JPS61193368A - Formation of electrode catalyst layer for fuel cell - Google Patents

Formation of electrode catalyst layer for fuel cell

Info

Publication number
JPS61193368A
JPS61193368A JP60033248A JP3324885A JPS61193368A JP S61193368 A JPS61193368 A JP S61193368A JP 60033248 A JP60033248 A JP 60033248A JP 3324885 A JP3324885 A JP 3324885A JP S61193368 A JPS61193368 A JP S61193368A
Authority
JP
Japan
Prior art keywords
catalyst layer
electrode
layer
fuel cell
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60033248A
Other languages
Japanese (ja)
Inventor
Noboru Segawa
昇 瀬川
Sanji Ueno
上野 三司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60033248A priority Critical patent/JPS61193368A/en
Publication of JPS61193368A publication Critical patent/JPS61193368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain an electrode catalyst layer with a surface uniform in thickness and smooth, by binding electroconductive catalyst carrier with platinum group particles dispersed with binder and forming it on a porous substrate as an electrode and applying pressure, passing it through between a cylindrical rotary type roller and a movable plate. CONSTITUTION:Acqueous solution including solic component of 5-10wt% is prepared with carbon powder of 65wt%, which is electroconductive catalyst carrier with platinum group particles dispersed s solid component, and binder of 45wt%, excess water removed by filtering under suction, and thus catalyst material including solid component of 45-60wt% is made. Next, said catalyst material is applied on a porous substrate 1 to form a catalyst layer 2 as an electrode and the surface of the layer 2 is contacted with a rotary type roller 3 and the back face of the substrate 1 with a movable plate 4. Thereafter, the substrate 1 and layer 2 are shifted with the roller and movable plate to pass through a slit, applied pressure to while being sustained at about 200 deg.C, dried and the thickness of the layer 2 is made thin until it becomes an expected one. Thus, the electrode catalyst layer without any crack and with a smooth surface is obtainable.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は燃料電池における電極触媒層の形成方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for forming an electrode catalyst layer in a fuel cell.

[発明の技術的菌類] 従来、燃料の有している化学的エネルギーを直接電気的
エネルギーに変換する装置として燃料電池が知られてい
る。この燃料電池は通常、電解質を含浸したマトリック
スを挟んでマトリックス側に触媒層が形成された一対の
多孔質電極を配置すると共に、一方の電極の背面に水素
等の燃料を接触させ、また他方の電極の背面に酸素等の
酸化剤を接触させ、このとき起こる電気化学的反応を利
用して上記一対の電極間から電気エネルギーを取出すも
のである。
[Technical Fungi of the Invention] Fuel cells are conventionally known as devices that directly convert chemical energy contained in fuel into electrical energy. This fuel cell usually consists of a pair of porous electrodes with a catalyst layer formed on the matrix side, with an electrolyte-impregnated matrix sandwiched between them, and a fuel such as hydrogen is brought into contact with the back surface of one electrode. An oxidizing agent such as oxygen is brought into contact with the back surface of the electrode, and the electrochemical reaction that occurs at this time is used to extract electrical energy from between the pair of electrodes.

さてこの種の燃料電池において、電極用触媒層は白金属
粒子を分散させた導電性触媒担体、およびこの導電性触
媒担体を結着させると共に触媒層に撥水性を持たせるた
めのフッ素系樹脂を結着剤として混合し、これを多孔質
基体上に種々の方法により塗布処理して形成されている
。そしてこの塗布された触媒層は、層の均一な厚さを維
持しかつ多孔質基体との導電性を高めるため、圧縮プレ
スプレート等によって加圧しその後乾燥させて形成され
ている。
In this type of fuel cell, the electrode catalyst layer consists of a conductive catalyst carrier in which platinum metal particles are dispersed, and a fluorine-based resin that binds the conductive catalyst carrier and makes the catalyst layer water repellent. It is formed by mixing it as a binder and applying it onto a porous substrate by various methods. The coated catalyst layer is formed by applying pressure using a compression press plate or the like and then drying it, in order to maintain a uniform thickness of the layer and increase the electrical conductivity with the porous substrate.

