JPS61189200A - Structure of rotary electric machine - Google Patents

Structure of rotary electric machine

Info

Publication number
JPS61189200A
JPS61189200A JP60027949A JP2794985A JPS61189200A JP S61189200 A JPS61189200 A JP S61189200A JP 60027949 A JP60027949 A JP 60027949A JP 2794985 A JP2794985 A JP 2794985A JP S61189200 A JPS61189200 A JP S61189200A
Authority
JP
Japan
Prior art keywords
winding
excitation
current
windings
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60027949A
Other languages
Japanese (ja)
Inventor
Fukuo Shibata
柴田 福夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60027949A priority Critical patent/JPS61189200A/en
Publication of JPS61189200A publication Critical patent/JPS61189200A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Synchronous Machinery (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To eliminate a transformer by supplying a terminal voltage of an armature winding through a capacitor to an exciting winding. CONSTITUTION:An exciting current is supplied from terminals 5-7 of an armature winding 10 through capacitors 12-14 and a rectifier 9 to an exciting winding 8. A controller 15 controls a control element 11 of a rectifier 11 so that the terminal voltage of the winding 10 becomes a set voltage. Since the capacitors 12-14 take leading currents with respect to the terminal voltage of the winding 10, a voltage drop of the current flowed to a load can be compensated. Accordingly, it is not necessary to provide a transformer from the armature winding to the rectifier.

Description

【発明の詳細な説明】 本発明は同期機のように固定子に電機子巻線を設け、回
転子に界磁巻線を設ける回転電気機械の構造に関するも
のである。それは同期発電機や同期電動機のみならず、
サイリストモーターのようなものにまで及ぶ。然し、説
明を簡略化するために、以下同期発電機について説明す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a rotating electric machine, such as a synchronous machine, in which an armature winding is provided on a stator and a field winding is provided on a rotor. It is not only synchronous generators and synchronous motors, but also
This extends to things like thyrist motors. However, in order to simplify the explanation, a synchronous generator will be explained below.

同期発電機をブラシレス構造にするため、本発明者自身
の発明として昭和57年特許願第49712号や昭和5
7年特許願第217625号があり、昭和60年1月2
8日及び昭和60年2月6日出願の発明がある。これら
の発明では同期機本体を励磁機としても使うもので、同
期機本体の固定子に設けた電機子巻線に流す負荷電流に
よつて造られる磁極の極数と、電機子巻線又は励磁巻線
に流す励磁電流によつて造られる磁極の極数との関係を
1対2又は2対1とし、これに対応して回転子に励磁巻
線部と界磁巻線部を設けて、その磁極数をそれぞれ固定
子の巻線の磁極数に対応させる。このようにして同一磁
極数の固定子巻線と回転子巻線とを電磁的に結合させ、
磁気回路を兼用した回転電気機械を簡略にブラシレス構
造に造りあげるのである。
In order to make the synchronous generator a brushless structure, the present inventor's own inventions include Patent Application No. 49712 of 1982 and
There is a patent application No. 217625 filed in January 2, 1985.
There are inventions filed on February 8, 1985 and February 6, 1985. In these inventions, the synchronous machine main body is also used as an exciter, and the number of magnetic poles created by the load current flowing through the armature winding provided on the stator of the synchronous machine main body, and the armature winding or excitation The relationship between the number of magnetic poles created by the excitation current flowing through the winding is 1:2 or 2:1, and the rotor is provided with an excitation winding part and a field winding part corresponding to this, The number of magnetic poles is made to correspond to the number of magnetic poles of the windings of the stator. In this way, the stator winding and rotor winding having the same number of magnetic poles are electromagnetically coupled,
A rotating electric machine that also serves as a magnetic circuit can be simply constructed into a brushless structure.

然し、従来考えられてきたこの種回転電気機械の場合、
固定子の励磁電流として直流励磁を與えることが励磁電
力を少なくして好ましいのであるが、電機子巻線から励
磁巻線へ励磁電力を與える場合、次のような問題がある
。すなわち励磁巻線へ直流励磁電力を與える時、その電
圧降下分が非常に低いため、例えば電機子巻線の端子間
電圧をそのまゝ整流器の交流側端子に加えると、あまり
にも電圧差が大きく、バランスがとれない。そのため、
整流器の交流側回路に変成器を挿入することが考えられ
る。然し、これは変成器の価格の点及び効率の点を考え
ると、或る場合には好ましくない。一方電機子巻線から
励磁巻線へ励磁電流を供給する時、電機子巻線の中間端
子から励磁電流を供給すれば、電機子巻線の全体にわた
つて同じ電流を通すことが出来ず、不経済な銅線使用と
なる。
However, in the case of this type of rotating electric machine that has been conventionally considered,
Although it is preferable to provide direct current excitation as the stator excitation current because it reduces the excitation power, the following problems arise when excitation power is provided from the armature winding to the excitation winding. In other words, when applying DC excitation power to the excitation winding, the voltage drop is very low, so if, for example, the voltage between the terminals of the armature winding is directly applied to the AC side terminals of the rectifier, there will be a large voltage difference. Large and unbalanced. Therefore,
One possibility is to insert a transformer into the AC side circuit of the rectifier. However, this may be undesirable in some cases due to transformer cost and efficiency considerations. On the other hand, when supplying excitation current from the armature winding to the excitation winding, if the excitation current is supplied from the intermediate terminal of the armature winding, the same current cannot be passed throughout the armature winding. This results in the use of uneconomical copper wire.

