JPS61189619A - Compound semiconductor device - Google Patents

Compound semiconductor device

Info

Publication number
JPS61189619A
JPS61189619A JP2996385A JP2996385A JPS61189619A JP S61189619 A JPS61189619 A JP S61189619A JP 2996385 A JP2996385 A JP 2996385A JP 2996385 A JP2996385 A JP 2996385A JP S61189619 A JPS61189619 A JP S61189619A
Authority
JP
Japan
Prior art keywords
layer
substrate
compound semiconductor
single crystal
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2996385A
Other languages
Japanese (ja)
Inventor
Makoto Miyanochi
宮後 誠
Noboru Otani
昇 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2996385A priority Critical patent/JPS61189619A/en
Publication of JPS61189619A publication Critical patent/JPS61189619A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable a crystal layer of a III-V compound semiconductor with reduced distortion in lattices to be formed on an Si substrate, by forming a Ge single crystal layer on the Si substrate in which Ge ions are implanted in a lattice form, so that the Ge layer is interposed between the substrate and the compound semiconductor layer. CONSTITUTION:Ge ions are implanted on the surface of an Si substrate 1 in a lattice form so as to form a Ge ion layer 4. A Ge single crystal layer 3 is formed on the Si substrate 1 by crystal growth through the ion cluster beam process, and a GaAs layer 2 is epitaxially formed thereon through the MOCVD process. According to this method, any distortion in lattices due to a difference in thermal expansion coefficient between the substrate and the compound semiconductor layer 2 can be absorbed, and a difference in lattice constant between the Si and the GaAs also can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はSi基板上にGaAs等のm−v族化合物半導
体層を積層した化合物半導体装置に関し。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a compound semiconductor device in which an m-v group compound semiconductor layer such as GaAs is stacked on a Si substrate.

化合物半導体デバイス作成の基幹技術として利用される
It is used as a core technology for creating compound semiconductor devices.

(従来の技術) GaAs等の化合物半導体は、その優れた特徴を生かし
て光半導体デバイスおよび高速デバイスに利用されてい
る。しかし、化合物半導体基板はSi基板に比べて一般
に高価であり、さらに大面積の高品質基板結晶が得にく
い等の欠点がある。
(Prior Art) Compound semiconductors such as GaAs are utilized in optical semiconductor devices and high-speed devices by taking advantage of their excellent characteristics. However, compound semiconductor substrates are generally more expensive than Si substrates, and have drawbacks such as difficulty in obtaining high-quality substrate crystals with large areas.

このような欠点を補うために良質で軽量なシリコン(S
i)を基板とし、このSi基板上に化合物半導体層を積
層し、当該化合物半導体層にデバイスを構成する試みが
なされている。従来、Si基板上にGaA3層を形成す
るためには1例えば゛以下に示す2つの方法が用いられ
ている。
To compensate for these shortcomings, high-quality and lightweight silicon (S
Attempts have been made to use i) as a substrate, stack a compound semiconductor layer on this Si substrate, and construct a device on the compound semiconductor layer. Conventionally, in order to form a GaA three layer on a Si substrate, two methods, for example, shown below, have been used.

第1の方法として2分子線エピタキシー(MBE)法ま
たは有機金属気相成長(MOCVD)法を用いてSi基
板上に直接GaAs層を形成する方法である。このよう
にして形成された化合物半導体装置を第3図に示し2図
中5はSi基板、6は化合物半導体層である。
The first method is to form a GaAs layer directly on a Si substrate using bimolecular beam epitaxy (MBE) or metal organic chemical vapor deposition (MOCVD). The compound semiconductor device thus formed is shown in FIG. 3, and in FIG. 2, 5 is a Si substrate and 6 is a compound semiconductor layer.

第2の方法として、電子ビーム蒸着(EB)法。The second method is electron beam evaporation (EB).

