JP4696462B2 - Manufacturing method of membrane electrode assembly - Google Patents

Manufacturing method of membrane electrode assembly Download PDF

Info

Publication number
JP4696462B2
JP4696462B2 JP2004109326A JP2004109326A JP4696462B2 JP 4696462 B2 JP4696462 B2 JP 4696462B2 JP 2004109326 A JP2004109326 A JP 2004109326A JP 2004109326 A JP2004109326 A JP 2004109326A JP 4696462 B2 JP4696462 B2 JP 4696462B2
Authority
JP
Japan
Prior art keywords
membrane
electrode assembly
catalyst layer
electrolyte
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004109326A
Other languages
Japanese (ja)
Other versions
JP2005294123A (en
Inventor
将典 相武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004109326A priority Critical patent/JP4696462B2/en
Publication of JP2005294123A publication Critical patent/JP2005294123A/en
Application granted granted Critical
Publication of JP4696462B2 publication Critical patent/JP4696462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体高分子形燃料電池に用いられる膜電極接合体の製造方法に関する。   The present invention relates to a method for producing a membrane electrode assembly used in a polymer electrolyte fuel cell.

燃料電池の1つとして固定高分子形燃料電池が知られており、図1bに示す形態の膜電極接合体(MEA)1を主要な構成要素としている。膜電極接合体1は、電解質膜2の一方側に空気極触媒層3aと空気極側拡散層4aを積層し、他方の側に燃料極触媒層3bと燃料極側拡散層4bを積層した構造であり、空気極側拡散層4aと燃料極側拡散層4bとをガス流路を備えたセパレータで挟持して、単セルと呼ばれる1つの燃料電池が形成される。   A fixed polymer fuel cell is known as one of the fuel cells, and a membrane electrode assembly (MEA) 1 having a configuration shown in FIG. The membrane electrode assembly 1 has a structure in which an air electrode catalyst layer 3a and an air electrode side diffusion layer 4a are laminated on one side of an electrolyte membrane 2, and a fuel electrode catalyst layer 3b and a fuel electrode side diffusion layer 4b are laminated on the other side. Thus, one fuel cell called a single cell is formed by sandwiching the air electrode side diffusion layer 4a and the fuel electrode side diffusion layer 4b with a separator having a gas flow path.

通常、電解質膜2にはナフィオン(登録商標)膜が用いられる。空気極触媒層3aおよび燃料極触媒層3bは、白金などの触媒成分を担持するカーボン担体と電気伝導性物質である電解質溶液との混合溶液(触媒インキ)を調整し、それを電解質膜2に塗布し乾燥して形成される。空気極側拡散層4aと燃料極側拡散層4bは、共に、カーボンクロス、カーボンペーパー、無機導電性繊維の織布や不織布などの基材に、ガス拡散に必要な気孔の確保と撥水性を持たせるための撥水加工を施した後、それを触媒層の上にホットプレスすることで形成される。撥水加工は、撥水性樹脂粒子(例えば、PTFE,PFA,FEP,ETFEなどの粒子)と粉末カーボンと溶媒との混合溶液を拡散層用の基材に塗布し、乾燥させた後、300℃以上の温度で焼成することで行われる(特許文献1:特開2002−367617号公報など参照)。   Usually, a Nafion (registered trademark) membrane is used for the electrolyte membrane 2. The air electrode catalyst layer 3a and the fuel electrode catalyst layer 3b are prepared by adjusting a mixed solution (catalyst ink) of a carbon carrier supporting a catalyst component such as platinum and an electrolyte solution which is an electrically conductive substance, and applying it to the electrolyte membrane 2 It is formed by applying and drying. Both the air electrode side diffusion layer 4a and the fuel electrode side diffusion layer 4b are provided with a base material such as carbon cloth, carbon paper, a woven fabric or a non-woven fabric of inorganic conductive fibers for ensuring pores necessary for gas diffusion and water repellency. It is formed by hot pressing on the catalyst layer after applying a water repellent treatment for holding. The water-repellent processing is performed by applying a mixed solution of water-repellent resin particles (for example, particles of PTFE, PFA, FEP, ETFE, etc.), powdered carbon and a solvent to a base material for a diffusion layer and drying, followed by 300 ° C. It is performed by firing at the above temperature (see Patent Document 1: Japanese Patent Laid-Open No. 2002-367617, etc.).