本発明はこのような同期機形回転電気機械において電機
子巻線から固定子の励磁巻線に整流器を通して直流励磁
電流を供給する場合、電機子巻線の全部又はかなりの部
分を使つて励磁電流を供給することにより、電機子巻線
を経済的に使い、且つ特性を良くするように使うことを
目的とする。
The present invention provides that when a DC excitation current is supplied from the armature winding to the excitation winding of the stator through a rectifier in such a synchronous rotating electric machine, all or a considerable portion of the armature winding is used to control the excitation current. The purpose of this invention is to use the armature winding economically and to improve its characteristics.

このような目的を達成せしめるため、本発明では具体的
な電気接続図の第1図に示すように、固定子に負荷電流
を通す電機子巻線部10を設け、又回転子に界磁巻線部
を設け、上記固定子に装備された巻線の或る端子5、6
、7から整流器9を通して上記固定子に装備された励磁
巻線部8に励磁電力を供給するように電気接続し、電機
子巻線部10の鎖交する磁気回路と励磁巻線部8の鎖交
する磁気回路を兼用する配列とし、その励磁電流を励磁
巻線部8に流すことにより造られる磁極の極数と、上記
電機子巻線部10に負荷電流を流して造られる磁極の極
数との関係を、その何れか一方を1とし、他方をその2
倍とする関係となる巻線配列とし、その励磁巻線部8に
励磁電流を流して造られる磁極を、これと同一極数の回
転子励磁巻線部が切つて回転子の励磁巻線部に励磁電圧
を誘起させ、その励磁電圧により界磁巻線部に電流を流
し、界磁極を造る配列において、上記固定子の巻線の端
子5、6、7から整流器9の交流側端子に到る間にコン
デンサー12、13、14を電気接続するのである。
In order to achieve such an object, in the present invention, as shown in FIG. 1 of the specific electrical connection diagram, the stator is provided with an armature winding section 10 for passing the load current, and the rotor is provided with a field winding section 10. A wire portion is provided, and certain terminals 5 and 6 of the winding installed on the stator are provided.
, 7 through a rectifier 9 to supply excitation power to the excitation winding section 8 provided on the stator, and connect the magnetic circuit of the armature winding section 10 and the chain of the excitation winding section 8. The number of magnetic poles created by making an arrangement that also serves as an alternating magnetic circuit and passing the excitation current through the excitation winding portion 8, and the number of magnetic poles created by flowing a load current through the armature winding portion 10. One of them is 1 and the other is 2.
The windings are arranged in a double relationship, and the magnetic poles created by passing an excitation current through the excitation winding part 8 are cut by the rotor excitation winding part with the same number of poles, and the rotor excitation winding part In an arrangement in which an excitation voltage is induced in the field, a current is caused to flow through the field winding portion by the excitation voltage, and a field pole is created. During this period, the capacitors 12, 13, and 14 are electrically connected.

