JPS61186209A - Production of carbon porous body - Google Patents

Production of carbon porous body

Info

Publication number
JPS61186209A
JPS61186209A JP60027120A JP2712085A JPS61186209A JP S61186209 A JPS61186209 A JP S61186209A JP 60027120 A JP60027120 A JP 60027120A JP 2712085 A JP2712085 A JP 2712085A JP S61186209 A JPS61186209 A JP S61186209A
Authority
JP
Japan
Prior art keywords
carbon
resin
producing
porous
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60027120A
Other languages
Japanese (ja)
Inventor
Chiaki Marumo
千郷 丸茂
Masao Hayashi
林 政夫
Hironari Morimoto
裕也 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP60027120A priority Critical patent/JPS61186209A/en
Publication of JPS61186209A publication Critical patent/JPS61186209A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:A mixture of a liquid phenolic resin, a fine carbon powder and a pore-forming material is formed and roasted in a nonoxidative atmosphere to produce a porous carbon material which has high porosity, uniform and continuous pores and high dimensional accuracy. CONSTITUTION:5-30wt%, on the solid basis, of a liquid phenolic resin, 5-30wt% of a fine powder of carbon or a substance convertible into carbon and 40-80wt% of a pore-forming agent are mixed and extruded into a form. Then, the resultant porous material is roasted in a non-oxidative atmosphere to give the objective a porous carbon material. The liquid phenolic resin is preferably a water-soluble resol resin which is obtained by allowing 1mol of phenol to react with 1.5-3.5mol of an aldehyde in the presence of a little excessive amount of an alkali catalyst and keeping the resultant initial condensate stably soluble in water from the operative point of wiew. Fine powders of phenole-formaldehyde resin or furfuryl alcohol resin are preferred as a carbonizable substance, because they are keep high carbonization yield and show high form retention.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、液状フェノール樹脂、炭素または炭素化し得
る微粉末及び気孔形成材よりなる原料を押出成形して得
られる多孔体を非酸化性雰囲気中で焼成する連続気孔を
有する炭素多孔体の製造法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to a porous body obtained by extrusion molding a raw material consisting of a liquid phenolic resin, carbon or carbonizable fine powder, and a pore-forming material in a non-oxidizing atmosphere. The present invention relates to a method for producing a porous carbon material having continuous pores which is fired in a carbon material.

(従来の技術) 近年、電力供給システムの効率化、石油代替燃料の多様
化等を促進するための技術開発の一環として、燃料電池
あるいは電力貯臓システム用の新型電池等の開発が推進
されており、これらにともない高気孔率にして均一な孔
径分布を有する高性能の電極用炭素多孔板の開発が要望
されている。
(Conventional technology) In recent years, as part of technological development to improve the efficiency of power supply systems and promote the diversification of oil-alternative fuels, the development of new types of batteries for fuel cells and power storage systems has been promoted. Accordingly, there is a demand for the development of a high-performance carbon porous plate for electrodes that has a high porosity and a uniform pore size distribution.

こうした要望に対応した炭素多孔体の製造法として、ポ
リビニルアルコールと熱分解によりガラス状炭素に転化
し得る初詣より炭素多孔体を製造する方法が提案されて
いる。(例えば、特公昭58−54082号公報、特開
昭58−172209号公報)これらの方法により製造
される炭素多孔体は、孔径分布が均一な連続気孔を有し
、気孔率が高く、耐酸化性、耐薬品性が良好である等優
れた特性を有している。しかしながら、例えば燃料電池
用電極の様に大型のシート状多孔体には高気孔率にして
均一な孔径分布を有し、しかも均一な厚さでそりや欠陥
がなく寸法精度に優れたシート状多孔体を効率よく生産
出来る製造法を採用することが望ましい。
As a method for producing a carbon porous body that meets these demands, a method has been proposed in which a carbon porous body is produced from hatsumode, which can be converted into glassy carbon through polyvinyl alcohol and thermal decomposition. (For example, Japanese Patent Publication No. 58-54082, Japanese Patent Application Laid-open No. 58-172209) Carbon porous materials produced by these methods have continuous pores with uniform pore size distribution, high porosity, and oxidation resistance. It has excellent properties such as good durability and chemical resistance. However, for example, large sheet-like porous materials such as electrodes for fuel cells have high porosity, uniform pore size distribution, uniform thickness, no warping or defects, and excellent dimensional accuracy. It is desirable to adopt a manufacturing method that can produce the body efficiently.

押出成形法は優れた寸法精度を有する成形体を効率よく
製造出来る製造法としてよく知られているが、従来技術
に於ては、成形時の高い圧力により気孔や空隙が消誠し
て緻密な成形体しか得られず、通常連続気孔率10%以
下、特別な場合でも高々連続気孔率2096以下の成形
体しか得られなかった。
Extrusion molding is well known as a manufacturing method that can efficiently produce molded products with excellent dimensional accuracy. Only molded bodies were obtained, usually with a continuous porosity of 10% or less, and even in special cases, only molded bodies with a continuous porosity of 2096 or less were obtained.

(発明が解決しようとする問題点) 本発明者等はこうした従来技術の欠点を克服し、押出成
形法に於ても、少なくとも連続気孔率40%以上、通常
連続気孔率50%以上の高気孔率の成形体が得られる製
造法について鋭意研究を続けた結果本発明を完成したも
のであってその目的とするところは上記成形体の焼成技
術を提供するにある。他の目的は高気孔率にして均一な
連続気孔を有し、かつ寸法精度に優れた炭素多孔体の効
率的な製造法を提供するにある。
(Problems to be Solved by the Invention) The present inventors have overcome these drawbacks of the prior art and have achieved high porosity with a continuous porosity of at least 40% or more, usually 50% or more even in the extrusion molding method. The present invention was completed as a result of intensive research into a manufacturing method for obtaining a molded product with a high temperature, and its purpose is to provide a firing technique for the above-mentioned molded product. Another object of the present invention is to provide an efficient method for producing a carbon porous body having high porosity, uniform continuous pores, and excellent dimensional accuracy.