特許文献2(特開2003−203646号公報)には、気体拡散層の上にガスケットを置き、ガスケットの開口部に触媒インクを塗布して陰極触媒層を形成する工程、陰極触媒層の上に高分子電解質イオノマーを塗布して電解質層を形成する工程、電解質層の上に触媒インクを塗布して陽極触媒層を形成する工程、さらにその上に気体拡散層を付着させる工程とにより膜電極接合体を一連の連続工程によって製造する方法が記載されている。
特開2002−367617号公報 特開2003−203646号公報
In Patent Document 2 (Japanese Patent Application Laid-Open No. 2003-203646), a process of forming a cathode catalyst layer by placing a gasket on a gas diffusion layer and applying a catalyst ink to an opening of the gasket is provided on the cathode catalyst layer. Membrane electrode bonding by applying a polymer electrolyte ionomer to form an electrolyte layer, applying a catalyst ink on the electrolyte layer to form an anode catalyst layer, and attaching a gas diffusion layer thereon A method for producing a body by a series of continuous steps is described.
JP 2002-367617 A JP 2003-203646 A

従来、膜電極接合体の製造はバッチ式、すなわち1個毎に個々に生産される。また、生産ラインも、1ライン:基材に撥水加工を施して形成した拡散層を取り付けてそこに触媒インクを塗布し乾燥するライン、2ライン:支持フィルムに電解質溶液を塗布し乾燥して電解質膜を形成するライン、3ライン:1ラインで形成した拡散層+触媒層と2ラインで形成した支持フィルム+電解質膜とを重ね合わせてホットプレスし膜電極接合体とするライン、の3ラインを別々に必要としており、十分な生産性が得られていない。これは、基材に撥水加工を施す際に300℃以上の温度での焼成工程が必要であり、基材と電解質膜とを積層した状態で撥水加工を行うと、電解質膜がダメージを受けるからである。また、3ラインでのホットプレス時にも、電解質膜がダメージを受けやすく、膜電極接合体の耐久性に影響を与えやすい。   Conventionally, the production of membrane electrode assemblies is batch-type, that is, produced individually. In addition, the production line is also a line: a line in which a diffusion layer formed by subjecting a substrate to water repellency is attached, and a catalyst ink is applied and dried there. 2 line: an electrolyte solution is applied to a support film and dried. Lines for forming an electrolyte membrane, 3 lines: 3 lines: a diffusion layer formed in 1 line + a catalyst layer and a support film formed in 2 lines + an electrolyte membrane are hot-pressed to form a membrane electrode assembly Are required separately, and sufficient productivity is not obtained. This requires a baking step at a temperature of 300 ° C. or higher when water-repellent processing is performed on the substrate. If water-repellent processing is performed in a state where the substrate and the electrolyte membrane are laminated, the electrolyte membrane is damaged. Because it receives. In addition, the electrolyte membrane is easily damaged even during hot pressing in three lines, and the durability of the membrane electrode assembly is easily affected.

特許文献2に記載のやり方は、一方側の拡散層に、陰極触媒層、電解質層、陽極触媒層、気体拡散層とを順次積層する一連の連続工程によって膜電極接合体を製造しているが、やはりバッチ式であり、かつ高度な位置決めも必要であり、生産効率が十分に高いとはいえない。   In the method described in Patent Document 2, a membrane electrode assembly is manufactured by a series of continuous processes in which a cathode catalyst layer, an electrolyte layer, an anode catalyst layer, and a gas diffusion layer are sequentially laminated on one diffusion layer. It is still a batch type and requires high positioning, and it cannot be said that the production efficiency is sufficiently high.

本発明は、上記のような事情に鑑みてなされたものであり、膜電極接合体を連続的かつ生産効率よく製造するための新規な製造方法を提供することを目的とする。   This invention is made | formed in view of the above situations, and it aims at providing the novel manufacturing method for manufacturing a membrane electrode assembly continuously and efficiently.

本発明による膜電極接合体の製造方法は、上流側から下流側に送られるウエブ状の空気極側拡散層用の基材の複数の分割された領域に撥水加工を施す工程、基材の撥水加工が施された領域に触媒インクを塗工して空気極触媒層を形成する工程、形成された空気極触媒層上に電解質溶液を塗工して電解質膜を形成する工程、形成された電解質膜上に触媒インクを塗工して燃料極触媒層を形成する工程、形成された燃料極触媒層上に粉末カーボンと、PTFE、フェノール樹脂または電解質溶液のいずれか1種または2種以上からなる粉末カーボンと接着性を有する物質と、の混合ペーストを塗布し乾燥させることで燃料極側拡散層を形成する工程、をこの順で行い、ウエブ状の基材を繋ぎ材として膜電極接合体を連続的に製造することを特徴とする。
The method for producing a membrane / electrode assembly according to the present invention comprises a step of subjecting a plurality of divided regions of a substrate for a web-like air electrode side diffusion layer sent from an upstream side to a downstream side to a water repellent process, A step of forming a cathode catalyst layer by applying a catalyst ink to a water-repellent region, a step of forming an electrolyte membrane by applying an electrolyte solution on the formed cathode catalyst layer. A process of forming a fuel electrode catalyst layer by applying a catalyst ink on the electrolyte membrane, powder carbon, PTFE, phenol resin, or one or more of electrolyte solution on the formed fuel electrode catalyst layer A step of forming a fuel electrode side diffusion layer by applying a mixed paste of powdered carbon and an adhesive substance and drying the membrane in this order, and membrane electrode bonding using a web-like base material as a binder Characterized by continuously manufacturing the body That.