第1図は固定子巻線に関する配列のみを示し、回転子巻
線に関する配列は示していない。電機子巻線10は星形
接続した三相巻線1、2、3から成り、その中性点4を
中心に巻かれる。三端子5、6、7は外部負荷に接続す
るため、16、17、18の接続端子が設けられる。整
流器9はグレーツ回路の中の半分が制御素子付き整流器
11より成り、その制御素子を制御する制御装置15が
接続される。これは例えば同期発電機の端子電圧が負荷
電流の増減により変化した場合、その電圧を検出し、電
圧が設定電圧より低くならうとすると、制御装置15を
働らかせて自動的に制御素子付き整流器11の制御素子
回路を制御して励磁巻線8に供給する直流励磁電流を増
すような制御装置15である。第1図において電機子巻
線1、2、3の端子電圧が例えば440Vであり、励磁
巻線8の両端に加えるべき直流電圧が50V程度であれ
ば、コンデンサー12、13、14がその両者間の電圧
降下分を受け持つことになる。而もコンデンサー12、
13、14は損失を生じるものではなく、電機子巻線1
0の端子電圧に対して進み電流をとるものである。この
ような進み電流は発電機の端子電圧を上昇せしめる効果
を持ち、負荷に流れる電流による電圧降下を多少とも補
償することになる。
FIG. 1 only shows the arrangement for the stator windings and does not show the arrangement for the rotor windings. The armature winding 10 consists of star-connected three-phase windings 1, 2, and 3, and is wound around the neutral point 4 thereof. Since the three terminals 5, 6, and 7 are connected to an external load, connection terminals 16, 17, and 18 are provided. Half of the rectifier 9 in the Graetz circuit consists of a rectifier 11 with a control element, and a control device 15 for controlling the control element is connected thereto. For example, when the terminal voltage of a synchronous generator changes due to an increase or decrease in load current, the voltage is detected, and if the voltage becomes lower than the set voltage, the control device 15 is activated to automatically convert the rectifier with a control element. The control device 15 controls the control element circuit 11 to increase the DC excitation current supplied to the excitation winding 8. In FIG. 1, if the terminal voltage of armature windings 1, 2, and 3 is, for example, 440 V, and the DC voltage to be applied to both ends of excitation winding 8 is about 50 V, capacitors 12, 13, and 14 are connected between them. will be responsible for the voltage drop. Also, capacitor 12,
13 and 14 do not cause loss, and the armature winding 1
It takes a leading current with respect to a terminal voltage of 0. Such a leading current has the effect of increasing the terminal voltage of the generator, and more or less compensates for the voltage drop caused by the current flowing through the load.

第2図では電機子巻線10の接続が二重星形接続となつ
ており、三相の端子U、V、Wから出る回路にコンデン
サー12、13、14を経て整流器9の交流側端子に接
続する。整流器9の直流側端子を二重星形接続の電機子
巻線10の二つの中性点19、20に接続する。このよ
うにすれば、電機子巻線10は励磁巻線部としでも作動
することになる。すなわち、U、V、Wなる三相端子か
ら外部へ黒印矢印のように示された瞬時電流を流すとき
、10は電機子巻線として働らくが、二つの中性点19
、20から白印矢印の直流電流を入れ込む時、10は励
磁巻線部として働らくことになる。第2図の電機子巻線
10の接続の一例を第3図に示す。第2図における黒色
矢印の電流は第3図において黒色矢印の電流で示され、
第3図における白色矢印の電流は第2図の白色矢印に対
応する。又第3図のU、V、W、U1、U2、V1、V
2、W1、W2なる端子は第2図の同じ符号の端子に対
応する。第2図において中性点19と20に対して接続
される電機子巻線10の順序は次のようになる。すなわ
ち、一方の中性点19に対してはU1とV1とW1とが
接続されず、その中のV1の代りにV2が接続され、結
局U1とV2とW1が接続され、他の方の中性点20に
対してはU2とV2とW2の中、V2の代りにV1が接
続され、U2とV1とW2とが接続される。
In Fig. 2, the armature winding 10 is connected in a double star configuration, and the circuit exits from the three-phase terminals U, V, and W, passes through capacitors 12, 13, and 14, and connects to the AC side terminal of the rectifier 9. Connecting. The DC side terminals of the rectifier 9 are connected to two neutral points 19, 20 of the armature winding 10 in a double star connection. In this way, the armature winding 10 also functions as an excitation winding section. In other words, when an instantaneous current shown as a black arrow is caused to flow from the three-phase terminals U, V, and W to the outside, 10 acts as an armature winding, but two neutral points 19
, 20, when the direct current indicated by the white arrow is introduced, 10 acts as an excitation winding section. An example of the connection of the armature winding 10 shown in FIG. 2 is shown in FIG. 3. The current indicated by the black arrow in FIG. 2 is indicated by the current indicated by the black arrow in FIG.
The current indicated by the white arrow in FIG. 3 corresponds to the white arrow in FIG. Also, U, V, W, U1, U2, V1, V in Figure 3
Terminals 2, W1, and W2 correspond to the terminals with the same symbols in FIG. In FIG. 2, the order of the armature windings 10 connected to the neutral points 19 and 20 is as follows. In other words, U1, V1, and W1 are not connected to one neutral point 19, and V2 is connected instead of V1, and eventually U1, V2, and W1 are connected, and the other neutral point is connected to V2 instead of V1. For sex point 20, among U2, V2, and W2, V1 is connected instead of V2, and U2, V1, and W2 are connected.

これは第3図においても判るように三相星形が二組配列
される中、その一相が互いに逆の中性点に接続されるこ
とになる。第2図の直流励磁電流によつて造られる磁極
が強く造られるようにするためである。第2図で電機子
巻線10の中、1、2、3で一つの星形接続の順にあり
、21、22、23で一つの他の星形接続順に配列され
る。
As can be seen in Fig. 3, two sets of three-phase star shapes are arranged, one phase of which is connected to the opposite neutral point. This is to ensure that the magnetic poles created by the DC excitation current shown in FIG. 2 are made strong. In FIG. 2, among the armature windings 10, 1, 2, and 3 are arranged in one star-shaped connection order, and 21, 22, and 23 are arranged in another star-shaped connection order.