イオンクラスタビーム(I CB)法2分子線エピタキ
シー(MBE)法または気相成長(CVD)法等を用い
てSi基板上に単結晶Ge層を形成したのちに9分子線
エピタキシー(MBE)法または有機金属気相成長(M
OCVD)法を用いてGaAs層を形成する方法である
。このようにして形成された化合物半導体装置を第4図
に示し9図中7はSi基板、8は単結晶Ge層、9はG
aAs層である。
After forming a single crystal Ge layer on a Si substrate using the ion cluster beam (I CB) method, two molecular beam epitaxy (MBE) method, or vapor phase epitaxy (CVD) method, etc., Metal-organic vapor phase epitaxy (M
This is a method of forming a GaAs layer using the (OCVD) method. The compound semiconductor device thus formed is shown in FIG. 4, in which 7 is a Si substrate, 8 is a single crystal Ge layer, and 9 is a G
It is an aAs layer.

(発明が解決しようとする問題点) しかるに、上述した第1の方法では、熱膨張係数の相違
に基づく残留格子ひずみの問題は解決されておらず、格
子ひずみの少ない良質なGaAs単結晶を得ることはで
きない。また、第2の方法においても、熱膨張係数の相
違から形成温度からの冷却過程で生じる大きな格子ひず
みがGaAs層9に残留する。特にGaAs層9を3μ
m以上に厚く形成した場合、GaAs層9中に割れが発
生するという問題があり、良質なGaAs単結晶を形成
することができなかった。
(Problems to be Solved by the Invention) However, the first method described above does not solve the problem of residual lattice distortion due to the difference in thermal expansion coefficients, and it is difficult to obtain a high-quality GaAs single crystal with little lattice distortion. It is not possible. In the second method as well, large lattice strain generated during the cooling process from the formation temperature remains in the GaAs layer 9 due to the difference in thermal expansion coefficients. In particular, the GaAs layer 9 is
If it is formed thicker than m, there is a problem that cracks occur in the GaAs layer 9, making it impossible to form a high quality GaAs single crystal.

(発明の目的) 本発明はかかる点に鑑み、Si単結晶を基板材料とし、
m−v族の混晶系単結晶を活性層とする化合物半導体装
置において、基板と化合物半導体層との間に熱膨張係数
の相違に基づく格子ひずみを吸収し、かつSiとGaA
sの格子定数の相違を緩和させることを目的とする。
(Object of the invention) In view of the above, the present invention uses Si single crystal as a substrate material,
In a compound semiconductor device having an m-v group mixed single crystal as an active layer, lattice strain due to the difference in thermal expansion coefficient between the substrate and the compound semiconductor layer is absorbed, and Si and GaA
The purpose is to alleviate the difference in the lattice constant of s.

(発明の構成) 本発明は、格子状にGeイオンが注入されたSi基板上
にGe単結晶層が形成され、このGe単結晶層上に化合
物半導体層が形成された化合物半導体装置に係わる。
(Structure of the Invention) The present invention relates to a compound semiconductor device in which a Ge single crystal layer is formed on a Si substrate into which Ge ions are implanted in a lattice pattern, and a compound semiconductor layer is formed on the Ge single crystal layer.

(実施例) 以下1本発明の実施例について図面を参照して説明する
(Example) An example of the present invention will be described below with reference to the drawings.

第1図に本発明に係わる化合物半導体装置を示し2本例
ではSi基板l上にm−v族化合物半導体層としてGa
As層2を格子ひずみなく形成したものである。このた
めにSi基板1上へ格子状にGeイオンを打ち込んでG
e417層4を形成したのち、Ge単結晶層3を形成し
ている。
FIG. 1 shows a compound semiconductor device according to the present invention. In this example, Ga is formed as an m-v group compound semiconductor layer on a Si substrate l.
The As layer 2 is formed without lattice distortion. For this purpose, Ge ions are implanted into the Si substrate 1 in a lattice pattern.
After forming the e417 layer 4, the Ge single crystal layer 3 is formed.

次に、上記構成からなる化合物半導体装置の製造方法に
ついて説明する。
Next, a method for manufacturing a compound semiconductor device having the above structure will be described.