(問題点を解決するための手段) 上述の目的は、固形分量で5〜30重量%の液状フェノ
ール樹脂、5〜30重量%の炭素もしくは炭素化し得る
微粉末並びに40〜80重量%の気孔形成材を主成分と
する原料を混合した後押出成形して得られる多孔体を非
酸化性雰囲気中で焼成することを特徴とする炭素多孔体
の製造法により達成される。
(Means for Solving the Problems) The above object is to produce a liquid phenol resin with a solid content of 5 to 30% by weight, carbon or carbonizable fine powder of 5 to 30% by weight, and pore formation of 40 to 80% by weight. This is achieved by a method for producing a porous carbon body, which is characterized in that the porous body obtained by mixing and extrusion molding raw materials mainly composed of carbonaceous carbon dioxide is fired in a non-oxidizing atmosphere.

本発明に用いる好適な液状フェノール樹脂としては、例
えばレゾール樹脂またはノボラック樹脂が挙げられる。
Suitable liquid phenolic resins for use in the present invention include, for example, resol resins or novolak resins.

レゾール樹脂はフェノール類をアルデヒド類と塩基性触
媒の存在下で反応させることにより製造されるところの
初期生成物であり、通常、メチロール基に富む分子量が
約600までの自己熱架橋性のフェノール樹脂である。
Resole resins are initial products produced by reacting phenols with aldehydes in the presence of basic catalysts, and are typically self-thermal crosslinking phenolic resins with molecular weights up to about 600 that are rich in methylol groups. It is.

レゾール樹脂のなかでも、一般にフェノール−モルに対
し、1.5〜8.5モルのアルデヒド類をやや過剰のア
ルカリ触媒の存在下で反応させた初期縮合物を安定な水
溶性の状態に保たせることにより得られる水溶性レゾー
ル樹脂が最も取扱いが容易で好ましい。ノボラック樹脂
は、フェノール類とアルデヒド類とを酸性触媒の存在下
で加熱しながら反応させることにより得られる分子13
300〜2000程度の未硬化で溶融可能な熱可塑性樹
脂であり、ヘキサメチレンテトラミン等の架橋剤と共に
メタノール、アセトン等の溶媒に適当量溶解して液状フ
ェノール樹脂として用いることができる。ノボラック樹
脂の架橋剤としては、最も一般的にはへキサメチレンテ
トラミンを用いることができるがその他にもパラホルム
アルデヒド、グルタルアルデヒド、アジボアルデヒド、
グリオキサールの様なアルデヒド類と酸またはアルカリ
を併用してもよい。
Among resol resins, the initial condensate is generally made by reacting 1.5 to 8.5 moles of aldehydes to moles of phenol in the presence of a slightly excess alkali catalyst, and maintains it in a stable water-soluble state. The water-soluble resol resin obtained by this method is the easiest to handle and is therefore preferred. Novolak resin is a molecule obtained by reacting phenols and aldehydes with heating in the presence of an acidic catalyst.
It is an uncured and meltable thermoplastic resin with a molecular weight of about 300 to 2000, and can be used as a liquid phenol resin by dissolving an appropriate amount in a solvent such as methanol or acetone together with a crosslinking agent such as hexamethylenetetramine. As a crosslinking agent for novolak resin, hexamethylenetetramine can be most commonly used, but paraformaldehyde, glutaraldehyde, azibaldehyde,
An aldehyde such as glyoxal and an acid or alkali may be used in combination.

本発明に用いる炭素微粉末としては、例えばチャンネル
ブラック、ファーネスブラック、ランプブラック、サー
マルブラック等のカーボンブラック、石油コークス、石
炭ピッチコークス等の無定形炭素微粉末、天然黒鉛、人
造黒鉛等の黒鉛微粉末、フェノールホルムアルデヒド樹
脂系、フリフリルアルコール樹脂炭、ジビニルベンゼン
スチレン共重合体樹脂炭、セルロース炭等の難黒鉛化性
炭素微粉末、ポリ塩化ビニル樹脂炭、ポリアクリロニト
リル樹脂炭等の易黒鉛化性炭素微粉末等が挙げられる。
Examples of the carbon fine powder used in the present invention include carbon black such as channel black, furnace black, lamp black, and thermal black, amorphous carbon fine powder such as petroleum coke and coal pitch coke, and graphite fine powder such as natural graphite and artificial graphite. Powder, non-graphitizable fine carbon powder such as phenol formaldehyde resin type, frifuryl alcohol resin charcoal, divinylbenzene styrene copolymer resin charcoal, cellulose charcoal, easy graphitization such as polyvinyl chloride resin charcoal, polyacrylonitrile resin charcoal, etc. Examples include fine carbon powder.

また、炭素化し得る微粉末としては、上記炭素微粉末の
製造に用いる生コークスや樹脂微粉末を用いることがで
きる。これらの炭素化し得る微粉末のなかでも、フェノ
ールホルムアルデヒド樹脂、フリフリルアルコール樹脂
等の微粉末は炭化収率の球状−数粒子およびその二次凝
集物よりなる反応性を有する粒状フェノール樹脂が最も
好適に用いられる。この反応性を有する粒状フェノール
樹脂は、その形状が球形に近い粒子であることから、公
知のフェノール樹脂硬化物を粉砕して得られた粉末に比
べて混合性が良好であり、かつ、該フェノール樹脂が反
応性を有することにより液状フェノール樹脂との反応に
よる一体化が促進され、高強度の炭素多孔体が得られ易
いという利点がある。
Further, as the fine powder that can be carbonized, raw coke or fine resin powder used for producing the above-mentioned fine carbon powder can be used. Among these fine powders that can be carbonized, the most suitable fine powders such as phenol formaldehyde resin and frifuryl alcohol resin are granular phenol resins with reactivity consisting of several spherical particles and their secondary aggregates with a carbonization yield. used for. This reactive granular phenolic resin has a nearly spherical shape, so it has better mixability than powder obtained by pulverizing known cured phenolic resins, and the phenol Since the resin has reactivity, its integration through reaction with the liquid phenol resin is promoted, and there is an advantage that a high-strength carbon porous body can be easily obtained.