第4図は電機子巻線接続の他の例を示す。二重星形接続
として電機子巻線の三相の各相巻線24、25、26は
中性点27を中心に造られる。その中の一相巻線24に
ついて説明すると、次のようになる。すなわち外側端子
5と中性点27の間には中間端子a1とa2があり、こ
の中間端子a1、a2には整流器30の直流側端子が接
続される。この整流器30の交流側端子には電機子巻線
10の中の一相24巻線の交流電圧がコンデンサー12
を通して接続される。このようにして電機子巻線10の
中の一相巻線24にはある瞬間点線矢印に示すような交
流電流を流し、点線矢印に示すような直流電流を流す。
FIG. 4 shows another example of armature winding connection. Each phase winding 24, 25, 26 of the three phases of the armature winding is built around a neutral point 27 as a double star connection. The one-phase winding 24 therein will be explained as follows. That is, there are intermediate terminals a1 and a2 between the outer terminal 5 and the neutral point 27, and the DC side terminal of the rectifier 30 is connected to these intermediate terminals a1 and a2. The AC voltage of the 24 windings of one phase in the armature winding 10 is connected to the AC side terminal of the rectifier 30.
connected through. In this way, at a certain moment, an alternating current as shown by the dotted line arrow is passed through the one-phase winding 24 in the armature winding 10, and a direct current as shown by the dotted line arrow is made to flow therein.

この一相分の巻線接続の展開例を第6図及び第7図に示
す。第6図の場合、点線矢印の電流により4極磁極が造
られ、実線矢印の電流により2極磁極が造られる。第7
図の場合、点線矢印の交流電流により2極磁界が造られ
、実線矢印の直流電流により4極磁界が造られる。第4
図の接続では三相巻線の中の一相分の交流電圧がそれぞ
れの相において整流器30、28、29とコンデンサー
12、13、14の直列回路に印加されるように接続さ
れる。整流器30、28、29の中の半分は制御素子付
き整流器から成つているが、全部制御素子付き整流器と
しても良い。
An example of development of this one-phase winding connection is shown in FIGS. 6 and 7. In the case of FIG. 6, a four-pole magnetic pole is created by the current indicated by the dotted arrow, and a two-pole magnetic pole is created by the current indicated by the solid arrow. 7th
In the case of the figure, a bipolar magnetic field is created by the alternating current indicated by the dotted arrow, and a quadrupole magnetic field is produced by the direct current indicated by the solid arrow. Fourth
In the connection shown in the figure, the AC voltage for one phase of the three-phase winding is applied to a series circuit of rectifiers 30, 28, 29 and capacitors 12, 13, 14 in each phase. Although half of the rectifiers 30, 28, and 29 are rectifiers with control elements, they may all be rectifiers with control elements.

三相巻線24、25、26の各々の相の巻線の中間端子
a1、a2、b1、b2、c1、c2が示され、各相の
コンデンサー12、13、14と整流器30、28、2
9との相互接続関係は同じである。
Intermediate terminals a1, a2, b1, b2, c1, c2 of each phase winding of three-phase windings 24, 25, 26 are shown, and capacitors 12, 13, 14 and rectifiers 30, 28, 2 of each phase are shown.
The interconnection relationship with 9 is the same.

第5図は第1図と同様、電機子巻線10は通常の三相星
形接続であり、励磁巻線が第1図では単相の巻線8で出
来ているのに対し、第5図では三相の巻線31、32、
33から成り、その中性点35を中心に接続される。整
流器30、28、29と励磁巻線との相対関係は励磁巻
線31、32、33の中の一相に対し整流器30、28
、29の中の一つの接続方向を他の二つの接続方向の逆
になるように接続される。整流器30に対して制御装置
34が設けられ、その制御素子回路が制御される。
In FIG. 5, as in FIG. 1, the armature winding 10 has a normal three-phase star connection, and while the excitation winding is made of a single-phase winding 8 in FIG. In the figure, three-phase windings 31, 32,
33 and are connected around their neutral point 35. The relative relationship between the rectifiers 30, 28, 29 and the excitation windings is such that for one phase of the excitation windings 31, 32, 33, the rectifiers 30, 28
, 29 so that the connection direction of one of them is opposite to the connection direction of the other two. A control device 34 is provided for the rectifier 30 and its control element circuit is controlled.

