いてその動作を説明する。
The operation of the flow direction control device constructed as above will be described below with reference to FIGS. 2 to 5.

まず第2図は断面図を示すものであって、分流器底面1
1が拡大ノズ)vJ:流端面10に図の右側で接触して
いる場合について説明する。この場合、流路に入った流
れFlは分流器9の作用により、外方に向かう流れF。
First, Figure 2 shows a cross-sectional view, showing the bottom surface 1 of the flow divider.
1 is an enlarged nozzle) vJ: The case where the nozzle is in contact with the flow end surface 10 on the right side of the figure will be explained. In this case, the flow Fl entering the flow path becomes a flow F directed outward due to the action of the flow divider 9.

となる。この結果、流れは流路外壁6に衝突し、拡大ノ
ズル上流端面10と分流器底面11に沿った流れとなり
、絞りの作用によって流路の軸の方向に向かうバイアス
流れFBとなる。ここで図の右側においてもバイアス流
れが発生するが、分流器9の傾きによって拡大ノズ/’
h流端面10と接触することによる遮蔽効果により、バ
イアス流れFBは遮られる。このため拡大ノズル5の吹
出ロアから出る流れFAは図の左側からのバイアス流れ
FBに押されて右側の案内壁8の方向に向けられる。こ
の結果、拡大ノズル5から出る流れFAは案内壁8と干
渉し、コアンダ効果によって案内壁8表面に沿って流れ
、風量をほとんど低下させずに広角に偏向する。この場
合、最大偏向角度は案内壁8の形状によって任意に設定
できる。
becomes. As a result, the flow collides with the outer wall 6 of the flow path, becomes a flow along the upstream end face 10 of the enlarged nozzle and the bottom face 11 of the flow divider, and becomes a bias flow FB directed toward the axis of the flow path due to the action of the throttle. Here, a bias flow also occurs on the right side of the figure, but due to the inclination of the flow divider 9, the enlarged nozzle /'
The bias flow FB is blocked by the shielding effect due to contact with the h-flow end face 10. Therefore, the flow FA coming out of the blowout lower of the enlarged nozzle 5 is pushed by the bias flow FB from the left side of the figure and directed toward the guide wall 8 on the right side. As a result, the flow FA coming out of the enlarged nozzle 5 interferes with the guide wall 8, flows along the surface of the guide wall 8 due to the Coanda effect, and is deflected over a wide angle without substantially reducing the air volume. In this case, the maximum deflection angle can be arbitrarily set depending on the shape of the guide wall 8.

次に第3図に示すように、分流器9の左側部分を傾け、
その先端を接触させた場合について説明する。この場合
、図中の左側のバイアス流れFBが遮られ、拡大ノズ)
V5の吹出ロアから出る流れFAは左側に傾き、左側の
案内壁8に沿って広角に左側に偏向する。
Next, as shown in FIG. 3, tilt the left side of the flow divider 9,
A case where the tips thereof are brought into contact will be explained. In this case, the bias flow FB on the left side of the figure is blocked and the enlarged nozzle)
The flow FA coming out of the blowout lower of V5 is inclined to the left and is deflected at a wide angle to the left along the left guide wall 8.

すなわち、分流器9の傾きによる遮蔽位置に応じて、遮
蔽位置の存在する方向に流れは広角に偏向することにな
る。
That is, depending on the shielding position due to the inclination of the flow divider 9, the flow is deflected over a wide angle in the direction of the shielding position.

また、流れF。よりも上流の流れについては全て第2図
と同一であるため、以下は省略する。
Also, flow F. The flow upstream from this point is all the same as in FIG. 2, so the following description will be omitted.

次に第4図に示すように、分流器9をαだけ傾け、分流
器先端をわずかな間隙を設けた場合について説明する。
Next, as shown in FIG. 4, a case where the flow divider 9 is tilted by α and a slight gap is provided between the ends of the flow divider will be described.