まず、Si基板1の表面に格子状にGeイオンを注入し
てGe417層4を形成する。このGe417層4は格
子一本の線幅が10μm程度であり、格子間隔を100
μm程度とした。このようにして、Geイオンが注入さ
れたSi基板1上にイオンクラスタビーム(I CB)
法でGe単結晶層3を成長する。この成長条件として例
えば基板温度500℃、成長速度5人/秒1層厚100
0人に設定している。
First, Ge417 layer 4 is formed by implanting Ge ions into the surface of Si substrate 1 in a grid pattern. In this Ge417 layer 4, the line width of one grating is about 10 μm, and the grating interval is 100 μm.
It was about μm. In this way, an ion cluster beam (I CB) is applied onto the Si substrate 1 into which Ge ions are implanted.
A Ge single crystal layer 3 is grown by the method. The growth conditions include, for example, a substrate temperature of 500°C, a growth rate of 5 people/sec, and a layer thickness of 100°C.
It is set to 0 people.

なお、Ge単結晶層3上に形成する化合物半導体単結晶
層としては、上述したGaAsに限らず。
Note that the compound semiconductor single crystal layer formed on the Ge single crystal layer 3 is not limited to the above-mentioned GaAs.

GaP、InP等の二元系化合物、さらにGaAlAs
、InGaP、GaAsP等の三元系化合物、およびI
 nGaAs P等の多元系化合物であってもよい。
Binary compounds such as GaP and InP, as well as GaAlAs
, InGaP, ternary compounds such as GaAsP, and I
It may also be a multicomponent compound such as nGaAs P.

(本例と従来例の比較結果) 上述した化合物半導体装置からなる試料Aと従来の成長
法によって得られた試料BとをX線2結晶法による回折
ピークの半値幅を測定することによって結晶性を比較し
た。
(Results of comparison between this example and the conventional example) Crystallinity was determined by measuring the half-value width of the diffraction peak using the X-ray two-crystal method of sample A made of the compound semiconductor device described above and sample B obtained by the conventional growth method. compared.

なお1本例の試料Aでは、Ge単結晶層3上にMOCV
D法を用いて730℃の温度で3μmの厚さのGaAs
層2をエピタキシャル成長したものであり、試料BはS
i基板上に500 ’Cで、厚さ1000人のGe単結
晶層を形成し、その上にMOCVD法を用いて3μmの
厚さのGaAs層を成長したものである。
In addition, in sample A of this example, MOCV was applied on the Ge single crystal layer 3.
GaAs with a thickness of 3 μm at a temperature of 730 °C using the D method.
Layer 2 is epitaxially grown, and sample B is S.
A Ge single-crystal layer with a thickness of 1000 nm was formed on an i-substrate at 500'C, and a GaAs layer with a thickness of 3 μm was grown thereon using the MOCVD method.

この結果、試料Aの半値幅が試料Bの半値幅より小さく
、試料Aの方が試料Bより優れた結晶性を有することが
確認された。
As a result, it was confirmed that the half-width of Sample A was smaller than that of Sample B, and that Sample A had better crystallinity than Sample B.

(発明の効果) 以上述べたように2本発明によればSi基板上に格子ひ
ずみの少ないGaAs、GaAlAs等のm−v族化合
物半導体単結晶層を形成することができ、高品質、低価
格、かつ軽量な化合物半導体装置の製造が可能となり、
化合物半導体装置の多機能化、高性能化を図ることがで
きる。また。
(Effects of the Invention) As described above, according to the present invention, it is possible to form an m-v group compound semiconductor single crystal layer such as GaAs, GaAlAs, etc. with little lattice strain on a Si substrate, resulting in high quality and low cost. , and makes it possible to manufacture lightweight compound semiconductor devices.
Multifunctionality and high performance of compound semiconductor devices can be achieved. Also.

このような化合物半導体装置を太陽電池用の基板として
用いれば、軽量でしかも高効率のものを提供することが
できる。
If such a compound semiconductor device is used as a substrate for a solar cell, it is possible to provide a lightweight and highly efficient device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる化合物半導体装置を示す断面図
、第2図は同化合物半導体装置においてイオン注入直後
のSi基板を示す平面図、第3図および第4図は従来例
を示す断面図である。 1・・・Si基板    2・・・GaAs層3・・・
Ge単結晶層  4・・・Geイオン層第1図 り 第2図 第3図 窮4fg
FIG. 1 is a cross-sectional view showing a compound semiconductor device according to the present invention, FIG. 2 is a plan view showing a Si substrate immediately after ion implantation in the same compound semiconductor device, and FIGS. 3 and 4 are cross-sectional views showing a conventional example. It is. 1...Si substrate 2...GaAs layer 3...
Ge single crystal layer 4...Ge ion layer 1st drawing 2nd figure 3rd figure 4fg