今まで述べて来たのは固定子に設けられた電機子巻線を
主体に述べて来た。これに対し若干回転子巻線について
述べる。第8図はその一例であるが、回転子巻線55が
示される。第8図では第2図の場合と同様に接続される
。外部接続端子U、V、Wに対し、二中性点43、44
への端子u1、u2、v1、v2、w1、w2の接続関
係を第2図の場合と同様、その中の一相の接続を互いに
逆の中性点と接続するのである。換言すれば交流三相巻
線が図上36、37、38の順になり、他の三相巻線が
39、40、41の順になつているとき、36と38に
対し40が中性点43に集められ、又39と41に対し
37が中性点44に集められる。もしこれらの回転子巻
線55において交流電流と直流電流に分けて考えると、
第8図においても第2図と同様の二種類の電流が流れる
ことになる。その場合、固定子の励磁巻線部に励磁電流
を流してそれにより第2図に示す白色の矢印の電流によ
る磁極が第3図に示すように2極を呈すと、その2極磁
界を第8図の回転子巻線が切つて2極の交流電圧を発生
し、その電圧が整流器42を通して中性点43、44間
に加えられる。それにより回転子巻線に界磁電流が流れ
て、4極の界磁極が造られることになる。これと第2図
の電機子巻線10との間に4極機が形成される。このよ
うにして、第8図では回転子巻線55が回転子励磁巻線
と界磁巻線を兼用することになる。第9図では励磁巻線
45と界磁巻線46を別に分けてあり、何れも三相巻線
から成り、同じ溝中に配列されている。
What has been described so far has mainly been about the armature winding provided in the stator. In contrast, let's talk a little bit about the rotor winding. FIG. 8 is an example, in which rotor winding 55 is shown. In FIG. 8, connections are made in the same way as in FIG. 2. Two neutral points 43, 44 for external connection terminals U, V, W
The connections of the terminals u1, u2, v1, v2, w1, w2 to the terminals are the same as in the case of FIG. 2, and one phase connection therein is connected to the opposite neutral point. In other words, when the AC three-phase windings are in the order of 36, 37, and 38 in the diagram, and the other three-phase windings are in the order of 39, 40, and 41, 40 is the neutral point 43 for 36 and 38. and 37 is collected at neutral point 44 in contrast to 39 and 41. If we consider these rotor windings 55 separately into alternating current and direct current,
Two types of current flow in FIG. 8 as well, similar to those in FIG. 2. In that case, if an excitation current is passed through the excitation winding of the stator and the magnetic poles caused by the current indicated by the white arrows in Fig. 2 exhibit two poles as shown in Fig. 3, then the two-pole magnetic field becomes The rotor winding of FIG. 8 is cut to generate a two-pole alternating current voltage, which is applied through a rectifier 42 between neutral points 43 and 44. This causes field current to flow through the rotor windings, creating four field poles. A four-pole machine is formed between this and the armature winding 10 of FIG. In this way, in FIG. 8, the rotor winding 55 serves both as the rotor excitation winding and the field winding. In FIG. 9, the excitation winding 45 and the field winding 46 are separated, and both are composed of three-phase windings and are arranged in the same groove.

界磁巻線46は三相巻線の中、二相巻線を直列に接続し
、他の一相巻線を短絡して制動巻線として働らかせるこ
とを示す。
The field winding 46 shows that among the three-phase windings, two-phase windings are connected in series, and the other one-phase winding is short-circuited to work as a damping winding.

第10図では20個の溝中に設けられた単層の導体を接
続して4回路の巻線群より成らしめ、それらの各回路は
47、48、49、50より成り、それぞれ整流器51
、52、53、54を直列に接続する。これら各回路に
は交流電圧が誘起されるが、整流器51、52、53、
54のため、図に示す矢印のような電流が常に流れ、そ
れによつて2極界磁極が造られることになる。第10図
では巻線群は4極の回転励磁巻線として働らき、又2極
の回転界磁巻線として働らくことが判る。
In FIG. 10, single-layer conductors provided in 20 grooves are connected to form a winding group of four circuits, each of which consists of a rectifier 51, 47, 48, 49, and 50.
, 52, 53, and 54 are connected in series. Although alternating current voltage is induced in each of these circuits, the rectifiers 51, 52, 53,
54, a current as shown by the arrow in the figure always flows, thereby creating a bipolar field pole. In FIG. 10, it can be seen that the winding group functions as a four-pole rotating excitation winding and also as a two-pole rotating field winding.

第8図乃至第10図は回転子巻線が示され、その中には
回転励磁巻線部と回転界磁巻線部がそれぞれ独立或いは
兼用して存在することが示される。
8 to 10 show rotor windings, and it is shown that a rotating excitation winding section and a rotating field winding section are present therein, each independently or in combination.