この場合、このわずかな間隙を通過する流れFBLが発
生し、この作用により拡大ノズル5の、を 吹出ロアから出る流れFAの傾き力が小なくなる。
In this case, a flow FBL passing through this small gap is generated, and as a result of this action, the inclination force of the flow FA exiting from the blowing lower of the enlarged nozzle 5 is reduced.

この結果、案内壁8への付着の度合も減少し、偏向角度
も第3図に比較して小さくなる。そして、この間隙を序
々に大きくしていくように傾き角度αを小さくしていく
と、流れの偏向角変はしだいに小さくなり、最終的には
第5図に示すように偏向角度はついに零となる。
As a result, the degree of adhesion to the guide wall 8 is also reduced, and the deflection angle is also smaller compared to FIG. 3. If the inclination angle α is decreased by gradually increasing this gap, the change in the deflection angle of the flow will gradually become smaller, and eventually the deflection angle will finally reach zero as shown in Figure 5. becomes.

即ち、分流器9の傾斜角度αを変化させることによって
、流れの偏向角度を任意に設定することができる。
That is, by changing the inclination angle α of the flow divider 9, the deflection angle of the flow can be arbitrarily set.

発明の効果 以上のように本発明は、管内流路の出口端に設けられ、
流路の中心軸から流路外壁へ向けて流れを分散させる分
流器と、前記分流器の下流側近傍に設けられ、前記分流
器の外径寸法より小さな吹出口を有し、かつ前記吹出口
より下流側に漸次拡大形状をした案内壁とで構成された
拡大ノズルと、前記拡大ノズルと前記分流器底面との間
に設けられ、前記分流器を支持し、かつ前記拡大ノズル
内部に内蔵され独立して収納または伸長することにより
前記分流器を任意の方向へ任意の角度だけ自由に傾斜さ
せる制御棒とを設けることにより、流れを収束させて任
意の方向と任意の角度に自由に偏向させて吹き出させる
ものである。さらに、吹出し流れの流路上流に流れを乱
す平板等が無いため、拡大ノズルを出た吹出し流れは案
内壁上にコアンダ効果による良好な付着を示し、広角か
つ広範囲にわたって偏向が得られる。しかも、分流器の
絞りの作用により、流路の中心部分を通過する流れがバ
イアス流れとなるため、案内壁への付着動作が確実に行
なわれることとなり、偏向特性が向上するとともに、乱
流騒音も低下することができる。
Effects of the Invention As described above, the present invention is provided at the outlet end of the intra-pipe flow path,
a flow divider that disperses the flow from the central axis of the flow path toward the outer wall of the flow path; and a flow outlet provided near the downstream side of the flow divider and having a smaller outer diameter than the flow divider; an expanding nozzle configured with a guide wall that gradually expands toward the downstream side; and an expanding nozzle that is provided between the expanding nozzle and the bottom surface of the flow divider, supports the flow divider, and is built inside the expansion nozzle. By providing a control rod that can be independently retracted or extended to freely tilt the flow divider in any direction and at any angle, the flow can be converged and freely deflected in any direction and at any angle. It is something that makes you burst out into laughter. Furthermore, since there is no flat plate or the like on the upstream side of the blowout flow that disturbs the flow, the blowout flow exiting the enlarged nozzle shows good adhesion to the guide wall due to the Coanda effect, and deflection can be obtained over a wide angle and over a wide range. Moreover, due to the action of the flow divider's throttle, the flow passing through the center of the flow path becomes a bias flow, which ensures reliable adhesion to the guide wall, improving deflection characteristics and reducing turbulent flow noise. can also decrease.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における流れ方向制御装置の
斜視図、第2図〜第5図はそれぞれ同流れ方向制御装置
における異なる方向の送風を行うための動作説明図、第
6図は従来の流れ方向制御装置の正面断面図、第7図は
同流れ方向制御装置の側面断面図である。 5・・・・・・拡大ノズル、6・・・・・・流路外壁、
7・・・・・・吹出口、8・・・・・・案内壁、9・・
・・・・分流器、12・・・・・・静止翼。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名5、
、、、↓ζ大ノス″ル 6・・・ 9覧寥4夕l−占t 7・・・℃欠出口 8・・・家内壁 q−・・全弐巻 第1図    12・・・@有享本 第2図 第3図 第4図 第5図
FIG. 1 is a perspective view of a flow direction control device according to an embodiment of the present invention, FIGS. 2 to 5 are explanatory diagrams of operations for blowing air in different directions in the same flow direction control device, and FIG. A front sectional view of a conventional flow direction control device, and FIG. 7 is a side sectional view of the same flow direction control device. 5... Enlarged nozzle, 6... Channel outer wall,
7... Air outlet, 8... Guide wall, 9...
... Flow divider, 12 ... Stationary blade. Name of agent: Patent attorney Toshio Nakao and 1 other person5,
,,,↓ζDainosu''le 6... 9 viewing 4 evening l - reading t 7... ℃ outlet 8... interior wall q-... complete vol. 1 figure 1 12... @ available Kyoumoto Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 管内流路の出口端に設けられ、流路の中心軸から流路外
壁へ向けて流れを分散させる分流器と、前記分流器の下
流側近傍に設けられ、前記分流器の外径寸法より小さな
吹出口を有し、かつ前記吹出口より下流側に漸次拡大形
状をした案内壁とで構成された拡大ノズルと、前記拡大
ノズルと前記分流器底面との間に設けられ、前記分流器
を支持し、かつ前記拡大ノズル内部に内蔵され、独立し
て収納または伸長することにより前記分流器を任意の方
向へ任意の角度だけ自由に傾斜させる制御棒とを備えた
流れ方向制御装置。
A flow divider that is provided at the outlet end of the flow path in the pipe and disperses the flow from the central axis of the flow path toward the outer wall of the flow path; an expanding nozzle having an air outlet and a guide wall that gradually expands downstream from the air outlet; and an expanding nozzle provided between the expanding nozzle and the bottom surface of the flow divider to support the flow divider. and a control rod that is built into the expanding nozzle and is independently retracted or extended to freely tilt the flow divider in any direction and at any angle.
JP60036913A 1985-02-26 1985-02-26 Flow direction control device Granted JPS61195235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60036913A JPS61195235A (en) 1985-02-26 1985-02-26 Flow direction control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60036913A JPS61195235A (en) 1985-02-26 1985-02-26 Flow direction control device