本発明の連続気孔を賦与するための気孔形成材としては
、液状フェノール樹脂並びに炭素もしくは炭素化し得る
微粉末との混合性が良好でかっ、非酸化性雰囲気中での
焼成により分解してガス化し、炭素残分が殆んどない物
質を用いることが出来、例えば小麦粉澱粉、トウモロコ
シ澱粉等の澱粉及びカルボキシメチル澱粉、ジアルデヒ
ド澱粉等の澱粉誘導体、デキストリン等のデンプン変性
体あるいはその他の天然の水溶性高分子、メチルセルロ
ース、カルボキシメチルセルロース、ヒドロキシプロピ
ルメチルセルロース、エチルセルロース等のセルロース
誘導体、ポリビニルアルコール、ポリアクリル酸ナトリ
ウム、ポリエチレンオキシド、ポリビニルピロリドン、
アクリル系ポリマー等の合成水溶性高分子、ポリアクリ
ル酸エステル、ポリメチルメタクリレート、ポリビニル
ブチラール等の合成有機高分子を用いることが出来る。
The pore-forming material for providing continuous pores of the present invention has good miscibility with liquid phenolic resin and carbon or carbonizable fine powder, and is decomposed and gasified by firing in a non-oxidizing atmosphere. , substances with almost no carbon residue can be used, such as starches such as wheat flour starch and corn starch, starch derivatives such as carboxymethyl starch and dialdehyde starch, starch modified products such as dextrin, or other natural water-soluble substances. cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, and ethylcellulose, polyvinyl alcohol, sodium polyacrylate, polyethylene oxide, polyvinylpyrrolidone,
Synthetic water-soluble polymers such as acrylic polymers, synthetic organic polymers such as polyacrylic esters, polymethyl methacrylate, and polyvinyl butyral can be used.

これらの気孔形成材の中でも、澱粉あるいはその誘導体
や変性体は粒径や種類が豊富でかつ、加熱温度により特
性が変化し易いので目的とする炭素多孔体の孔径や気孔
形態の制御に最も適しており、セルロース誘導体やポリ
ビニルアルコールも好適に用いられる。
Among these pore-forming materials, starch or its derivatives and modified products are most suitable for controlling the pore size and pore morphology of the target porous carbon material because they have a wide variety of particle sizes and types, and their properties change easily depending on the heating temperature. Cellulose derivatives and polyvinyl alcohol are also suitably used.

また、澱粉、セルロース誘導体、合成水溶性高分子等を
適量づつ併用することにより、成形性、作業性に優れか
つ均一な孔径分布の連続気孔を有する炭素多孔体が得ら
れ易いが、特に澱粉とポリビニルアルコールとを併用す
ることにより独特の気孔形態を有する極めて良好な炭素
多孔体が得られる。
Furthermore, by using appropriate amounts of starch, cellulose derivatives, synthetic water-soluble polymers, etc., it is easy to obtain a carbon porous material that has continuous pores with excellent moldability and workability and a uniform pore size distribution. By using it in combination with polyvinyl alcohol, an extremely good porous carbon material having a unique pore morphology can be obtained.

本発明の液状フェノール樹脂、炭素もしくは炭素化し得
る微粉末、並びに気孔形成材の混合比率は、液状フェノ
ール樹脂固形分5〜30重量%、炭素または炭素化し得
る微粉末5〜30重量%、気孔形成材40〜80重量%
であり、好ましくは、液状フェノール樹脂固形分8〜2
5重量%、炭素または炭素化し得る微粉末8〜25重量
%、気孔形成材45〜70重量%であり、最も好ましく
は、液状フェノール樹脂固形分10〜20重量%、炭素
または炭素化し得る微粉末10〜20重祉%、気孔形成
材50〜60重ffi%である。
The mixing ratio of the liquid phenolic resin, carbon or carbonizable fine powder, and pore-forming material of the present invention is 5 to 30% by weight of liquid phenolic resin solid content, 5 to 30% by weight of carbon or carbonizable fine powder, and pore-forming material. Material 40-80% by weight
and preferably liquid phenol resin solid content 8 to 2
5% by weight, 8-25% by weight of carbon or carbonizable fine powder, 45-70% by weight of pore-forming material, most preferably 10-20% by weight of liquid phenolic resin solids, carbon or carbonizable fine powder. The content of the pore-forming material is 10-20% by weight, and the pore-forming material is 50-60% by weight.

また、気孔形成材として、澱粉とポリビニルアルコール
を併用する場合の両者の気孔形成材中に占める割合は、
好ましくは澱粉75〜99重臘%、ポリビニルアルコー
ル1〜25重量%、更に好ましくは澱粉85〜98重世
%、ポリビニルアルコール2〜15重量%、最も好まし
くは、澱粉90〜97重量%、ポリビニルアルコール3
〜10重量%である。
In addition, when starch and polyvinyl alcohol are used together as pore-forming materials, the proportions of both in the pore-forming materials are:
Preferably 75-99% starch, 1-25% polyvinyl alcohol, more preferably 85-98% starch, 2-15% polyvinyl alcohol, most preferably 90-97% starch, polyvinyl alcohol. 3
~10% by weight.

