JPS611816A - Particulate purifying apparatus for diesel engine - Google Patents

Particulate purifying apparatus for diesel engine

Info

Publication number
JPS611816A
JPS611816A JP59121947A JP12194784A JPS611816A JP S611816 A JPS611816 A JP S611816A JP 59121947 A JP59121947 A JP 59121947A JP 12194784 A JP12194784 A JP 12194784A JP S611816 A JPS611816 A JP S611816A
Authority
JP
Japan
Prior art keywords
trap
back pressure
regeneration
engine
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59121947A
Other languages
Japanese (ja)
Other versions
JPH0559246B2 (en
Inventor
Takafumi Inagaki
稲垣 隆文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59121947A priority Critical patent/JPS611816A/en
Publication of JPS611816A publication Critical patent/JPS611816A/en
Publication of JPH0559246B2 publication Critical patent/JPH0559246B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To dissolve the erroneous detection for back pressure in transient opetration by suppressing the regeneration for a trap even if the back pressure exceeds a prescribed value when the operation conditions such as the opening degree of an accelerator, etc. are unstable. CONSTITUTION:A particulate trap 36 is installed into the exhaust pipe 32 of an engine 8, and a back-pressure sensor 64 is installed into the exhaust pipe 32 on the upstream side of the trap 36. An operation-condition stability judging means B judges from each output of the operation-condition sensors 61 and 62 if the operation conditions such as the opening degree of an accelerator is stable or not, and if the judgement is ''unstable'', the regeneration process of the trap 36 is not started even if the back-pressure exceeds a prescribed value obtained by a set back-pressure value calculating means A. If a regeneration judging means C judges that the back pressure exceeds a prescribed value when it is judged that the operation condition is stabilized, a regeneration signal is outputted into a burning means 42, and the regeneration of the trap 36 is executed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はディーゼル機関の排気ガス中のパティキュレー
ト浄化装置、特にそのパティキュレートトラップの再生
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a device for purifying particulates in the exhaust gas of a diesel engine, and particularly to a regenerating device for the particulate trap.

従来の技術 ディーゼル機関の排気ガス中のパティキュレートを補集
するため排気管中にトラップを設ける技術が知られてい
る。トラップは比較的短時間でパティキュレートの捕集
容量が飽和する。そこでトラップのりフレッシュを行う
ためトラップ内に補集されたパティキュレートを除去す
る必要がある。
2. Description of the Related Art A technique is known in which a trap is provided in an exhaust pipe to collect particulates in the exhaust gas of a diesel engine. The particulate collection capacity of the trap becomes saturated in a relatively short period of time. Therefore, in order to perform trap glue freshening, it is necessary to remove particulates collected in the trap.

そのため、パティキュレートが堆積した段階で、ヒータ
によりトラップを加熱しその堆積したパティキュレート
を焼却している。従来技術におけるパティキュレートの
堆積量の検知として、トラップ上流の排気管背圧を検知
するものが知られている(特開昭58−48831号)
。即ち、エンジン運転中に単に背圧の検知を行い、トラ
ップがその吸着能力が飽和に至ると背圧が上昇゛する。
Therefore, at the stage where particulates have accumulated, the trap is heated by a heater to incinerate the accumulated particulates. As a conventional technique for detecting the amount of accumulated particulates, it is known to detect the exhaust pipe back pressure upstream of the trap (Japanese Patent Laid-Open No. 58-48831).
. That is, back pressure is simply detected during engine operation, and when the trap reaches saturation in its adsorption capacity, the back pressure increases.

背圧センサはこれを検知しトラップの再生開始信号とし
て使用することができる。即ち、背圧はエンジン回転数
、アクセル開度等の運転条件と対応しており、コンピュ
ータのメモリ内には回転数、及びアクセル開度等の運転
状態に応じた上限の背圧値が入っており、運転中に回転
数、アクセル開度を計測しその回転数に応じた所定背圧
を計算し、この針算値と実測背圧とを比較することによ
りトラップの詰まりを検知している。しかしながら、こ
の従来方式では過渡運転時、例えばアクセルペダルの踏
み込まれる加減速運転時に再生時期の誤検知が生じ易い
。即ち、加減速運転時には回転数及びアクセル開度は変
化しており、遅れ要因によって実測される回転数とアク
セル開度から計算される設定背圧値がトラップの吸着能
力の飽和度との対応に誤差が出てくるからである。
The back pressure sensor can detect this and use it as a signal to start trap regeneration. In other words, back pressure corresponds to operating conditions such as engine speed and accelerator opening, and the computer's memory contains the upper limit back pressure value according to operating conditions such as engine speed and accelerator opening. During operation, the rotational speed and accelerator opening degree are measured, a predetermined backpressure is calculated according to the rotational speed, and clogging of the trap is detected by comparing this calculated value with the actually measured backpressure. However, with this conventional method, erroneous detection of the regeneration timing is likely to occur during transient operation, for example, during acceleration/deceleration operation in which the accelerator pedal is depressed. In other words, the rotational speed and accelerator opening are changing during acceleration/deceleration operation, and the set back pressure value calculated from the actual rotational speed and accelerator opening due to delay factors does not correspond to the saturation level of the trap's adsorption capacity. This is because errors will occur.