Publications (2)

Publication Number Publication Date
JPS61195235A true JPS61195235A (en) 1986-08-29
JPH0354254B2 JPH0354254B2 (en) 1991-08-19

Family

ID=12483005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60036913A Granted JPS61195235A (en) 1985-02-26 1985-02-26 Flow direction control device

Country Status (1)

Country Link
JP (1) JPS61195235A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993018931A1 (en) * 1992-03-17 1993-09-30 Bowles Fluidics Corporation Nozzle for discharging air and method
FR2872260A1 (en) * 2004-06-24 2005-12-30 Faurecia Interieur Ind Snc AERATEUR
JP2009204240A (en) * 2008-02-28 2009-09-10 Miyagawa Kasei Ind Co Ltd Wind direction adjusting mechanism
WO2020089581A1 (en) * 2018-11-01 2020-05-07 Dyson Technology Limited Adjustable fan nozzle
DE102018127506A1 (en) * 2018-11-05 2020-05-07 Bayerische Motoren Werke Aktiengesellschaft Air vents for a motor vehicle, in particular for a passenger car, and motor vehicles
GB2578616A (en) * 2018-11-01 2020-05-20 Dyson Technology Ltd A nozzle for a fan assembly
DE102019118243A1 (en) * 2019-07-05 2021-01-07 Fischer Automotive Systems Gmbh & Co. Kg Air vents
US11454247B2 (en) 2018-06-27 2022-09-27 Dyson Technology Limited Nozzle for a fan assembly
US11486413B2 (en) 2018-06-27 2022-11-01 Dyson Technology Limited Nozzle for a fan assembly