上記の方法では、空気極側拡散層の基材としてウエブ状(帯状)のものを用い、それを上流側から下流側に連続的に送り出す。基材の素材には、カーボンクロス、カーボンペーパー、または炭素繊維を素材とする不織布のいずれかが好ましくは用いられ、該基材に対して最初に撥水加工が施される。それにより、基材には膜電極接合体での空気極側拡散層としての機能が与えられる。   In the above method, a web-like (band-like) substrate is used as the base material of the air electrode side diffusion layer, and it is continuously sent from the upstream side to the downstream side. As the base material, carbon cloth, carbon paper, or a nonwoven fabric made of carbon fiber is preferably used, and the base material is first subjected to water repellent finish. Thereby, the base material is given a function as an air electrode side diffusion layer in the membrane electrode assembly.

その後、ウエブ状の基材が送り出されていく過程において、基材の撥水加工が施された領域の上に、空気極触媒層、電解質膜、燃料極触媒層、および燃料極側拡散層を形成する工程がこの順に行われ、燃料極側拡散層を積層する工程が終了した時点で、1つの膜電極接合体が形成される。連続して送られてくるウエブ状の基材に対して、この処理を反復して行うことにより、ウエブの基材を繋ぎ材として、ウエブの基材上に膜電極接合体が連続的に製造される。   Thereafter, in the process of feeding the web-shaped base material, an air electrode catalyst layer, an electrolyte membrane, a fuel electrode catalyst layer, and a fuel electrode side diffusion layer are formed on the water repellent region of the base material. The forming steps are performed in this order, and when the step of laminating the fuel electrode side diffusion layer is completed, one membrane electrode assembly is formed. By repeatedly performing this process on web-like substrates that are continuously fed, membrane electrode assemblies are continuously produced on the web substrate using the web substrate as a binder. Is done.

下流位置でウエブ状の基材を巻き込むことにより、連続している膜電極接合体がロール状に巻き込まれた製品が得られる。必要時に、連続している膜電極接合体を個々に裁断して分離する。ウエブ状の基材を巻き込むことなく下流位置で個々に裁断して分離した膜電極接合体を得るようにしてもよい。   By winding a web-like substrate at the downstream position, a product in which a continuous membrane electrode assembly is rolled up is obtained. When necessary, continuous membrane electrode assemblies are individually cut and separated. You may make it obtain the membrane electrode assembly which cut | judged and isolate | separated separately in the downstream position, without winding a web-shaped base material.

上記のように、本発明による製造方法では、1つのラインでかつ連続した工程で多数個の膜電極接合体を製造することが可能であり、生産効率は大幅に向上する。また、従来のように、別途形成される拡散層と触媒層の積層体と電解質膜とを重ね合わせてホットプレスする処理を必要としないので、装置も簡素化する。   As described above, in the manufacturing method according to the present invention, a large number of membrane electrode assemblies can be manufactured in one line and in a continuous process, and the production efficiency is greatly improved. Further, unlike the prior art, the process of superposing the laminate of the diffusion layer and catalyst layer separately formed and the electrolyte membrane is not required, so that the apparatus is simplified.

本発明において、ウエブ状の基材への撥水加工は、撥水性樹脂粒子(例えばPTFE,PFA,FEP,ETFEなどの粒子)と粉末カーボンと溶媒との混合溶液を基材に塗布もしくは含浸させて乾燥し、焼成する工程を含む。   In the present invention, the water-repellent processing on the web-shaped substrate is performed by applying or impregnating the substrate with a mixed solution of water-repellent resin particles (for example, particles of PTFE, PFA, FEP, ETFE, etc.), powdered carbon and a solvent. Drying and baking.

撥水加工を施すことにより形成された空気極側拡散層の上に、空気極触媒層を形成するのに用いる触媒インクは、従来の膜電極接合体において空気極触媒層を形成するのに用いられる触媒インク(例えば、白金などの触媒を担持したカーボン粒子とイオン交換樹脂である電解質とを溶媒に分散させた触媒インク)をそのまま用いることができる。触媒インクを空気極側拡散層上に例えばドクターブレートなどによるキャスティングやスプレー塗工などにより塗布し乾燥させる。   The catalyst ink used to form the air electrode catalyst layer on the air electrode side diffusion layer formed by performing the water repellent treatment is used to form the air electrode catalyst layer in the conventional membrane electrode assembly. The catalyst ink (for example, catalyst ink in which carbon particles carrying a catalyst such as platinum and an electrolyte that is an ion exchange resin are dispersed in a solvent) can be used as it is. The catalyst ink is applied onto the air electrode side diffusion layer by, for example, doctor blade casting or spray coating, and dried.