し背景技術の問題点」 しかしながら、上述したような従来の方法により形成さ
れた触媒層は、層の厚さを均一に維持することが非常に
困難であることから、電極の機械的強度の不均一性、単
位面積あたりの触媒量の不均一性を引起こす原因となり
、結果的に燃料電池の寿命特性の劣化につながるもので
ある。さらに、上記のような方法では加圧時に塗布物質
が圧縮プレスプレートに吸着して多孔質基体からの触媒
層訊剥離現象を生じることがあり、また触媒層の乾燥工
程において電極表面にクラックが生じ、結果的に電極表
面の平滑度を低下、させてしまうという問題がある。
However, with the catalyst layer formed by the conventional method as described above, it is very difficult to maintain a uniform thickness of the layer, resulting in poor mechanical strength of the electrode. This causes non-uniformity and non-uniformity in the amount of catalyst per unit area, resulting in deterioration of the life characteristics of the fuel cell. Furthermore, in the above method, the coating substance may be adsorbed to the compression press plate during pressurization, causing the catalyst layer to peel off from the porous substrate, and cracks may occur on the electrode surface during the drying process of the catalyst layer. However, there is a problem in that the smoothness of the electrode surface is reduced as a result.

[発明の目的] 本発明は上記のような問題を解消するために成されたも
ので、その目的は均一な厚さを維持すると共に平滑な表
面を有する触媒層を形成することが可能な燃料電池用電
極触媒層の形成方法を提供することにある。
[Object of the Invention] The present invention was made to solve the above-mentioned problems, and its purpose is to provide a fuel that can maintain a uniform thickness and form a catalyst layer with a smooth surface. An object of the present invention is to provide a method for forming an electrode catalyst layer for a battery.

[発明のN要コ 上記目的を達成するために本発明では、多孔質基体上に
、白金属粒子を分散させた導電性触媒担体を結着剤によ
り結着させて触媒層を形成処理して成る電極を、互いに
所定の間隔を介して配置された円柱状の回転式ローラー
と可動式プレートとの間隙を通過させて加圧することに
より、均一な厚さを維持し平滑な表面を有する触媒層を
形成するようにしたことを特徴とする。
[N essential points of the invention] In order to achieve the above object, the present invention involves forming a catalyst layer on a porous substrate by binding a conductive catalyst carrier in which platinum metal particles are dispersed with a binder. A catalyst layer that maintains a uniform thickness and has a smooth surface is created by passing the electrode consisting of the electrode through a gap between a cylindrical rotating roller and a movable plate that are arranged at a predetermined distance from each other and applying pressure. It is characterized by forming a .

[発明の実施例] まず本発明は、前述した燃料電池において、多孔質基体
上に、白金属粒子を分散させた導電性触媒担体を結着剤
により結着させて触媒層を形成処理して成る電極を、互
いに所定の間隔(以下、スリット幅と称する)を介して
配置された円柱状の回転式ローラーと可動式プレートと
の間隙(以下、スリット部と称する)を通過させて加圧
することにより、電極用触媒層を形成するものである。
[Embodiments of the Invention] First, in the above-mentioned fuel cell, the present invention comprises forming a catalyst layer on a porous substrate by binding a conductive catalyst carrier in which platinum metal particles are dispersed with a binder. The electrode is passed through a gap (hereinafter referred to as the slit section) between a cylindrical rotary roller and a movable plate that are arranged at a predetermined interval (hereinafter referred to as the slit width) from each other to apply pressure. This forms the electrode catalyst layer.

以下、その具体的な−、実施例について図面を参照して
説明する。すなわち、その−例として図に示すように、
まず種々の混合、かくはん過程を経て得られた、固′形
分を5wt%〜10wt%含有する水溶液(固形分とし
て、白金属粒子を分散させた導電性触媒担体である炭素
粉65wt%、結i剤であるPTFE45wt%)を、
吸引ろ適法により過剰の水を除去して含有固形分が45
wt%〜60wt%となるようにし、これを多孔質基体
1上に種々の方法により塗布処理して触媒層2を形成す
る。
Hereinafter, specific examples thereof will be described with reference to the drawings. That is, as shown in the figure as an example,
First, an aqueous solution containing 5 wt% to 10 wt% of solids obtained through various mixing and stirring processes (65 wt% of carbon powder, which is a conductive catalyst carrier in which platinum metal particles are dispersed, as a solid content), i agent PTFE45wt%),
Excess water was removed by suction filtration and the solid content was reduced to 45%.
wt% to 60 wt%, and the catalyst layer 2 is formed by coating this on the porous substrate 1 by various methods.