液状フェノール樹脂が固形分量で5重は%未満の場合に
は、樹脂による結合効果が小さく、押出成形性が低下し
て良好なる成形体が得られず、また焼成後の炭素多孔体
も著しく強度が低くて欠陥が多くなる。液状フェノール
樹脂固形分量が30重量%を越えると混合組成物の粘度
が低下し流動性が増加して押出成形が困難となり、かつ
、気孔形成材の混入量が減少するために気孔率が低下す
る。
If the solid content of the liquid phenol resin is less than 5%, the binding effect of the resin will be small, the extrusion moldability will be reduced, and a good molded product will not be obtained, and the carbon porous material after firing will also have a significantly lower strength. is low and there are many defects. When the solid content of the liquid phenol resin exceeds 30% by weight, the viscosity of the mixed composition decreases and fluidity increases, making extrusion molding difficult, and the porosity decreases because the amount of pore-forming material mixed in decreases. .

本発明に於て、炭素または炭素化し得る微粉末を用いる
利点は、まず第1に該微粉末を混合することにより混合
組成物の粘度を押出成形に適合する様に調整できること
であり、第2に焼成時の炭化収率を高めて炭素多孔体の
形態保持特性及び寸法精度を向上させうろこと、第3に
気孔の連続性を向上できることにある。炭素または炭素
化し得る微粉末が5重量%未満の場合には上記の効果が
十分に発揮されずまた該微粉末が30重量%を越える場
合には、混合組成物の押出成形性が低下するだけでなく
、気孔形成材の混入量が減少して気孔率が低下し、良好
なる成形体が得られない。
In the present invention, the advantage of using carbon or carbonizable fine powder is that, firstly, by mixing the fine powder, the viscosity of the mixed composition can be adjusted to suit extrusion molding, and secondly, by mixing the fine powder, the viscosity of the mixed composition can be adjusted to suit extrusion molding. Second, the carbonization yield during firing can be increased to improve the shape retention characteristics and dimensional accuracy of the porous carbon body, and thirdly, the continuity of pores can be improved. If the carbon or carbonizable fine powder is less than 5% by weight, the above effects will not be fully exhibited, and if the fine powder exceeds 30% by weight, the extrudability of the mixed composition will only deteriorate. Instead, the amount of the pore-forming material mixed in decreases and the porosity decreases, making it impossible to obtain a good molded body.

成形時に多大の圧力を加える押出成形法に於て、成形体
中に連続気孔を形成するためには装置の気孔形成材を必
要とし、連続気孔率が少なくとも40%以上の高気孔率
の炭素多孔体を得るには、気孔形成材を40重量%以上
配合することが必要である。気孔形成材が40重量%未
満の場合には、成形体の連続気孔率が低下し、高気孔率
にして均一な孔径分布を有する炭素多孔体が得られない
In the extrusion molding method, which applies a large amount of pressure during molding, a pore-forming material in the equipment is required to form continuous pores in the molded product, and carbon pores with a high porosity with a continuous porosity of at least 40% are required. In order to obtain a pore-forming material, it is necessary to mix 40% by weight or more of the pore-forming material. If the amount of the pore-forming material is less than 40% by weight, the continuous porosity of the molded article will decrease, making it impossible to obtain a carbon porous body with high porosity and uniform pore size distribution.

また、気孔形成材が80fi量%を越えると混合組成物
に弾性が生じて作業性が低下し、押出成形が困難になり
、かつ、焼成による炭化収率も著しく低下して形u(J
特性の良好なる炭素多孔体が得られない。
Furthermore, if the content of the pore-forming material exceeds 80 fi %, the mixed composition becomes elastic, reducing workability, making extrusion molding difficult, and significantly reducing the carbonization yield by firing, resulting in a shape of u(J
A porous carbon material with good properties cannot be obtained.

上記の液状フェノール樹脂、炭化もしくは炭素化し得る
微粉末並びに気孔形成材を混合して押出成形用混合組成
物を製造するにあたっては、上記以外ニ、フェノール樹
脂の架橋剤であるホルムアルデヒド、ベンズアルデヒド
、ヘキサメチレンテトラミン等を適量加えてもよく、更
にフエ/ −ル樹脂の硬化触媒として、硫酸、塩酸、り
ん酸等の無機酸あるいは、しゅう酸、襟酸、酢酸、プロ
ピオン酸、酪酸、乳酸、マレイン酸、マロン酸、ビニル
酢酸、パラトルエンスルホン酸、ベンゼンスルホン酸等
の有機酸を吏用することができる。
When producing a mixed composition for extrusion molding by mixing the above-mentioned liquid phenolic resin, carbonized or carbonizable fine powder, and pore-forming material, in addition to the above, formaldehyde, benzaldehyde, hexamethylene, which is a crosslinking agent for the phenolic resin, etc. An appropriate amount of tetramine, etc. may be added, and as a curing catalyst for the phenol resin, inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid, oxalic acid, cholic acid, acetic acid, propionic acid, butyric acid, lactic acid, maleic acid, Organic acids such as malonic acid, vinyl acetic acid, para-toluenesulfonic acid, and benzenesulfonic acid can be used.

更に上記原料の池にも、シリカ、アルミナ等の金属酸化
物、炭化珪素、炭化チタン等の金属炭化物、窒化硅素、
窒化朋素等の金属窒化物の微粉末あるいはこれらの金属
化合物の短繊維あるいは、炭素繊維または炭素化し得る
繊維の短繊維を適当量混合してもよい。
Furthermore, the above raw material pool also contains metal oxides such as silica and alumina, metal carbides such as silicon carbide and titanium carbide, silicon nitride,
A suitable amount of fine powder of metal nitride such as boron nitride, short fibers of these metal compounds, carbon fibers or short fibers of carbonizable fibers may be mixed.

更にまた混合組成物の押出成形性を向上させるため、通
常押出成形に用いられる可塑剤、例えばグリセリン、ポ
リエチレングリコール、トリエチレングリコール、ポリ
アルキルグリコール、ジブチルフタレート、ジメチルフ
タレート等を上記原料に加えてもよい。
Furthermore, in order to improve the extrusion moldability of the mixed composition, plasticizers commonly used in extrusion molding, such as glycerin, polyethylene glycol, triethylene glycol, polyalkyl glycol, dibutyl phthalate, dimethyl phthalate, etc., may be added to the above raw materials. good.