Claims (1)

【特許請求の範囲】[Claims] 1)格子状にGeイオンが注入されたSi基板上にGe
単結晶層が形成され、このGe単結晶層上にIII−V族
化合物半導体層が形成されたことを特徴とする化合物半
導体装置。
1) Ge on a Si substrate into which Ge ions are implanted in a lattice pattern.
1. A compound semiconductor device comprising a single crystal layer and a III-V group compound semiconductor layer formed on the Ge single crystal layer.
JP2996385A 1985-02-18 1985-02-18 Compound semiconductor device Pending JPS61189619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2996385A JPS61189619A (en) 1985-02-18 1985-02-18 Compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2996385A JPS61189619A (en) 1985-02-18 1985-02-18 Compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS61189619A true JPS61189619A (en) 1986-08-23

Family

ID=12290625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2996385A Pending JPS61189619A (en) 1985-02-18 1985-02-18 Compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS61189619A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189909A (en) * 1988-01-26 1989-07-31 Nippon Telegr & Teleph Corp <Ntt> Composite semiconductor substrate
US5108947A (en) * 1989-01-31 1992-04-28 Agfa-Gevaert N.V. Integration of gaas on si substrates
JPH0729825A (en) * 1993-07-08 1995-01-31 Nec Corp Semiconductor substrate and production thereof
US8686472B2 (en) 2008-10-02 2014-04-01 Sumitomo Chemical Company, Limited Semiconductor substrate, electronic device and method for manufacturing semiconductor substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189909A (en) * 1988-01-26 1989-07-31 Nippon Telegr & Teleph Corp <Ntt> Composite semiconductor substrate
US5108947A (en) * 1989-01-31 1992-04-28 Agfa-Gevaert N.V. Integration of gaas on si substrates
JPH0729825A (en) * 1993-07-08 1995-01-31 Nec Corp Semiconductor substrate and production thereof
US5549749A (en) * 1993-07-08 1996-08-27 Nec Corporation Substrate with a compound semiconductor surface layer and method for preparing the same
US8686472B2 (en) 2008-10-02 2014-04-01 Sumitomo Chemical Company, Limited Semiconductor substrate, electronic device and method for manufacturing semiconductor substrate

Similar Documents

Publication Publication Date Title
US7888244B2 (en) Threading-dislocation-free nanoheteroepitaxy of Ge on Si using self-directed touch-down of Ge through a thin SiO2 layer
US4789421A (en) Gallium arsenide superlattice crystal grown on silicon substrate and method of growing such crystal
JPH04303920A (en) Insulating film/iii-v compound semiconductor stacked structure on group iv substrate
US5258326A (en) Quantum device fabrication method
JPS61189621A (en) Compound semiconductor device
JPS61188927A (en) Compound semiconductor device
JPS61189619A (en) Compound semiconductor device
JPS61189620A (en) Compound semiconductor device
JPS5856322A (en) Manufacture of semiconductor substrate
US5017517A (en) Method of fabricating semiconductor device using an Sb protection layer
US11735418B2 (en) Method for forming semiconductor layers
JP2650770B2 (en) Manufacturing method of vertical superlattice element
JPS6066811A (en) Manufacture of compound semiconductor device
JPS6164118A (en) Manufacture of semiconductor device
WO2020230317A1 (en) Semiconductor layered structure
JPS61241911A (en) Compound semiconductor device
US20150090180A1 (en) Epitaxial growth of compound semiconductors using lattice-tuned domain-matching epitaxy
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board
JP3421234B2 (en) Semiconductor device and manufacturing method thereof
JPH05175144A (en) Semiconductor device and its manufacture
JPH03235376A (en) Manufacture of tandem-type solar battery
JPH0620968A (en) Metal film/compound semiconductor laminated structure on element semiconductor substrate and manufacture thereof
JP2726851B2 (en) Manufacturing method of one-dimensional quantum wires
JPS62281415A (en) Method for growing different kinds of crystal films in substrate
JP2766645B2 (en) Method for growing compound semiconductor thin film crystal