次に、かかるようにして多孔質基体1上に触媒層2が1
布処理されてなる電極を、互いに所定のスリット幅を介
して配置された円柱状の回転式ローラー3と可動式プレ
ート4とのスリット部に、当該電極を可動式プレート4
上に載せてこれを図示右側から左側へ送り出すことによ
って通過させ加圧、乾燥して電極用触媒層を形成処理す
る。この場合、スリット幅を0.7厘に設定し、ローラ
ー周速度を2cm/S、プレート送り速度を1cIR/
Sとして同一方向に作動させて加圧を行なう。また、回
転式ローラー3はその材質として耐食性鋼(SuS30
4製)からなり、かつローラー内部にヒーターを有する
熱間ローラーを用い、その加熱温度を200℃一定に保
って行なう。かようにして得られた触媒H2の厚さは2
50μmであり、また厚さの誤差は1000×1000
の電極で±3μm以内であった。
Next, one catalyst layer 2 is formed on the porous substrate 1 in this manner.
The cloth-treated electrode is inserted into a slit between a cylindrical rotary roller 3 and a movable plate 4, which are arranged with a predetermined slit width between them.
It is placed on top and sent from the right side to the left side in the figure to pass through, pressurize, and dry to form an electrode catalyst layer. In this case, the slit width is set to 0.7 rin, the roller circumferential speed is 2 cm/S, and the plate feeding speed is 1 cIR/S.
Pressure is applied by operating in the same direction as S. In addition, the rotary roller 3 is made of corrosion-resistant steel (SuS30
A hot roller made of 4 (manufactured by J.D. 4) and having a heater inside the roller was used, and the heating temperature was kept constant at 200°C. The thickness of the catalyst H2 thus obtained is 2
50μm, and the thickness error is 1000×1000
It was within ±3 μm for the electrodes.

上述したような方法により形成された触媒層2は、回転
式ローラー3と可動式プレート4とから6一 なるスリット幅を所定の寸法に設定調整することにより
、その厚さを任意にコントロールすることが可能であり
、また均一な厚さを維持することが可能となる。これに
より、電極の機械的強度を均一にすると共に、単位面積
あたりの触媒量も一定に保って電極面の電流密度の差を
小さくし、結果的に燃料電池の寿命特性を向上させるこ
とができるものである。さらに、触媒層2の加圧は回転
式ローラー3で加熱しながら行なうようにしていること
により、従来のように加圧時に塗布物質が圧縮プレスプ
レートに吸着して多孔質基体からの触媒層が剥離する現
象を生じることがなくなり、また従来乾燥工程で生じて
いたクラック等も発生することがなく、結果的に表面が
極めて平滑な触媒層2を形成することが可能となる。さ
らにまた、回転式ローラー3により加圧と加熱が同時に
進行することから、触媒層2の乾燥工程を簡略化するこ
とができもって触媒層2を短時間で形成することが可能
となるものである。
The thickness of the catalyst layer 2 formed by the method described above can be arbitrarily controlled by adjusting the width of the slit formed by the rotary roller 3 and the movable plate 4 to a predetermined size. It is also possible to maintain a uniform thickness. This makes it possible to equalize the mechanical strength of the electrodes, keep the amount of catalyst per unit area constant, reduce the difference in current density on the electrode surface, and improve the life characteristics of the fuel cell as a result. It is something. Furthermore, since the catalyst layer 2 is pressurized while being heated by the rotary roller 3, the coating material is adsorbed to the compression press plate during pressurization, and the catalyst layer from the porous substrate is removed. This eliminates the phenomenon of peeling, and also eliminates the occurrence of cracks, etc. that conventionally occur during the drying process, and as a result, it becomes possible to form a catalyst layer 2 with an extremely smooth surface. Furthermore, since pressurization and heating proceed simultaneously by the rotary roller 3, the drying process of the catalyst layer 2 can be simplified and the catalyst layer 2 can be formed in a short time. .

尚、本発明は上記実施例に限定されるものではなく、次
のようにしても同様に実施することができるものである
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be similarly implemented in the following manner.

(a)上記例では、混合′、かくはん過程を経て得られ
た、固形分を5wt%〜10wt%含有する水溶液(固
形分として、白金属゛粒子を分散させた導電性触媒担体
である炭素粉65wt%、結着剤であるPTFE45w
t%)を多孔質基体1上に塗布処理したが、これに限ら
ず予め乾燥させた白金属粒子を分散させた導電性触媒担
体である炭素粉65wt%、結着剤であるPTFE45
wt%の混合体を多孔質基体1上に塗布処理するように
してもよく、かかる場合には回転式ローラー3として通
常のローラーを使用てし室温で加圧するようにすればよ
い。
(a) In the above example, an aqueous solution containing 5 wt% to 10 wt% of solid content obtained through the mixing and stirring process (the solid content is carbon powder, which is a conductive catalyst carrier in which platinum metal particles are dispersed). 65wt%, PTFE45w as a binder
t%) was applied onto the porous substrate 1, but the present invention is not limited to this. 65wt% of carbon powder is a conductive catalyst carrier in which pre-dried platinum metal particles are dispersed, and PTFE45 is a binder.
wt% of the mixture may be applied onto the porous substrate 1. In such a case, a normal roller may be used as the rotary roller 3 and pressure may be applied at room temperature.