これらの原料を混合する方法としては、特に制限はなく
攪拌器やニーダ−等公知の装置や機器を利用することが
出来る。また、押出成形機としてスクリュ一式押出成形
機を使用する場合には、成形機のスクリューを利用して
混合することも出来る。
The method for mixing these raw materials is not particularly limited, and known devices and equipment such as a stirrer and a kneader can be used. Moreover, when using a screw set extrusion molding machine as an extrusion molding machine, mixing can also be performed using the screw of the molding machine.

この様にして得られた混合組成物は、そのまま押出成形
に供することも出来るが、好ましくは混合後数時間以上
放置しておくことにより、混合組成物中の各成分のなじ
みを良好にすることが出来る。混合組成物の押出成形に
は、スクリュ一式押出成形機、プランジャ一式押出成形
機等を用いることが出来る。押出成型条件は特に制限は
ないが、通常、50kg/d以上、好ましくは80 k
g / ct1以上の成形圧で、押出時の線速度2朋/
秒以上、好ましくは4朋/秒以上で押出成形すればよい
。本発明の混合組成物を押出成形することにより、厚さ
0.1〜lQgi程度の寸法精度に優れた大型シート状
成形体を容易に製造出来る。
The mixed composition obtained in this way can be subjected to extrusion molding as it is, but it is preferable to leave it for several hours or more after mixing, so that each component in the mixed composition can be better blended. I can do it. For extrusion molding of the mixed composition, a screw extruder, a plunger extruder, or the like can be used. Extrusion molding conditions are not particularly limited, but usually 50 kg/d or more, preferably 80 kg/d
g/ct1 or higher molding pressure, extrusion linear speed 2/ct
Extrusion molding may be carried out at a speed of at least 4 seconds, preferably at least 4 m/sec. By extrusion molding the mixed composition of the present invention, it is possible to easily produce a large sheet-like molded product having a thickness of about 0.1 to 1Qgi and having excellent dimensional accuracy.

この様にして得られた成形体は引続いて60〜150’
C程度の温度範囲で硬化及び乾燥し、次いで非酸化性雰
囲気下、すなわち、減圧またはアルゴンガス、ヘリウム
ガス等の不活性ガス、水素ガス、窒素ガス等の中で、少
なくともsoo’c1好ましくは1000℃以上に昇温
し、炭化焼成する。
The molded body thus obtained was subsequently
Cured and dried in a temperature range of about Raise the temperature to above ℃ and carbonize and fire.

焼成温度の上限には特に制限はなく必要に応じて300
0℃程度まで昇温しでもよい。
There is no particular restriction on the upper limit of the firing temperature, and it can be set to 300°C as necessary.
The temperature may be raised to about 0°C.

上記成形体の炭化焼成時の熱分解は、200℃近傍より
始まり、300〜600℃の温変域で特に大きく、この
温度範囲で多孔体の重量減りと収縮が顕著に進行する。
Thermal decomposition during carbonization firing of the molded body starts at around 200°C, and is particularly large in the temperature range of 300 to 600°C, and weight loss and shrinkage of the porous body proceed significantly in this temperature range.

本発明の炭化焼成工程に於ては、その昇温速度には特に
制限はなく、通常5℃/hr〜500℃/hr  程度
で焼成することが可能である。
In the carbonization firing process of the present invention, there is no particular restriction on the rate of temperature increase, and firing can normally be carried out at about 5°C/hr to 500°C/hr.

(発明の効果) 以上の方法により得られた炭素多孔体は、扁気孔率にし
て孔径分布が均一な連続気孔を有しかつ寸法精度が高く
均質性に瀝れているという特性を有している。また、該
炭素多孔体は、耐酸化性、耐薬品性にも優れている。
(Effect of the invention) The carbon porous body obtained by the above method has the characteristics of having continuous pores with flat porosity and uniform pore size distribution, and high dimensional accuracy and uniformity. There is. Moreover, the carbon porous body also has excellent oxidation resistance and chemical resistance.

かかる優れた特性を有する炭素多孔体は、燃料電池用電
極材、亜鉛−塩素系電池用電極材、水の電気分解による
水素発生装置用直極材等電極材として最適である。
A carbon porous body having such excellent properties is optimal as an electrode material for fuel cells, an electrode material for zinc-chlorine batteries, a direct electrode material for hydrogen generators using water electrolysis, and the like.

また、断熱材あるいは、各種の耐熱、耐薬品性フィルタ
ー、良好なる通気性を活かした触媒担体等としても好適
である。
It is also suitable as a heat insulating material, various heat-resistant and chemical-resistant filters, and a catalyst carrier that takes advantage of its good air permeability.

該炭素多孔体は上記の用途以外にも、軽単構造材、面発
熱体、高温での熱処理用治具、電波シールド材、パネル
ヒーター、曝気装置等に使用出来る。
In addition to the above-mentioned uses, the carbon porous body can be used for light structural materials, surface heating elements, high-temperature heat treatment jigs, radio wave shielding materials, panel heaters, aeration equipment, and the like.

更に、該炭素多孔体を水蒸気賦活処理、薬品賦活処理等
の処理を行なって活性炭化することにより、網状構造を
有する活性炭あるいは吸着剤として使用出来る。
Furthermore, by subjecting the porous carbon material to activated carbonization through steam activation treatment, chemical activation treatment, etc., it can be used as activated carbon having a network structure or as an adsorbent.