電解質膜の形成は、形成された空気極触媒層の上に、溶媒中にイオン交換樹脂を溶解させた電解質溶液を、やはりドクターブレートなどによるキャスティングやスプレー塗工などにより塗布し乾燥することにより行うことができる。電解質溶液を塗布した後、例えばPTFEである高分子多孔質体を被覆して高分子多孔質体層を形成する工程を行うことは、高分子多孔質体に電解質溶液が含浸して電解質膜の強度を増加させ、耐久性を向上させる理由から好ましい。具体的には、電解質溶液を塗布し、その上に高分子多孔質体を被覆し、高分子多孔質体に電解質溶液が含浸した後、温風乾燥させ、さらにその上に電解質溶液を塗布し、乾燥させる。   The electrolyte membrane is formed by applying and drying an electrolyte solution in which an ion exchange resin is dissolved in a solvent on the formed air electrode catalyst layer by casting or spray coating using a doctor blade or the like. be able to. After applying the electrolyte solution, for example, the step of forming a polymer porous body layer by coating a polymer porous body such as PTFE is impregnated with the electrolyte solution into the polymer porous body. It is preferable for increasing the strength and improving the durability. Specifically, an electrolyte solution is applied, and the polymer porous body is coated thereon. After the polymer porous body is impregnated with the electrolyte solution, it is dried with warm air, and further the electrolyte solution is applied thereon. ,dry.

形成された電解質膜の上に燃料極触媒層を形成するのに用いる触媒インクは、空気極触媒層の場合と同様、従来の膜電極接合体において燃料極触媒層を形成するのに用いられる触媒インクをそのまま用いることができる。触媒インクを電解質膜上に、空気極触媒層の場合と同様にして塗布し乾燥することにより燃料極触媒層を形成することができる。   As in the case of the air electrode catalyst layer, the catalyst ink used to form the fuel electrode catalyst layer on the formed electrolyte membrane is a catalyst used to form the fuel electrode catalyst layer in the conventional membrane electrode assembly. Ink can be used as it is. The fuel electrode catalyst layer can be formed by applying the catalyst ink on the electrolyte membrane in the same manner as in the case of the air electrode catalyst layer and drying.

燃料極触媒層の上に燃料極側拡散層を形成するには、粉末カーボンを主成分としたものを塗布し乾燥させる。粉末カーボンのみでは接着性がないために、PTFE、フェノール樹脂、電解質溶液などの接着性を有する物質と粉末カーボンの混合ペーストを塗布し乾燥することが望ましい。固体高分子型燃料電池での膜電極接合体においては、燃料極側拡散層は空気極側拡散層と比較してガス拡散性が低くても、電池性能に影響を与えない。そのために、高い温度を必要とする撥水処理を行うことなく、電解質膜上に形成した燃料極触媒層に対して、直接混合ペーストを塗布し乾燥することによって空気極側拡散層を形成しても、所要の発電性能を持つ膜電極接合体が得られる。   In order to form the fuel electrode side diffusion layer on the fuel electrode catalyst layer, a powder carbon main component is applied and dried. Since powder carbon alone does not have adhesiveness, it is desirable to apply and dry a mixed paste of powdery carbon and a substance having adhesive properties such as PTFE, phenol resin, and electrolyte solution. In a membrane electrode assembly in a polymer electrolyte fuel cell, even if the fuel electrode side diffusion layer has a lower gas diffusibility than the air electrode side diffusion layer, the cell performance is not affected. Therefore, the air electrode side diffusion layer is formed by directly applying the mixed paste to the fuel electrode catalyst layer formed on the electrolyte membrane and drying it without performing water-repellent treatment requiring high temperature. In addition, a membrane electrode assembly having the required power generation performance can be obtained.

本発明によれば、1つのラインでかつ連続した工程で多数個の膜電極接合体を製造することが可能であり、生産効率は大幅に向上する。また、従来のように、別途形成される拡散層と触媒層の積層体と電解質膜とを重ね合わせてホットプレスする処理を必要としないので、膜電極接合体の耐久性が向上すると共に、装置も簡素化する。   According to the present invention, it is possible to manufacture a large number of membrane electrode assemblies in one line and in a continuous process, and the production efficiency is greatly improved. Further, unlike the conventional case, since the treatment of stacking the diffusion layer and catalyst layer separately formed and the electrolyte membrane is not required and hot pressing is required, the durability of the membrane electrode assembly is improved and the apparatus Also simplify.

以下、本発明を実施の形態に基づき説明する。図1aは本発明による膜電極接合体の製造方法を好適に実施するための装置の一例を模式的に示している。図1aにおいて、5は巻き出しロール、6は巻き取りロールであり、巻き出しロール5にロール状に巻き込まれているウエブ状の空気極側拡散層用の基材10が、以下に説明する各工程を経て巻き取りロール6に巻き取られる。   Hereinafter, the present invention will be described based on embodiments. FIG. 1 a schematically shows an example of an apparatus for suitably carrying out the method for producing a membrane electrode assembly according to the present invention. In FIG. 1a, 5 is an unwinding roll, 6 is a winding roll, and the web-like base material 10 for the air electrode side diffusion layer wound in the form of a roll on the unwinding roll 5 is described below. It winds up by the winding roll 6 through a process.