(b)また、上記(a)の場合について前述した熱間ロ
ーラーを用いるようにしてもよく、かかる場合には触媒
層2の表面をより一層平滑なものとすることが可能とな
ることは言うまでもない。
(b) Alternatively, the hot roller described above for the case (a) above may be used, and it goes without saying that in such a case, it becomes possible to make the surface of the catalyst layer 2 even smoother. stomach.

(C)上記実施例では、熱間ローラーはその温度を20
0℃としたが、50〜3001℃の範囲の温度として加
熱するようにしてもよいものである。
(C) In the above example, the hot roller has a temperature of 20
Although the temperature was set at 0°C, the heating may be performed at a temperature in the range of 50 to 3001°C.

((1)上記実施例では、回転式ローラーはその材質と
して耐食性鋼を用いたが、これ以外にフッ素ゴムまたは
天然ゴムを用いるようにしてもよいものである。
((1) In the above embodiment, the rotary roller was made of corrosion-resistant steel, but other materials such as fluororubber or natural rubber may also be used.

(e)回転式ローラー3の周速度および可動式プレート
4の送り速度をそれぞれ周一方向または逆方向で変化さ
せるようにすることにより、触媒層2の表面をより一層
平滑なものとすることが可能となる。
(e) The surface of the catalyst layer 2 can be made even smoother by changing the circumferential speed of the rotary roller 3 and the feeding speed of the movable plate 4 in one direction or in the opposite direction, respectively. becomes.

その他、本発明はその要旨を変更しない範囲で、種々に
変形して実施することができるものである。
In addition, the present invention can be modified and implemented in various ways without changing the gist thereof.

U発明の効果コ 以上説明したように本発明によれば、多孔質基体上に、
白金属粒子を分散させた導電性触媒担体を結着剤により
結着させて触媒層を形成処理して成る電極を、互いに所
定の間隔を介して配置された円柱状の回転式ローラーと
可動式プレートとの間隙を通過させて加圧するようにし
たので、均一な厚さを維持すると共に平滑な表面を有す
る触媒−〇一 層を形成することが可能な信頼性の高い燃料電池用電極
触媒層の形成方法が提供できる。
U Effects of the Invention As explained above, according to the present invention, on a porous substrate,
An electrode formed by binding a conductive catalyst carrier in which platinum metal particles are dispersed with a binder to form a catalyst layer is connected to a movable cylindrical rotary roller arranged at a predetermined distance from each other. Since the pressure is applied through the gap between the plate and the catalyst, the catalyst maintains a uniform thickness and has a smooth surface.A highly reliable electrode catalyst layer for fuel cells that can form a single layer. A method for forming this can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示す構成図である。 1・・・多孔質基体、2・・・触媒層、3・・・回転式
ローラー、4・・・可動式プレート。
The figure is a configuration diagram showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Porous base body, 2... Catalyst layer, 3... Rotating roller, 4... Movable plate.

Claims (5)