発明が解決しようとしている問題点 本発明はかかる従来技術の問題点に鑑みてなされたもの
であり、過渡的な運転時における背圧の誤検知を解消す
ることができるようにすることにある。
Problems to be Solved by the Invention The present invention has been made in view of the problems of the prior art, and it is an object of the present invention to make it possible to eliminate erroneous detection of back pressure during transient operation.

問題点解決のための手段 本発明の必須の構成は第1図に示され、機関8の排気管
32にパティキュレートトラップ36が設けられ、パテ
ィキュレートトラップ36の上流における排気管32に
背圧センサ64が設置される。6L62は機関の運転条
件センサであり、設定背圧演算手段Aは運転条件に応じ
た再生開始時の設定背圧を演算する。運転条件センナか
らの運転条件の信号により運転条件の安定を判別する手
段Bと、運転条件が安定中において背圧が所定値を越え
たか否か判定する再生時判定手段Cと、再生時判定手段
からの再生信号によって駆動されトラップに捕集された
パティキュレートの再生焼却を行う焼却手段42とがあ
る。
Means for Solving Problems The essential configuration of the present invention is shown in FIG. 64 will be installed. 6L62 is an engine operating condition sensor, and the set back pressure calculation means A calculates the set back pressure at the start of regeneration according to the operating conditions. means B for determining whether the operating conditions are stable based on the operating condition signal from the operating condition sensor; regeneration determination means C for determining whether the back pressure exceeds a predetermined value while the operation conditions are stable; and regeneration determination means There is an incineration means 42 that is driven by a regeneration signal from the trap and regenerates and incinerates the particulates collected in the trap.

作用 運転条件安定判定手段Bはアクセル開度等の運転条件が
安定中か否かと判定し、不安定と判定したときはたとえ
背圧が設定背圧値演算手段Aで得られる所定値を越えて
も、トラップ36の再成行程に入らない。運転条件が安
定したと判定されたときに背圧が所定値を越えたと再生
時判定手段Cが判定すると、焼却手段42へ再生信号が
出され、トラップ36の再生が行われる。
The operational operating condition stability determining means B determines whether the operating conditions such as the accelerator opening are stable or not, and when it is determined that the operating conditions are unstable, even if the back pressure exceeds the predetermined value obtained by the set back pressure value calculating means A. However, the trap 36 does not enter the regeneration process. If the regeneration determination means C determines that the back pressure exceeds a predetermined value when the operating conditions are determined to be stable, a regeneration signal is output to the incineration means 42, and the trap 36 is regenerated.

実施例 第2図は本発明を実施例によって示すものである。ディ
ーゼル機関はエンジン本体8、燃料噴射ポンプ9、吸気
マニホルド11.排気マニホルド12を備える。14は
ターボチャージャであり、コンプレッサ15とタービン
16とより成る。コンプレッサ15は人口バイブ17を
介して空気クリーナ18に接続される、出口バイブ19
は吸気マニホルド11に接続される。コンプレッサ15
と一体に回転するタービン16は入口バイブ20を介し
て排気マニホルド12に接続されている。
Embodiment FIG. 2 illustrates the present invention by way of an embodiment. The diesel engine includes an engine body 8, a fuel injection pump 9, an intake manifold 11. An exhaust manifold 12 is provided. A turbocharger 14 includes a compressor 15 and a turbine 16. The compressor 15 is connected to an air cleaner 18 via an artificial vibrator 17, an outlet vibrator 19
is connected to the intake manifold 11. compressor 15
A turbine 16 that rotates integrally with the exhaust manifold 12 is connected to the exhaust manifold 12 via an inlet vibe 20.