ウエブ状の基材10は、カーボンクロス、カーボンペーパー、または炭素繊維を素材とする不織布などであり、通常、厚み100〜500μm程度のものを用いる。基材10には、最初にゾーンAにおいて、撥水性樹脂粒子(例えば、PTFE,PFA,FEP,ETFEなどの粒子)と粉末カーボンと水との混合溶液21が塗布または含浸される。混合溶液21が塗布または含浸された領域11はウエブ状の基材の移動によりゾーンBに入る。ゾーンBは領域11の乾燥と焼成を行う領域であり、熱処理室31において、最初に130℃前後の温風で乾燥処理され、次に360℃程度の温度で焼成加工される。ゾーンBでの熱処理を受けることにより、領域11には撥水加工が施されたこととなり、領域11は、図1bに示す膜電極接合体1での空気極側拡散層4aとしての機能を持つこととなる。   The web-like base material 10 is carbon cloth, carbon paper, a nonwoven fabric made of carbon fiber, or the like, and usually has a thickness of about 100 to 500 μm. First, in the zone A, the substrate 10 is coated or impregnated with a mixed solution 21 of water-repellent resin particles (for example, particles of PTFE, PFA, FEP, ETFE, etc.), powdered carbon and water. The region 11 where the mixed solution 21 is applied or impregnated enters the zone B by the movement of the web-like substrate. Zone B is a region where the region 11 is dried and fired. In the heat treatment chamber 31, the region 11 is first dried with warm air of about 130 ° C. and then fired at a temperature of about 360 ° C. By performing the heat treatment in the zone B, the region 11 is subjected to water repellent treatment, and the region 11 has a function as the air electrode side diffusion layer 4a in the membrane electrode assembly 1 shown in FIG. 1b. It will be.

ウエブ状の基材の移動により空気極側拡散層4aはゾーンCに入る。ゾーンCは空気極側拡散層4aの上に空気極触媒層を形成するゾーンであり、白金触媒を担持したカーボン粒子と電解質溶液の混合溶液のような従来から用いられている空気極触媒層用の触媒インク22が空気極側拡散層4aの上にロール塗布あるいはスプレー塗布され、それがそのまま熱処理室32に入り込んで130℃前後の温風で乾燥処理される。それにより、空気極側拡散層4aの上に空気極触媒層3aが形成される。   The air electrode side diffusion layer 4a enters the zone C by the movement of the web-like base material. Zone C is a zone in which an air electrode catalyst layer is formed on the air electrode side diffusion layer 4a, and is conventionally used for an air electrode catalyst layer such as a mixed solution of carbon particles carrying a platinum catalyst and an electrolyte solution. The catalyst ink 22 is applied by roll coating or spray coating on the air electrode side diffusion layer 4a, enters the heat treatment chamber 32 as it is, and is dried by warm air of around 130 ° C. Thereby, the air electrode catalyst layer 3a is formed on the air electrode side diffusion layer 4a.

ゾーンDは電解質膜2を形成するゾーンである。ウエブ状の基材10の移動により送られてくる空気極触媒層3aの上に、従来知られた溶媒中にイオン交換樹脂を溶解させた電解質溶液23が前記と同様な手段により塗布され、それが熱処理室33に入り込んで130℃前後の温風で乾燥処理されことにより、空気極触媒層3aの上に、電界質層2が形成される。   Zone D is a zone for forming the electrolyte membrane 2. On the air electrode catalyst layer 3a sent by the movement of the web-like substrate 10, an electrolyte solution 23 in which an ion exchange resin is dissolved in a conventionally known solvent is applied by the same means as described above. Enters the heat treatment chamber 33 and is dried with warm air of about 130 ° C., so that the electrolyte layer 2 is formed on the air electrode catalyst layer 3a.

他の方法により電解質膜2を形成してもよい。ゾーンDaはそれを示しており、ここでは、送られてくる空気極触媒層3aの上に同様にして電解質溶液23を塗布した後、その上に、PTFE多孔質体41を被覆する。それによりPTFE多孔質体41に電解質溶液23が含浸したPTFE多孔質体層2aが形成される。それを熱処理室33aで130℃前後の温風で乾燥処理した後、再び電解質溶液23を塗布し、再度、熱処理室33bで130℃前後の温風で乾燥処理することにより、電解質膜2とする。この方法を取ることにより、安定した電解質膜2を形成することができる。   The electrolyte membrane 2 may be formed by other methods. Zone Da shows this, and here, after applying electrolyte solution 23 on air electrode catalyst layer 3a sent in the same manner, PTFE porous body 41 is coated thereon. Thereby, the PTFE porous body layer 2a in which the PTFE porous body 41 is impregnated with the electrolyte solution 23 is formed. After drying it with hot air around 130 ° C. in the heat treatment chamber 33a, the electrolyte solution 23 is applied again, and again with the hot air around 130 ° C. in the heat treatment chamber 33b, thereby forming the electrolyte membrane 2. . By adopting this method, a stable electrolyte membrane 2 can be formed.