これらの中、回転励磁巻線部は固定子に設けられた固定
励磁巻線部と同一極数の磁極を造り、互いに電磁的に結
合する。そして回転励磁巻線部に誘起された交流電圧が
回転整流器を通して界磁巻線に■加され、界磁巻線に界
磁電流を流して界磁極が造られることになる。
Among these, the rotating excitation winding section has the same number of magnetic poles as the fixed excitation winding section provided on the stator, and is electromagnetically coupled to each other. Then, the AC voltage induced in the rotating excitation winding is applied to the field winding through the rotating rectifier, and a field current is caused to flow through the field winding to create a field pole.

以上本発明においては固定子に電機子巻線が設けられる
と同時に励磁巻線部があり、回転子に励磁巻線部と界磁
巻線部がある。この中、固定子励磁巻線部と電機子巻線
は別々に設けられる場合もあるが、兼用の場合もある。
As described above, in the present invention, the stator is provided with an armature winding and at the same time has an excitation winding section, and the rotor has an excitation winding section and a field winding section. Among these, the stator excitation winding part and the armature winding part may be provided separately, but they may also be used for the same purpose.

回転子励磁巻線部と界磁巻線部も別々に設けられる場合
もあるが、兼用の場合もある。固定子の電機子巻線の極
数と励磁巻線の極数との関係は1対2又は2対1であり
、例えば一方が4極で他方が2極又は8極と云うように
なる。回転子の励磁巻線の極数は固定子の励磁巻線の極
数と等しく、回転子の界磁巻線の極数は電機子巻線の極
数と等しい。このように極数の等しい巻線相互間は電磁
的に結合され、極数が互いに異なる巻線相互間は電磁的
に作用し合わない。このようにして電機子巻線から固定
子励磁巻線へ励磁電流が供給され、それによつて造られ
る磁極を回転子励磁巻線が切つて電圧を発生し、その電
圧により界磁巻線に直流電流を流し、界磁極を造り、こ
の界磁極と固定子の電機子巻線とによつて励磁機なしブ
ラシレス同期発電機が成り立つことになる。
The rotor excitation winding section and the field winding section may be provided separately, but they may also be used together. The relationship between the number of poles of the armature winding of the stator and the number of poles of the excitation winding is 1:2 or 2:1, for example, one has 4 poles and the other has 2 or 8 poles. The number of poles of the excitation winding of the rotor is equal to the number of poles of the excitation winding of the stator, and the number of poles of the field winding of the rotor is equal to the number of poles of the armature winding. In this way, windings having the same number of poles are electromagnetically coupled, and windings having different numbers of poles do not interact electromagnetically with each other. In this way, excitation current is supplied from the armature winding to the stator excitation winding, and the rotor excitation winding cuts the magnetic poles created thereby to generate a voltage, which causes the field winding to receive DC current. A current is applied to create a field pole, and this field pole and the stator armature winding form a brushless synchronous generator without an exciter.

以上のような本発明によつて得られる作用効果の特長を
まとめると、次のようになる。すなわち従来のこの種励
磁機なしブラシレス同期発電機によると、界磁巻線に與
える励磁電力を電機子巻線から励磁巻線に與える励磁電
力からとり出しているが、電機子巻線から出る交流電力
を整流器を経て固定子の励磁巻線に直流電力を與える時
、その直流電力を励磁電流として供給するための直流電
圧降下は非常に低いもので良い。そのために通常電機子
巻線から整流器に到る間に変成器を設ける必要があつた
。然し本発明ではこのような変成器を設ける必要がなく
、変成器を削除することにより装置全体として簡略化し
、装置の価格も安くなる。それだけではなく、変成器に
おける損失がなくなることにより、装置の効率を向上せ
しめうることは明らかである。
The features of the effects obtained by the present invention as described above can be summarized as follows. In other words, in the conventional brushless synchronous generator without an exciter of this kind, the excitation power given to the field winding is extracted from the excitation power given to the excitation winding from the armature winding. When the output AC power is passed through a rectifier to provide DC power to the excitation winding of the stator, a very low DC voltage drop is sufficient for supplying the DC power as an excitation current. For this reason, it was usually necessary to provide a transformer between the armature winding and the rectifier. However, in the present invention, there is no need to provide such a transformer, and by eliminating the transformer, the entire device is simplified and the cost of the device is also reduced. Moreover, it is clear that the efficiency of the device can be improved by eliminating losses in the transformer.