コンプレッサの出口バイブ2Iはパティキュレートトラ
ップ26に接続される。
The compressor outlet vibe 2I is connected to a particulate trap 26.

パティキュレートトラップ26は入口バイブ28と、出
口バイブ30と、バイパスパイプ32とを備える。バイ
パスパイプ32にトラップケース34が固定され、その
中に多孔性セラミックよりなるトラップ36が配置され
る。トラップ36の前方にヒータ42が位置している。
The particulate trap 26 includes an inlet vibe 28, an outlet vibe 30, and a bypass pipe 32. A trap case 34 is fixed to the bypass pipe 32, and a trap 36 made of porous ceramic is disposed within the trap case 34. A heater 42 is located in front of the trap 36.

44は遮断弁であって、その弁軸はレバー46を介し負
圧アクチュエータ48のダイヤフラム50に連結される
。遮断弁44はばね52によって単時は実線の全閉状態
にある。ダイヤフラム50は切替弁54によって大気フ
ィルタ56又はクランク軸によって駆動される負圧ポン
プ58に選択的に連結される。
44 is a shutoff valve, the valve shaft of which is connected to a diaphragm 50 of a negative pressure actuator 48 via a lever 46. The shutoff valve 44 is temporarily in a fully closed state as shown by the solid line due to the spring 52. The diaphragm 50 is selectively connected by a switching valve 54 to an atmospheric filter 56 or a negative pressure pump 58 driven by a crankshaft.

60はトラップ26の焼却再生時のヒータ42及び遮断
弁44の制御を行う制御回路であり、各センサからの信
号によって再生制御を行う。即ち、燃料噴射ポンプ9の
ところには、アクセルペダル23に連結されたアクセル
制御レバー24の回転角、即ちアクセルペダル開度検知
センサ61、及び噴射ポンプ9,10のガバナ軸の回転
数、即ちエンジン回転数センサ62が設けられ、アクセ
ル開度センサ61及びエンジン回転数センサ62からの
信号は線7!1.ρ2を介して制御回路60に印加され
る。また、背圧センサ64からの背圧信号は線β3を介
して制御回路6oに印加される。
A control circuit 60 controls the heater 42 and the cutoff valve 44 during incineration and regeneration of the trap 26, and performs regeneration control based on signals from each sensor. That is, at the fuel injection pump 9, the rotation angle of the accelerator control lever 24 connected to the accelerator pedal 23, that is, the accelerator pedal opening detection sensor 61, and the rotation speed of the governor shaft of the injection pumps 9 and 10, that is, the engine A rotation speed sensor 62 is provided, and signals from the accelerator opening sensor 61 and the engine rotation speed sensor 62 are connected to lines 7!1. It is applied to the control circuit 60 via ρ2. Further, a back pressure signal from the back pressure sensor 64 is applied to the control circuit 6o via the line β3.

背圧センサ64は排気ガス室641と、この排気ガス室
641を画成するダイヤフラム642と、このダイヤフ
ラム642上の歪ゲージ643より成り、室641の圧
力に応じたダイヤフラム642に加わるカを歪ゲージ6
43で検知するものである。M御回Il!60は、これ
らのセンサがらの信号によって再生開示時期の判定を後
述の通り行い、遮断弁44及びヒータ42の駆動を行う
The back pressure sensor 64 consists of an exhaust gas chamber 641, a diaphragm 642 defining the exhaust gas chamber 641, and a strain gauge 643 on the diaphragm 642. 6
43. M time Il! 60 determines the regeneration start timing based on the signals from these sensors, as will be described later, and drives the shutoff valve 44 and heater 42.