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993018931A1 (en) * 1992-03-17 1993-09-30 Bowles Fluidics Corporation Nozzle for discharging air and method
US5356336A (en) * 1992-03-17 1994-10-18 Bowles Fluidics Corporation Nozzle for discharging air and method
FR2872260A1 (en) * 2004-06-24 2005-12-30 Faurecia Interieur Ind Snc AERATEUR
WO2006010820A1 (en) * 2004-06-24 2006-02-02 Faurecia Interieur Industrie Aerator
JP2009204240A (en) * 2008-02-28 2009-09-10 Miyagawa Kasei Ind Co Ltd Wind direction adjusting mechanism
US11486413B2 (en) 2018-06-27 2022-11-01 Dyson Technology Limited Nozzle for a fan assembly
US11454247B2 (en) 2018-06-27 2022-09-27 Dyson Technology Limited Nozzle for a fan assembly
GB2578617A (en) * 2018-11-01 2020-05-20 Dyson Technology Ltd A nozzle for a fan assembly
GB2578616A (en) * 2018-11-01 2020-05-20 Dyson Technology Ltd A nozzle for a fan assembly
GB2578616B (en) * 2018-11-01 2021-02-24 Dyson Technology Ltd A nozzle for a fan assembly
GB2578617B (en) * 2018-11-01 2021-02-24 Dyson Technology Ltd A nozzle for a fan assembly
JP2022506392A (en) * 2018-11-01 2022-01-17 ダイソン・テクノロジー・リミテッド Adjustable fan nozzle
WO2020089581A1 (en) * 2018-11-01 2020-05-07 Dyson Technology Limited Adjustable fan nozzle
US11767853B2 (en) 2018-11-01 2023-09-26 Dyson Technology Limited Nozzle for a fan assembly
DE102018127506A1 (en) * 2018-11-05 2020-05-07 Bayerische Motoren Werke Aktiengesellschaft Air vents for a motor vehicle, in particular for a passenger car, and motor vehicles
DE102019118243A1 (en) * 2019-07-05 2021-01-07 Fischer Automotive Systems Gmbh & Co. Kg Air vents
US11207950B2 (en) 2019-07-05 2021-12-28 Fischer Automotive Systems Gmbh & Co. Kg Air vent

Also Published As

Publication number Publication date
JPH0354254B2 (en) 1991-08-19

Similar Documents

Publication Publication Date Title
US4570533A (en) Fluid deflecting assembly
JPS61195235A (en) Flow direction control device
GB2575066A (en) A nozzel for a fan assembly
JPH11132543A (en) Air outlet device
JP3862114B2 (en) Line type outlet
JPS61195236A (en) Flow direction control device
JPS5918614B2 (en) fluid deflection device
KR102332307B1 (en) Air conditioner indoor unit, air conditioner and control method of air conditioner
JPS61256125A (en) Indoor unit of air conditioner
JPH05141718A (en) Radiant air conditioner
JP3304212B2 (en) Air outlet for underfloor air conditioning
JP3526156B2 (en) Air conditioner wind direction control device and ceiling cassette type air conditioner wind direction control method
JPH10332190A (en) Cold air diffuser
JPH0731074Y2 (en) Air blower
JPH0235907B2 (en)
JPS62757A (en) Airflow direction control type ventilating device
JP3045941U (en) Air outlet device
JPH0519700Y2 (en)
JPH06307711A (en) Air-conditioning device
JPS58128495A (en) Blower
JPS5934012A (en) Flow direction control unit
JP2021148331A (en) Blowout port device
JPS604368B2 (en) Fluid flow direction control device
KR940006913B1 (en) Apparatus for controlling air-direction in air conditioners
JPS60215114A (en) Flow direction controlling device