次に実施例により本発明をより具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 炭素または炭素化し得る微粉末として、黒鉛微粉末、平
均粒径20μmの反応性を有する粒状フェノール樹脂(
鐘紡■製品、ベルパールS 930)及び平均粒径40
μmのフラン樹脂微粉末を、気孔形成材として馬鈴薯澱
粉、ミジン粉澱粉、ポリビニルアルコール及びメチルセ
ルロース(信越化学工業■製品、メトローズ60SH−
4000)を、その他の添加物としてパルプ及び繊維長
0.13 fl。
Example 1 As carbon or carbonizable fine powder, graphite fine powder, granular phenol resin having reactivity with an average particle size of 20 μm (
Kanebo product, Bell Pearl S 930) and average particle size 40
μm of furan resin fine powder was used as a pore-forming material, including potato starch, mijin starch, polyvinyl alcohol, and methylcellulose (Shin-Etsu Chemical ■ product, Metrose 60SH-
4000) with other additives including pulp and fiber length 0.13 fl.

繊維径14,5μmの炭素繊維(呉羽化学工業■製品、
クレカチ冒ツブM−1018)を所定量乾式混合した後
、固形分濃度60重量%の水溶性レゾール樹脂(昭和ユ
ニオン合成■製品、BRL−2854)を所定量と適量
の水及びあらかじめ水に溶解したパラトルエンスルホン
酸及び可塑剤のグリセリン、プロピレングリコールを加
えてニーダ−により均一混合した。混合組成物の総置形
分量は3kgであり、配合組成は第1表に示す通りであ
る。
Carbon fiber with a fiber diameter of 14.5 μm (Kureha Chemical Industry ■ product,
After dry-mixing a predetermined amount of Kurekachi Bakutsubu M-1018), a water-soluble resol resin with a solid content concentration of 60% by weight (Showa Union Synthetic Product, BRL-2854) was dissolved in a predetermined amount and an appropriate amount of water, and in advance. Para-toluenesulfonic acid and plasticizers glycerin and propylene glycol were added and mixed uniformly using a kneader. The total weight of the mixed composition was 3 kg, and the composition was as shown in Table 1.

上記の如くして得られた混合組成物を24時間放置した
後、押出成形機で100kg/dの圧力で線速度5 m
 / secで押出成形し、厚さ8.5Mで500X5
00jllの板状成形体を得た。該成形体を60℃の乾
燥器中で48時間乾燥硬化した後、更に10℃/hr 
の昇温速度で120’Cまで昇温し、120℃に3時間
保持して硬化処理を行なった。
After the mixed composition obtained as described above was left to stand for 24 hours, it was molded using an extruder at a pressure of 100 kg/d and at a linear speed of 5 m.
/sec extrusion molding, thickness 8.5M, 500X5
A plate-shaped molded product of 00jll was obtained. After drying and curing the molded body in a dryer at 60°C for 48 hours, it was further dried at 10°C/hr.
The temperature was raised to 120'C at a heating rate of 120°C, and the temperature was maintained at 120°C for 3 hours to perform a curing treatment.

こうした得られた板状硬化体を電気炉に入れ、アルゴン
雰囲気下で600℃まで20°(:j/hr  。
The obtained plate-shaped cured body was placed in an electric furnace and heated to 600°C at 20° (:j/hr) under an argon atmosphere.

600℃以上は50°0/hrで昇温し、1000℃に
8時間保持して板状の炭素多孔体を得た。得られた炭素
多孔体の物性値は第1表に示す通りであった。
Above 600°C, the temperature was raised at a rate of 50°0/hr and held at 1000°C for 8 hours to obtain a plate-shaped carbon porous body. The physical properties of the obtained porous carbon material were as shown in Table 1.

第1表から明らかな様に、液状フェノール樹脂が固形分
量で5〜30重量%、炭素または炭素化し得る微粉末が
5〜30重量%、気孔形成材が40〜80重量%の固形
分配合量の混合組成物を押出成形することにより、連続
気孔率が高(、均一にして微細な連続気孔を有する炭素
多孔体が得実施例2 所定量の黒鉛微粉末、平均粒径15μmの反応性を有す
る粒状フェノール樹脂(鐘紡■製品、ベルパール897
0)、tジン粉澱粉、ポリビニルブチラール、エチルセ
ルロースを乾式混合した後、固形分濃度50重量%に調
整したメタノールを溶媒とするレゾール樹脂(郡栄化学
工業■製晶、AP−106GK)を所定量加え、更に適
量のメタノールと加塑剤のジブチルフタレートを加えて
ニーダ−により十分に混合した。混合組成物の固形分総
量は3kgとし、ジブチルフタレートは100111混
入した。混合組成物の配合組成を第2表に示す。
As is clear from Table 1, the solid content of liquid phenol resin is 5-30% by weight, carbon or carbonizable fine powder is 5-30% by weight, and pore-forming material is 40-80% by weight. By extrusion molding a mixed composition of Granular phenolic resin (Kanebo product, Bell Pearl 897)
0), after dry mixing t-gin powder starch, polyvinyl butyral, and ethyl cellulose, a predetermined amount of resol resin (Gunei Chemical Industry Co., Ltd., AP-106GK) using methanol as a solvent adjusted to a solid concentration of 50% by weight. In addition, an appropriate amount of methanol and dibutyl phthalate as a plasticizer were added and thoroughly mixed using a kneader. The total solid content of the mixed composition was 3 kg, and 100,111 parts of dibutyl phthalate were mixed. The composition of the mixed composition is shown in Table 2.

上記の如くして得られた混合組成物を4時間放置した後
、押出成形機で、80kg/dの圧力で線速度4囮/s
ecで押出成形し、厚さ4nで500×500111の
板状成形体を得た。
After the mixed composition obtained as described above was left to stand for 4 hours, it was molded using an extruder at a pressure of 80 kg/d and at a linear speed of 4 decoys/s.
Extrusion molding was performed using EC to obtain a plate-shaped molded product measuring 500×500111 and having a thickness of 4 nm.