さらにウエブ状の基材10が移動することにより、電解質膜2が形成された領域はゾーンEに入る。そこで、空気極触媒層3aを形成したと同様にして、白金触媒を担持したカーボン粒子と電解質溶液の混合溶液のような従来から用いられている燃料極触媒層用の触媒インク24が電解質膜2の上にロール塗布あるいはスプレー塗布され、それが熱処理室34に入り込んで130℃前後の温風で乾燥処理される。それにより、電解質膜2の上に燃料極触媒層3bが形成される。   Further, the region where the electrolyte membrane 2 is formed enters the zone E by the movement of the web-like substrate 10. Therefore, in the same manner as the air electrode catalyst layer 3a is formed, the catalyst ink 24 for the fuel electrode catalyst layer conventionally used, such as a mixed solution of carbon particles supporting a platinum catalyst and an electrolyte solution, is used as the electrolyte membrane 2. Roll coating or spray coating is performed on the film, and it enters the heat treatment chamber 34 and is dried with hot air of around 130 ° C. Thereby, the fuel electrode catalyst layer 3 b is formed on the electrolyte membrane 2.

次に、ゾーンFにおいて、ウエブ状の基材10の移動により送られてくる燃料極触媒層3bの上に、燃料極側拡散層4bを形成する。前記したように、固体高分子型燃料電池での膜電極接合体1において、燃料極側拡散層4bは空気極側拡散層4aと比較してガス拡散性が低くても、電池性能に影響を与えない。そのために、高い温度を必要とする撥水処理を行うことなく、燃料極触媒層3bに燃料極側拡散層4b用の材料を塗布し乾燥するだけで、所要の燃料極側拡散層4bを形成することができる。本発明においては、粉末カーボンを主成分とし、PTFE、フェノール樹脂、電解質溶液などの接着性を有する物質を混合してペースト状とした材料25を塗布し、それを熱処理室35において130℃前後の温風で乾燥処理することによって、燃料極触媒層3bの上に燃料極側拡散層4bを形成している。   Next, in the zone F, the fuel electrode side diffusion layer 4b is formed on the fuel electrode catalyst layer 3b sent by the movement of the web-like base material 10. As described above, in the membrane electrode assembly 1 in the polymer electrolyte fuel cell, even if the fuel electrode side diffusion layer 4b has a lower gas diffusibility than the air electrode side diffusion layer 4a, the cell performance is affected. Don't give. Therefore, the required fuel electrode side diffusion layer 4b can be formed by simply applying the material for the fuel electrode side diffusion layer 4b to the fuel electrode catalyst layer 3b and drying it without performing water repellent treatment that requires a high temperature. can do. In the present invention, a paste 25 is applied by mixing powdery carbon as a main component and adhering substances such as PTFE, phenolic resin, and electrolyte solution, and this is applied in a heat treatment chamber 35 at about 130 ° C. A fuel electrode side diffusion layer 4b is formed on the fuel electrode catalyst layer 3b by drying with warm air.

熱処理室35を出ることにより、ウエブ状の基材10の上には膜電極接合体1が形成される。この工程が、ウエブ状の基材10の送りと共に、一定間隔を置いて反復されることにより、ウエブ状の基材10を繋ぎ材として、膜電極接合体1が連続して形成される。それを巻き取りロール6により巻き取ることにより、一連の作業は終了する。   By leaving the heat treatment chamber 35, the membrane electrode assembly 1 is formed on the web-like substrate 10. This process is repeated at a predetermined interval along with the feeding of the web-shaped substrate 10, whereby the membrane electrode assembly 1 is continuously formed using the web-shaped substrate 10 as a connecting material. A series of work is complete | finished by winding it with the winding roll 6. FIG.

この方法によれば、従来の3つのラインを用いて膜電極接合体を製造する場合と比較して、工程を1/3に短縮することができ、また、電解質膜2を従来のように熱プレスすることなく膜電極接合体1を形成できるので、膜電極接合体1の耐久性を従来法によるものと比較して3倍程度長くすることができる。   According to this method, the process can be shortened to 1/3 compared to the case of manufacturing a membrane electrode assembly using three conventional lines, and the electrolyte membrane 2 can be heated as in the conventional case. Since the membrane / electrode assembly 1 can be formed without pressing, the durability of the membrane / electrode assembly 1 can be made about three times longer than that of the conventional method.

図1aは、本発明による膜電極接合体の製造方法を工程順に説明するための模式図であり、図1bは、膜電極接合体を説明するための模式図である。FIG. 1a is a schematic diagram for explaining a method of manufacturing a membrane electrode assembly according to the present invention in the order of steps, and FIG. 1b is a schematic diagram for explaining a membrane electrode assembly.