而も挿入されたコンデンサーにより同期発電機の端子電
圧を若干上昇せしめて、負荷電流による電機子反作用の
電圧降下を少しでも補償する効果を持つことになる。電
機子巻線中を流れる励磁電流は少なくて済み、電機子巻
線を大きい寸法にする必要がなく、経済的である。
Moreover, the inserted capacitor slightly increases the terminal voltage of the synchronous generator, which has the effect of compensating for the voltage drop caused by the armature reaction due to the load current. The excitation current flowing through the armature winding is small, and the armature winding does not have to be large in size, which is economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の具体的な電気接続図を示す例であるが
、その中、特に固定子の電機子巻線を中心に示され、回
転子巻線は示されていない。第2図も本発明の具体的な
電気接続図例を示し、固定子の電機子巻線を励磁巻線と
しても兼用しうる例を示し、回転子に関しては示されて
いない。第3図は第2図の電機子巻線の展開図例を示し
たものである。第4図も本発明の具体的な電気接続図例
を示し、これも固定子の電機子巻線を励磁巻線としても
兼用しうる例であり、回転子に関しては示されていない
。第5図は第1図と同様、具体的な電気接続図例を示し
、固定子の電機子巻線と励磁巻線が独立的に示されてい
る例である。第6図及び第7図は何れも第4図の電機子
巻線の一相分の巻線接続の展開例を示したものである。 第8図は本発明の装置として用いうる回転子巻線の図例
を示し、励磁巻線と界磁巻線を兼用した巻線接続が示さ
れている。第9図は本発明の装置として用いうる回転子
巻線の図例さ示し、励磁巻線と界磁巻線を別々独立的に
設けてある例が示される。第10図は、これも本発明の
装置として用いうる回転子巻線図例であり、励磁巻線と
界磁巻線が兼用されている例が示される。 つぎに図の主要な部分を表わす符号には次のようなもの
がある。 1、2、3:電機子巻線を形成する三相の各巻線、 4
:中性点、5、6、7:電機子巻線の外側端子、 8:
固定子の励磁巻線、9:整流器、 10:電機子巻線、
11:制御素子付き整流器、 12、13、14:コン
デンサー、15:制御装置、16、17、18:電機子
巻線の負荷への接続端子、19、20:中性点、21、
22、23:電機子巻線を形成する二重星形接続の一方
の星形三相を形成する各相巻線、24、25、26:二
重星形接続電機子巻線の各相巻線、 27:中性点、 
28、29、30:整流器、31、32、33:三相接
続の励磁巻線の各相、 34:制御装置、 35:中性
点、36、37、38:二重星形回転子巻線を形成する
一方の三相の星形各相の巻線、 39、40、41:二
重星形回転子巻線を形成する他方の三相星形各相の巻線
、 42:整流器、 43、44:中性点、 45:回
転子励磁巻線、 46:界磁巻線、 47、48、49
、50:回転子巻線回路、 51、52、53、54:
整流器、 55:回転子巻線
FIG. 1 is an example showing a specific electrical connection diagram of the present invention, in which the armature winding of the stator is particularly shown, and the rotor winding is not shown. FIG. 2 also shows a specific example of an electrical connection diagram of the present invention, showing an example in which the armature winding of the stator can also be used as an excitation winding, and the rotor is not shown. FIG. 3 shows an example of a developed view of the armature winding shown in FIG. FIG. 4 also shows a specific example of an electrical connection diagram of the present invention, and this is also an example in which the armature winding of the stator can also be used as an excitation winding, and the rotor is not shown. Like FIG. 1, FIG. 5 shows a specific example of an electrical connection diagram, and is an example in which the armature winding and excitation winding of the stator are shown independently. 6 and 7 both show an example of the development of the winding connection for one phase of the armature winding shown in FIG. 4. FIG. 8 shows an example of a rotor winding that can be used as the device of the present invention, and shows a winding connection that serves both as an excitation winding and a field winding. FIG. 9 shows an example of a rotor winding that can be used as the device of the present invention, and shows an example in which an excitation winding and a field winding are provided separately and independently. FIG. 10 is an example of a rotor winding diagram that can also be used as the device of the present invention, and shows an example in which the excitation winding and the field winding are used as both. Next, there are the following symbols that represent the main parts of the diagram. 1, 2, 3: Each winding of three phases forming the armature winding, 4
: Neutral point, 5, 6, 7: Outer terminal of armature winding, 8:
Stator excitation winding, 9: Rectifier, 10: Armature winding,
11: Rectifier with control element, 12, 13, 14: Capacitor, 15: Control device, 16, 17, 18: Connection terminal of armature winding to load, 19, 20: Neutral point, 21,
22, 23: Each phase winding forming one star-shaped three-phase of the double star-shaped connection forming the armature winding, 24, 25, 26: Each phase winding of the double star-shaped connected armature winding Line, 27: Neutral point,
28, 29, 30: Rectifier, 31, 32, 33: Each phase of excitation winding with three-phase connection, 34: Control device, 35: Neutral point, 36, 37, 38: Double star rotor winding one three-phase star-shaped winding of each phase forming a double star-shaped rotor winding; 39, 40, 41: the other three-phase star-shaped winding of each phase forming a double star rotor winding; 42: rectifier; 43 , 44: Neutral point, 45: Rotor excitation winding, 46: Field winding, 47, 48, 49
, 50: Rotor winding circuit, 51, 52, 53, 54:
Rectifier, 55: Rotor winding