制御回路はマイクロコンピュータとして構成される。即
ち、制御回路6oはマイクロプロセシングユニット(M
PU)65とメ干す66とを有し、メモリ内に格納され
た制御プログラムに従って焼却制御が行われる。更に、
制御回路6oは入力ボート67と出力ポートロ8を有し
、入力ポードロアには、背圧センサ64及びアクセル開
度センサ61がアナログ−デジタル変換器69.70を
夫々介して結線される。また、エンジン回転数センサ6
2も入力ポードロアに結線される。出方ボート68はフ
リップフロップ回路さしての夫々のランチ70.71を
介し、ヒータ42の駆動トランジスタ76及び切替弁5
4の駆動トランジスタ78に結線される。
The control circuit is configured as a microcomputer. That is, the control circuit 6o is a microprocessing unit (M
PU) 65 and a dryer 66, and incineration control is performed according to a control program stored in the memory. Furthermore,
The control circuit 6o has an input port 67 and an output port 8, and a back pressure sensor 64 and an accelerator opening sensor 61 are connected to the input port bottom via analog-to-digital converters 69 and 70, respectively. In addition, the engine speed sensor 6
2 is also connected to the input port lower. The output boat 68 connects the drive transistor 76 of the heater 42 and the switching valve 5 through respective launches 70 and 71 as flip-flop circuits.
It is connected to the drive transistor 78 of No. 4.

以下、制御プログラムの一例をフローチャートによって
示す。
An example of the control program will be shown below using a flowchart.

第4図はメインルーチンであり、8oでプログラムが開
始すると、82ではイニシャライズが行われ、これによ
ってMPU65の各レジスタ、メモリ6Gのクリヤ、更
にはラッチ70.71のりセントが行われる。ラッチ7
0.71のリセットによりトランジスタ76.78はカ
ントオフとなる。そのたφ、ヒータ42は、通電されず
、電磁切替弁54は通電されない。切替弁の非通電によ
って同切替弁54は第2図で白のポート位置をとりアク
チュエータ48のダイヤフラム5oに大気圧が作用し、
遮断弁44は実線の全閉となり、排気ガスはその全量が
トラップに行くことができ、パティキュレートの吸着浄
化が行われる。
FIG. 4 shows the main routine. When the program starts at 8o, initialization is performed at 82, which clears the registers of the MPU 65 and the memory 6G, and also resets the latches 70 and 71. latch 7
A reset of 0.71 causes transistors 76 and 78 to cant off. In addition, the heater 42 is not energized, and the electromagnetic switching valve 54 is not energized. By de-energizing the switching valve, the switching valve 54 assumes the white port position in FIG. 2, and atmospheric pressure acts on the diaphragm 5o of the actuator 48.
The shutoff valve 44 is fully closed as shown by the solid line, and the entire amount of exhaust gas can go to the trap, where particulates are adsorbed and purified.

次にメインルーチンは84以下のアクセル開度の最大、
最少の測定ルーチンに入る。即ち、84でMPU65は
アクセル開度センサ61がらのA/D変換された開度信
号θを内部レジスタに入力する。
Next, the main routine is the maximum accelerator opening of 84 or less,
Enter the minimal measurement routine. That is, in step 84, the MPU 65 inputs the A/D converted opening signal θ from the accelerator opening sensor 61 into the internal register.

次の86のステップでは検知したθがθMAXより大き
いか否か判定される。Yesであれば87に行きそのθ
をθMAXと最大値の更新を行い、Noであれば90で
θMAXはそのままとする。このようにして計算された
最大値θMAXはメモリ66に一時格納される。最少値
θWINの計算は92,94.96で同様に行われ計算
されたθMINはメモリ66に格納される。このように
メインルーチンではアクセル開度におけるθMAX 、
θMINの値を絶えず測定する処理が行われる。
In the next step 86, it is determined whether the detected θ is larger than θMAX. If Yes, go to 87 and its θ
is updated to θMAX and the maximum value, and if No, θMAX is left unchanged at 90. The maximum value θMAX calculated in this way is temporarily stored in the memory 66. The minimum value θWIN is calculated in the same manner as in 92 and 94.96, and the calculated θMIN is stored in the memory 66. In this way, in the main routine, θMAX at the accelerator opening,
A process of constantly measuring the value of θMIN is performed.

次の97のステップではMPU65は背圧センサ64か
らの背圧の値をレジスタに入力し、これをメモリのPR
格納エリヤに格納する。PBは第8図(ハ)の様に変化
する 98のステップではMPU65はエンジン回転数センサ
62からの回転数信号の入力を行い、これを回転数Nを
格納するメモリエリヤに転送する。
In the next step 97, the MPU 65 inputs the back pressure value from the back pressure sensor 64 into the register, and stores it in the memory PR.
Store in storage area. PB changes as shown in FIG. 8(c). In step 98, the MPU 65 inputs the rotational speed signal from the engine rotational speed sensor 62 and transfers it to the memory area where the rotational speed N is stored.