符号の説明Explanation of symbols

1…膜電極接合体(MEA)、2…電解質膜、3a…空気極触媒層、4a…空気極側拡散層、3b…燃料極触媒層、4b…燃料極側拡散層、5…巻き出しロール、6…巻き取りロール、11…撥水性樹脂粒子と粉末カーボンの混合溶液が塗布された領域、21…撥水性樹脂粒子と粉末カーボンの混合溶液(空気極側拡散層を形成する材料)、22…空気極触媒層用の触媒インク、23…電解質溶液、41…PTFE多孔質体、24…燃料極触媒層用の触媒インク、25…粉末カーボンと接着性を有する物質を混合して得られる混合ペースト(燃料極側拡散層を形成する材料)、31〜35…熱処理室   DESCRIPTION OF SYMBOLS 1 ... Membrane electrode assembly (MEA), 2 ... Electrolyte membrane, 3a ... Air electrode catalyst layer, 4a ... Air electrode side diffusion layer, 3b ... Fuel electrode catalyst layer, 4b ... Fuel electrode side diffusion layer, 5 ... Unwinding roll , 6 ... winding roll, 11 ... region where a mixed solution of water-repellent resin particles and powdered carbon is applied, 21 ... mixed solution of water-repellent resin particles and powdered carbon (material forming the air electrode side diffusion layer), 22 ... Catalyst ink for air electrode catalyst layer, 23 ... electrolyte solution, 41 ... PTFE porous body, 24 ... catalyst ink for fuel electrode catalyst layer, 25 ... mixture obtained by mixing powder carbon and adhesive substance Paste (material for forming the fuel electrode side diffusion layer), 31-35 ... heat treatment chamber

Claims (4)

上流側から下流側に送られるウエブ状の空気極側拡散層用の基材の複数の分割された領域に撥水加工を施す工程、基材の撥水加工が施された領域に触媒インクを塗工して空気極触媒層を形成する工程、形成された空気極触媒層上に電解質溶液を塗工して電解質膜を形成する工程、形成された電解質膜上に触媒インクを塗工して燃料極触媒層を形成する工程、形成された燃料極触媒層上に粉末カーボンと、PTFE、フェノール樹脂または電解質溶液のいずれか1種または2種以上からなる粉末カーボンと接着性を有する物質と、の混合ペーストを塗布し乾燥させることで燃料極側拡散層を形成する工程、をこの順で行い、ウエブ状の基材を繋ぎ材として膜電極接合体を連続的に製造することを特徴とする膜電極接合体の製造方法。 Water repellent treatment to a plurality of divided regions of the substrate for the web-shaped air electrode side diffusion layer sent from the upstream side to the downstream side, and catalyst ink is applied to the water repellent region of the substrate The step of coating to form the air electrode catalyst layer, the step of coating the electrolyte solution on the formed air electrode catalyst layer to form the electrolyte membrane, and the coating of the catalyst ink on the formed electrolyte membrane A step of forming a fuel electrode catalyst layer, a powder carbon on the formed fuel electrode catalyst layer, and a substance having adhesiveness with powder carbon composed of one or more of PTFE, a phenol resin, or an electrolyte solution; The step of forming a fuel electrode side diffusion layer by applying and drying the mixed paste is performed in this order, and a membrane electrode assembly is continuously manufactured using a web-like base material as a connecting material. Manufacturing method of membrane electrode assembly. ウエブ状の基材が、カーボンクロス、カーボンペーパー、または炭素繊維を素材とする不織布のいずれかであることを特徴とする請求項1に記載の膜電極接合体の製造方法。   2. The method for producing a membrane / electrode assembly according to claim 1, wherein the web-shaped substrate is carbon cloth, carbon paper, or a nonwoven fabric made of carbon fiber. 撥水加工を施す工程は、撥水性樹脂粒子と粉末カーボンの溶媒との混合溶液をウエブ状の基材に塗布または含浸させて乾燥および焼成する工程を含むことを特徴とする請求項1または2に記載の膜電極接合体の製造方法。   3. The water repellent process includes a step of applying or impregnating a mixed solution of water repellent resin particles and a powdered carbon solvent to a web-like substrate, followed by drying and baking. The manufacturing method of the membrane electrode assembly as described in 2. 電解質膜を形成する工程は、電解質溶液を塗工した後、高分子多孔質体を被覆し、前記塗工した電解質溶液を高分子多孔質体に含浸させる工程を含むことを特徴とする請求項1または2に記載の膜電極接合体の製造方法。   The step of forming the electrolyte membrane includes a step of coating the polymer porous body after coating the electrolyte solution, and impregnating the polymer porous body with the coated electrolyte solution. 3. A method for producing a membrane electrode assembly according to 1 or 2.
JP2004109326A 2004-04-01 2004-04-01 Manufacturing method of membrane electrode assembly Expired - Fee Related JP4696462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004109326A JP4696462B2 (en) 2004-04-01 2004-04-01 Manufacturing method of membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004109326A JP4696462B2 (en) 2004-04-01 2004-04-01 Manufacturing method of membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2005294123A JP2005294123A (en) 2005-10-20
JP4696462B2 true JP4696462B2 (en) 2011-06-08