Claims (1)

【特許請求の範囲】[Claims] 固定子に負荷電流を通す電機子巻線部を設け、又回転子
に界磁巻線部を設け、上記固定子に装備された巻線の或
る端子から整流器を通して上記固定子に装備された励磁
巻線部に励磁電力を供給するように電気接続し、電機子
巻線部の鎖交する磁気回路と励磁巻線部の鎖交する磁気
回路を兼用する配列とし、その励磁電流を励磁巻線部に
流すことにより造られる磁極の極数と、上記電機子巻線
部に負荷電流を流して造られる磁極の極数との関係を、
その何れか一方を1とし、他方をその2倍とする関係と
なる巻線配列とし、その励磁巻線部に励磁電流を流して
造られる磁極を、これと同一極数の回転子励磁巻線部が
切って回転子の励磁巻線部に励磁電極を誘起させ、その
励磁電圧により界磁巻線部に電流を流し、界磁極を造る
配列において、上記固定子の巻線の端子から整流器の交
流端子に到る間にコンデンサーを電気接続した回転電気
機械の構造
The stator is provided with an armature winding section for passing a load current, and the rotor is provided with a field winding section, and a rectifier is passed from a certain terminal of the winding installed on the stator to a field winding section installed on the stator. The excitation winding section is electrically connected to supply excitation power, and the arrangement is such that the interlinking magnetic circuit of the armature winding section and the interlinking magnetic circuit of the excitation winding section serve as both, and the excitation current is transferred to the excitation winding section. The relationship between the number of magnetic poles created by flowing load current through the wire section and the number of magnetic poles created by flowing load current through the armature winding section is expressed as follows:
The windings are arranged so that one of them is 1 and the other is twice that number, and the magnetic poles created by passing an excitation current through the excitation winding are the rotor excitation windings with the same number of poles. In an arrangement in which the excitation electrodes are cut in the excitation windings of the rotor, and the excitation voltage causes current to flow through the field windings to create field poles, the terminals of the stator windings are connected to the rectifier. Structure of a rotating electrical machine with a capacitor electrically connected to the AC terminal
JP60027949A 1985-02-15 1985-02-15 Structure of rotary electric machine Pending JPS61189200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60027949A JPS61189200A (en) 1985-02-15 1985-02-15 Structure of rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60027949A JPS61189200A (en) 1985-02-15 1985-02-15 Structure of rotary electric machine

Publications (1)

Publication Number Publication Date
JPS61189200A true JPS61189200A (en) 1986-08-22

Family

ID=12235143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60027949A Pending JPS61189200A (en) 1985-02-15 1985-02-15 Structure of rotary electric machine

Country Status (1)

Country Link
JP (1) JPS61189200A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130652A (en) * 2003-10-24 2005-05-19 Shinko Electric Co Ltd Power supply device and wind turbine generator equipped therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130652A (en) * 2003-10-24 2005-05-19 Shinko Electric Co Ltd Power supply device and wind turbine generator equipped therewith

Similar Documents

Publication Publication Date Title
US8618760B2 (en) Electrical machine
US4338534A (en) Pole-amplitude modulation, pole-changing electric motors and generators
CN110311522A (en) A kind of four symmetrical electric excitation biconvex electrode electric machines
US4013909A (en) Electric motors
EP0018835A1 (en) Pole-amplitude modulation, pole-changing electric motors and generators
US4723202A (en) Converter-fed AC machine without damper winding
JPS61189200A (en) Structure of rotary electric machine
DK143675B (en) ELECTRIC DOUBLE ENGINE
JPS5967858A (en) Structure of rotary electric machine
JPH01264551A (en) Brushless self-excited synchronous generator
JPS6022450A (en) Structure of rotary electric machine
JPS6066655A (en) Structure of rotary electric machine
JPS6181157A (en) Structure of rotary electric machine
JPS58224549A (en) Structure of rotary electric machine
JPS60113641A (en) Rotary electric machine
JPS63186592A (en) Structure of rotary electric machine driven by single-phase power source
JPS61273196A (en) Structure of single-phase motor controller
JPS63213439A (en) Single-phase electric rotary machine
JPS6169359A (en) Structure of rotary electric machine
JPS583554A (en) Brushless synchronous machine structure
JPH0540698Y2 (en)
JPS61180555A (en) Structure of synchronizer type rotary electric machine
JPH0218038B2 (en)
JPS59110356A (en) Structure of rotary electric machine
SU1081770A1 (en) Device for braking two-motor asynchronous electric drive