該成形体を乾燥器に入れ40℃より60℃まで5°Q/
hrの昇温速度で昇温した後60℃で16時間乾燥及び
硬化した。更に10°0/hrの昇温速度で120℃ま
で昇温し、120℃に3時間保持して硬化処理を行なっ
た。
The molded body was placed in a dryer and heated from 40°C to 60°C for 5°Q/
After raising the temperature at a temperature increase rate of hr, it was dried and cured at 60° C. for 16 hours. Further, the temperature was raised to 120°C at a heating rate of 10°0/hr, and the temperature was maintained at 120°C for 3 hours to perform a curing treatment.

上記板状硬化体を電気炉に入れ、アルゴン芥囲気下で6
00℃まで20℃/hr、600℃以上は80″C/h
rで昇温し、1500℃に8時間保持して板状の炭素多
孔体を得た。1得られた炭素多孔体の物性値は第2表に
示す通りであった。
The above plate-shaped cured body was placed in an electric furnace and heated under an argon atmosphere for 6 hours.
20℃/hr up to 00℃, 80''C/hr above 600℃
The temperature was raised at 1,500° C. for 8 hours to obtain a plate-shaped carbon porous body. 1 The physical properties of the obtained porous carbon material were as shown in Table 2.

実施例3 平均粒径20μmの反応性を有する粒状フェノール樹脂
(鐘紡(掬製品、ベルパール8930 )69091ミ
ジン粉澱粉1.59kg、ポリビニルアルコールl 2
0 t1繊維長0.13 mm s繊維径14.5μm
の炭素繊維(呉羽化学工業■製品、クレカチ望ツブM−
1018)15(lを乾式混合した後、固形分濃度60
重量%の水溶性レゾール樹脂(昭和ユニオン合成■製品
、BRL−2854)を750gとあらかじめ水に溶解
したマレイン酸100f1可塑剤のグリセリン100F
及び水を適臘加えてニーダ−により均一混合した。混合
組成物の総置形分量は、3kgであり、水/固形分比は
0.65に調整した。
Example 3 Reactive granular phenolic resin with an average particle diameter of 20 μm (Kanebo (Kiki Products, Bell Pearl 8930) 69091 Mijin powder starch 1.59 kg, polyvinyl alcohol l 2
0 t1 Fiber length 0.13 mm s Fiber diameter 14.5 μm
Carbon fiber (Kureha Chemical Industry ■ product, Kurekachi Botsubu M-
1018) After dry mixing 15 (l), the solid content concentration was 60
750g of water-soluble resol resin (Showa Union Gosei ■ product, BRL-2854) and 100F maleic acid 100F1 plasticizer dissolved in water in advance.
An appropriate amount of water was added and mixed uniformly using a kneader. The total weight of the mixed composition was 3 kg, and the water/solid content ratio was adjusted to 0.65.

該混合組成物を24時間放置した後、押出成形機で70
kg/dの圧力で線速度5 ygw / secで押出
成形し、厚さ5絹で500X50(13gの板状成形体
を得た。
After the mixed composition was left to stand for 24 hours, it was
It was extruded at a pressure of kg/d and a linear speed of 5 ygw/sec to obtain a plate-shaped molded product of 500×50 (13 g) with a thickness of 5 silk.

該成形体を60℃の乾燥器中で48時間乾燥硬化した後
、更ニ20℃/ hrの昇温速度で120℃まで昇温し
、120℃に3時間保持して硬化処理を行なった。
After drying and curing the molded body in a dryer at 60°C for 48 hours, the temperature was further increased to 120°C at a rate of 20°C/hr, and the temperature was maintained at 120°C for 3 hours to perform a curing treatment.

こうして得られた板状硬化体を電気炉に入れ、アルゴン
雰囲気下で600℃まで20°O/ hr 。
The plate-shaped cured body thus obtained was placed in an electric furnace and heated to 600°C at 20°O/hr in an argon atmosphere.

600℃以上は100℃/hrで昇温し、1500℃に
8時間保持して板状の炭素多孔体を得た。
The temperature was raised at a rate of 100°C/hr above 600°C, and the temperature was maintained at 1500°C for 8 hours to obtain a plate-shaped carbon porous body.

該炭素多孔体は連続気孔率62%、平均気孔径25μm
1曲げ強度92kg/iの微細にして均一なる連続気孔
を有する炭素多孔体であった。
The carbon porous body has a continuous porosity of 62% and an average pore diameter of 25 μm.
It was a carbon porous body having fine and uniform continuous pores with a bending strength of 92 kg/i.

Claims (9)