Family

ID=35326811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004109326A Expired - Fee Related JP4696462B2 (en) 2004-04-01 2004-04-01 Manufacturing method of membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP4696462B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093870B2 (en) * 2005-07-07 2012-12-12 富士フイルム株式会社 Method for producing solid electrolyte multilayer film
JP4840720B2 (en) 2005-10-06 2011-12-21 セイコーエプソン株式会社 Semiconductor memory device and electronic device
WO2007079255A2 (en) * 2005-12-29 2007-07-12 3M Innovative Properties Company Method of making a membrane electrode assembly
KR101149408B1 (en) * 2006-11-15 2012-06-01 삼성전자주식회사 Method and apparatus for manufacturing electrode of fuel cell
JP5309842B2 (en) * 2008-09-29 2013-10-09 凸版印刷株式会社 Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2010062062A (en) * 2008-09-05 2010-03-18 Toppan Printing Co Ltd Method of manufacturing membrane electrode assembly, membrane electrode assembly, and polymer electrolyte fuel cell
US8715878B2 (en) 2008-09-05 2014-05-06 Toppan Printing Co., Ltd. Polymer electrolyte fuel cell, membrane electrode assembly and manufacturing method thereof
JP5532630B2 (en) 2009-03-02 2014-06-25 凸版印刷株式会社 Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2010257669A (en) 2009-04-23 2010-11-11 Toppan Printing Co Ltd Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
KR101180039B1 (en) 2010-01-21 2012-09-06 한국기초과학지원연구원 Method For Manufacturing Electrode For Fuel Cell, Manufacturing Device for the Same, and Fuel Cell Comprising Electrode Manufactured by the Same
KR101972580B1 (en) * 2017-08-23 2019-04-29 (주)엘켐텍 Electrode catalyst layer of web structure, membrane electrode assembly for electrochemical cell using the same, and manufacturing method
CN114864958A (en) * 2021-01-20 2022-08-05 江苏华思飞新能源科技有限公司 Electrode assembly for fuel cell without proton exchange membrane, preparation method thereof and fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503158A (en) * 1995-12-22 2000-03-14 ヘキスト・リサーチ・アンド・テクノロジー・ドイチュラント・ゲーエムベーハー・ウント・コンパニー・カーゲー Continuous production method of membrane electrode assembly (MEA)
JP2002367617A (en) * 2001-06-11 2002-12-20 Toyota Motor Corp Manufacturing method of gas diffusion layer for fuel cell
JP2003203646A (en) * 2001-12-27 2003-07-18 Hyundai Motor Co Ltd Manufacturing method of fuel cell membrane-electrode- gasket joint body and fuel cell containing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503158A (en) * 1995-12-22 2000-03-14 ヘキスト・リサーチ・アンド・テクノロジー・ドイチュラント・ゲーエムベーハー・ウント・コンパニー・カーゲー Continuous production method of membrane electrode assembly (MEA)
JP2002367617A (en) * 2001-06-11 2002-12-20 Toyota Motor Corp Manufacturing method of gas diffusion layer for fuel cell
JP2003203646A (en) * 2001-12-27 2003-07-18 Hyundai Motor Co Ltd Manufacturing method of fuel cell membrane-electrode- gasket joint body and fuel cell containing the same

Also Published As

Publication number Publication date
JP2005294123A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
US9899685B2 (en) Method of making a proton exchange membrane using a gas diffusion electrode as a substrate
KR100531607B1 (en) Method for manufacturing fuel cell electrolyte film-electrode bond
JP3847597B2 (en) Manufacturing method of membrane electrode unit for fuel cell
US20060204831A1 (en) Control parameters for optimizing MEA performance
JP6529982B2 (en) Method of manufacturing catalyst coated membrane seal assembly
JP4696462B2 (en) Manufacturing method of membrane electrode assembly
KR100201572B1 (en) Method producing electrode for fuel cell with method mixing coating and rolling
EP3229303B1 (en) Method and device for preparing a catalyst coated membrane
KR20170139914A (en) Manufactoring method of gas diffusion layer
JP2004186116A (en) Separator of solid polymer fuel cell and method for manufacturing the separator
US8507152B2 (en) Fabrication of electrodes with multiple nanostructured thin catalytic layers
JP2010225304A (en) Method of manufacturing diffusion layer for fuel cell
JP4954362B2 (en) Method for producing polymer electrolyte fuel cell
US20060040045A1 (en) Method of making electrodes for electrochemical fuel cells
JP2009289692A (en) Method of manufacturing electrode layer for fuel cell
US20040071881A1 (en) Method and apparatus for the continuous coating of an ion-exchange membrane
US11196071B2 (en) Method for manufacturing membrane electrode and gas diffusion layer assembly
JP2019121551A (en) Manufacturing method of conjugate for fuel cell
JP3863068B2 (en) Method for producing electrode for fuel cell
KR100957302B1 (en) Method for manufacturing Membrane-Electrode Assembly
JP5578134B2 (en) Manufacturing method of fuel cell
WO2020252606A1 (en) Membrane electrode structure for fuel cell, method for preparing membrane electrode for fuel cell, and proton exchange membrane fuel cell system
EP1531509A1 (en) Method and apparatus for the continuous coating of an ion-exchange membrane
JP2007227033A (en) Method of manufacturing material for gas diffusion electrode, gas diffusion electrode, and polymer electrolyte fuel cell
JP5804449B2 (en) Manufacturing method of membrane electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

LAPS Cancellation because of no payment of annual fees