【特許請求の範囲】[Claims] (1)多孔質基体上に、白金属粒子を分散させた導電性
触媒担体を結着剤により結着させて触媒層を形成処理し
て成る電極を、互いに所定の間隔を介して配置された円
柱状の回転式ローラーと可動式プレートとの間隙を通過
させて加圧するようにしたことを特徴とする燃料電池用
電極触媒層の形成方法。
(1) Electrodes formed by forming a catalyst layer on a porous substrate by binding a conductive catalyst carrier in which platinum metal particles are dispersed with a binder are arranged at a predetermined distance from each other. A method for forming an electrode catalyst layer for a fuel cell, characterized in that pressure is applied by passing through a gap between a cylindrical rotary roller and a movable plate.
(2)回転式ローラーとしてローラー内部にヒーターを
有する熱間ローラーを用いるようにしたものである特許
請求の範囲第(1)項記載の燃料電池用電極触媒層の形
成方法。
(2) The method for forming an electrode catalyst layer for a fuel cell according to claim (1), wherein a hot roller having a heater inside the roller is used as the rotary roller.
(3)熱間ローラーはその温度を50〜300℃の範囲
とするようにしたものである特許請求の範囲第(2)項
記載の燃料電池用電極触媒層の形成方法。
(3) The method for forming an electrode catalyst layer for a fuel cell according to claim (2), wherein the hot roller has a temperature in the range of 50 to 300°C.
(4)回転式ローラーはその材質が耐食性鋼、フッ素ゴ
ム、天然ゴムのいずれかからなるものである特許請求の
範囲第(1)項記載の燃料電池用電極触媒層の形成方法
(4) The method for forming an electrode catalyst layer for a fuel cell according to claim (1), wherein the rotary roller is made of one of corrosion-resistant steel, fluororubber, and natural rubber.
(5)回転式ローラーの周速度および可動式プレートの
送り速度をそれぞれ同一方向または逆方向で変化させる
ようにしたものである特許請求の範囲第(1)項記載の
燃料電池用電極触媒層の形成方法。
(5) The electrode catalyst layer for a fuel cell according to claim (1), wherein the circumferential speed of the rotary roller and the feeding speed of the movable plate are changed in the same direction or in opposite directions. Formation method.
JP60033248A 1985-02-21 1985-02-21 Formation of electrode catalyst layer for fuel cell Pending JPS61193368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60033248A JPS61193368A (en) 1985-02-21 1985-02-21 Formation of electrode catalyst layer for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60033248A JPS61193368A (en) 1985-02-21 1985-02-21 Formation of electrode catalyst layer for fuel cell

Publications (1)

Publication Number Publication Date
JPS61193368A true JPS61193368A (en) 1986-08-27

Family

ID=12381182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60033248A Pending JPS61193368A (en) 1985-02-21 1985-02-21 Formation of electrode catalyst layer for fuel cell

Country Status (1)

Country Link
JP (1) JPS61193368A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052665A1 (en) * 2000-12-22 2002-07-04 Mtu Friedrichshafen Gmbh Method for producing electrodes, components, half cells and cells for electrochemical energy converters
JP2015050023A (en) * 2013-08-30 2015-03-16 東芝燃料電池システム株式会社 Method and device for manufacturing fuel cell catalyst layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052665A1 (en) * 2000-12-22 2002-07-04 Mtu Friedrichshafen Gmbh Method for producing electrodes, components, half cells and cells for electrochemical energy converters
JP2015050023A (en) * 2013-08-30 2015-03-16 東芝燃料電池システム株式会社 Method and device for manufacturing fuel cell catalyst layer

Similar Documents

Publication Publication Date Title
KR100201572B1 (en) Method producing electrode for fuel cell with method mixing coating and rolling
JP3555196B2 (en) Fuel cell and method of manufacturing the same
US5211984A (en) Membrane catalyst layer for fuel cells
JP7387905B2 (en) Gas diffusion layer, manufacturing method thereof, membrane electrode assembly and fuel cell
JPH04162365A (en) Method for preparing electrode of fuel cell
WO1992015121A1 (en) Membrane catalyst layer for fuel cells
JPH0652871A (en) Solid highpolymer fuel cell
JP3554321B2 (en) Membrane catalyst layer for fuel cell
JP4826057B2 (en) Fuel cell
JP4696462B2 (en) Manufacturing method of membrane electrode assembly
JPH10189012A (en) Electrode for fuel cell and power generation layer, and its manufacture
JPH0349992B2 (en)
JPS61193368A (en) Formation of electrode catalyst layer for fuel cell
US20040071881A1 (en) Method and apparatus for the continuous coating of an ion-exchange membrane
JPH0529005A (en) Electrode/electrolyte joined body, manufacture thereof and fuel cell using the same
JP2003086191A (en) Solid polymer fuel cell and its manufacturing method
JPH06203848A (en) Manufacture of solid high polymer fuel cell
EP1531509A1 (en) Method and apparatus for the continuous coating of an ion-exchange membrane
JPH0665036B2 (en) Gas diffusion electrode and manufacturing method thereof
JP2505449B2 (en) Method for manufacturing sulfuric acid fuel cell electrode
KR20170130774A (en) Production Method of Electrode Applied Spray Coating on Porous Release Paper
JP3736545B2 (en) Method for producing electrode catalyst layer
JP3873387B2 (en) Method for producing polymer electrolyte membrane-reaction part assembly
JP2004047454A (en) Fuel cell electrode
JPH0992303A (en) Manufacture of solid polymer type fuel cell electrode