【特許請求の範囲】[Claims] (1)固形分量で5〜30重量%の液状フェノール樹脂
、5〜30重量%の炭素もしくは炭素化し得る微粉末並
びに40〜80重量%の気孔形成材を主成分とする原料
を混合した後押出成形して得られる多孔体を非酸化性雰
囲気中で焼成することを特徴とする炭素多孔体の製造法
(1) Extrusion after mixing raw materials whose main components are a liquid phenol resin with a solid content of 5 to 30% by weight, 5 to 30% by weight of carbon or carbonizable fine powder, and 40 to 80% by weight of a pore-forming material. A method for producing a carbon porous body, which comprises firing a porous body obtained by molding in a non-oxidizing atmosphere.
(2)液状フェノール樹脂が水溶性レゾール樹脂である
特許請求の範囲第(1)項記載の炭素多孔体の製造法。
(2) The method for producing a carbon porous body according to claim (1), wherein the liquid phenol resin is a water-soluble resol resin.
(3)炭素化し得る微粉末がフェノール樹脂微粉末また
はフラン樹脂微粉末である特許請求の範囲第(1)項記
載の炭素多孔体の製造法。
(3) The method for producing a porous carbon body according to claim (1), wherein the carbonizable fine powder is a phenol resin fine powder or a furan resin fine powder.
(4)炭素化し得る微粉末が平均粒径1〜150μmの
反応性を有する粒状フェノール樹脂の一次粒子またはそ
の二次凝集物である特許請求の範囲第(1)項記載の炭
素多孔体の製造法。
(4) Production of a porous carbon body according to claim (1), wherein the carbonizable fine powder is primary particles of a reactive granular phenolic resin with an average particle size of 1 to 150 μm or a secondary aggregate thereof. Law.
(5)気孔形成材が澱粉類、セルロース誘導体又は合成
水溶性高分子である特許請求の範囲第(1)項記載の炭
素多孔体の製造法。
(5) The method for producing a carbon porous material according to claim (1), wherein the pore-forming material is starch, a cellulose derivative, or a synthetic water-soluble polymer.
(6)澱粉類が澱粉、澱粉の誘導体又は澱粉の変性体で
ある特許請求の範囲第(5)項記載の炭素多孔体の製造
法。
(6) The method for producing a porous carbon material according to claim (5), wherein the starch is starch, a starch derivative, or a modified starch.
(7)セルロース誘導体がメチルセルロース又はカルボ
キシメチルセルロースである特許請求の範囲第(5)項
記載の炭素多孔体の製造法。
(7) The method for producing a carbon porous material according to claim (5), wherein the cellulose derivative is methylcellulose or carboxymethylcellulose.
(8)合成水溶性高分子がポリビニルアルコールである
特許請求の範囲第(5)項記載の炭素多孔体の製造法。
(8) The method for producing a carbon porous body according to claim (5), wherein the synthetic water-soluble polymer is polyvinyl alcohol.
(9)焼成が非酸化性雰囲気中で800℃以上で行われ
るものである特許請求の範囲第(1)項に記載の炭素多
孔体の製造法。
(9) The method for producing a carbon porous body according to claim (1), wherein the firing is performed at 800° C. or higher in a non-oxidizing atmosphere.
JP60027120A 1985-02-14 1985-02-14 Production of carbon porous body Pending JPS61186209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60027120A JPS61186209A (en) 1985-02-14 1985-02-14 Production of carbon porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60027120A JPS61186209A (en) 1985-02-14 1985-02-14 Production of carbon porous body

Publications (1)

Publication Number Publication Date
JPS61186209A true JPS61186209A (en) 1986-08-19

Family

ID=12212197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60027120A Pending JPS61186209A (en) 1985-02-14 1985-02-14 Production of carbon porous body

Country Status (1)

Country Link
JP (1) JPS61186209A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122095U (en) * 1991-04-24 1992-10-30 マツクス株式会社 Pen up-down mechanism in X-Y plotter
WO2002090291A1 (en) * 2001-05-03 2002-11-14 The Morgan Crucible Company Plc Extrusion of graphitic bodies
JP2006188366A (en) * 2004-12-08 2006-07-20 Lignyte Co Ltd Composite carbonized material, its manufacturing method, composite activated carbon, conductive resin composition, electrode for secondary battery and polarizable electrode for electric double layer capacitor
JP2006307186A (en) * 2005-03-31 2006-11-09 Asahi Organic Chem Ind Co Ltd Thermosetting resin composition for molding material, molding material using it and molded article
JP2007002222A (en) * 2005-05-23 2007-01-11 Asahi Organic Chem Ind Co Ltd Phenol resin composition for carbon material and for refractory material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122095U (en) * 1991-04-24 1992-10-30 マツクス株式会社 Pen up-down mechanism in X-Y plotter
WO2002090291A1 (en) * 2001-05-03 2002-11-14 The Morgan Crucible Company Plc Extrusion of graphitic bodies
GB2375501B (en) * 2001-05-03 2003-07-09 Morgan Crucible Co Extrusion of graphitic bodies
JP2006188366A (en) * 2004-12-08 2006-07-20 Lignyte Co Ltd Composite carbonized material, its manufacturing method, composite activated carbon, conductive resin composition, electrode for secondary battery and polarizable electrode for electric double layer capacitor
JP2006307186A (en) * 2005-03-31 2006-11-09 Asahi Organic Chem Ind Co Ltd Thermosetting resin composition for molding material, molding material using it and molded article
JP2007002222A (en) * 2005-05-23 2007-01-11 Asahi Organic Chem Ind Co Ltd Phenol resin composition for carbon material and for refractory material

Similar Documents

Publication Publication Date Title
US6555031B2 (en) Process for producing silicon carbide bodies
US3814642A (en) Manufacture of carbon shaped articles
CN109160512B (en) Biomass gasification residue formed activated carbon and preparation method thereof
GB2117746A (en) Fuel cell electrode substrates
JPH02106876A (en) Manufacture of porous carbon electrode base for fuel cell
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
JPS61186209A (en) Production of carbon porous body
US20060125131A1 (en) Carbonaceous porous material and method of manufacturing same
US4788018A (en) Method for producing high-density sintered silicon carbide articles
WO2001098207A1 (en) Plasticizable mixture and method of using
JPH11147707A (en) Activated carbon honeycomb structure and its production
JPH05325984A (en) Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell
JPS61186211A (en) Production of carbon porous body
JPS61186210A (en) Production of carbon porous body
JPH11263681A (en) Production of carbonaceous porous body for fuel cell
JPH0235707B2 (en)
JPH05205750A (en) Carbonaceous preformed body and manufacture of electrode base for fuel cell
JPS62138361A (en) Manufacture of high density formed body from carbon material
JPS61197413A (en) Production of porous carbon material
JPH0717449B2 (en) Method for producing impermeable carbon material
JPH09110407A (en) Carbonaceous porous body and its production
JPH0517260A (en) Production of carbonaceous porous body
JPH0757741A (en) Manufacture of carbonaceous preformed body and electrode substrate
JPH0644978A (en) Manufacture of fuel cell electrode plate
JP2536513B2 (en) Manufacturing method of impermeable carbon material