第5図は1000m秒毎に実行に入るルーチンであり、
140よりこの処理が開始される。145ではメそりに
格納されているアクセル開度の最大値θMAXと最小値
θMINとの差、即ちθMAX−θMINの値が第8図
(ロ)の様に計算される。次の150ではθWAXとθ
MINとの差が所定値より小さいが否か判定される。N
oの判定は、アクセル開度が安定していないと考えられ
、このときは再生を行わない。そしてプログラムは15
5に進みθMAX 、θMINの初期化が行われ、次の
1秒間の最大値、最小値の計算の準備が行われる。
Figure 5 shows a routine that starts running every 1000ms,
This process starts at 140. At step 145, the difference between the maximum value θMAX and the minimum value θMIN of the accelerator opening stored in the mesori, that is, the value θMAX-θMIN, is calculated as shown in FIG. 8(b). In the next 150, θWAX and θ
It is determined whether the difference from MIN is smaller than a predetermined value. N
A determination of o indicates that the accelerator opening is not stable, and no regeneration is performed in this case. And the program is 15
The process proceeds to step 5, where θMAX and θMIN are initialized, and preparations are made to calculate the maximum and minimum values for the next one second.

150でYes、即ち、アクセル開度が安定していると
きは160に進み、再生開始背圧の設定値の演算を行う
。この処理は詳細には第6図のように行われる。即ち、
aoo ”c回転数θの人力、302でアクセル開度θ
の入力を行う。304ではこの実測回転数及びアクセル
開度に応じたPM^Pの計算を第9図のようなマツプに
よ、て行う。このようなマツプはメモリに格納されてい
る。即ち、アクセル開度をθ1 、θ2・・・のように
固定したとき、回転数Nに対する、再生開始時の設定背
圧値は第9図の様になる。そこで、各回転数及び、アク
セル開度などの組合せに対し設定背圧値゛のマツプがあ
り、このマツプに基づいてP MAPの演算を行う。
If 150 is Yes, that is, the accelerator opening is stable, the process proceeds to 160, where a set value for the regeneration start back pressure is calculated. This process is performed in detail as shown in FIG. That is,
aoo ”c Human power at rotational speed θ, accelerator opening θ at 302
Enter the following information. At step 304, PM^P is calculated according to the measured rotational speed and accelerator opening using a map as shown in FIG. Such maps are stored in memory. That is, when the accelerator opening degree is fixed as θ1, θ2, . . . , the set back pressure value at the start of regeneration with respect to the rotational speed N is as shown in FIG. Therefore, there is a map of set back pressure values for each combination of rotational speed and accelerator opening, and P MAP is calculated based on this map.

再び第5図に戻り、170のステップでは実測背圧PB
が再生開始時の設定背圧PMAPより大きいか否か判定
する。第8図(ニ)はこれを示す。
Returning to FIG. 5 again, in step 170, the measured back pressure PB
It is determined whether or not is greater than the set back pressure PMAP at the start of regeneration. FIG. 8(d) shows this.

Noのときは180へ分岐し、再生時期フラグFをリセ
ットする。このフラグFは2回続けて再生指令が出たか
否かを検知するものである。
If No, the process branches to 180 and the reproduction timing flag F is reset. This flag F is used to detect whether or not a reproduction command has been issued twice in a row.

実測背圧PBが設定背圧PMAPを越えると、170の
判定はYesとなり、190でフラグFが1インクリメ
ントされる。次の200ではフラグFが2か否かの判定
がされる。NOのときはルーチンを抜ける。2回続けて
pB>’PMAPであるとF=2であり(第8図(ホ)
)、200のステップの判定はYesとなる。そのため
210に進み、MPII65はタイマをトラップ36の
再生時のヒータ作動時間Tにセットする。次に220で
はMPU65は出力ポートロ8よりラッチ71にセット
信号を出し、同ラッチ71の出力をハイレベルとする。
When the measured back pressure PB exceeds the set back pressure PMAP, the determination at 170 becomes Yes, and the flag F is incremented by 1 at 190. In the next step 200, it is determined whether the flag F is 2 or not. If NO, exit the routine. If pB>'PMAP twice in a row, F=2 (Figure 8 (E))
), the determination in step 200 is Yes. Therefore, the process proceeds to 210, where the MPII 65 sets a timer to the heater operating time T when the trap 36 is regenerated. Next, at 220, the MPU 65 outputs a set signal from the output port 8 to the latch 71, and sets the output of the latch 71 to a high level.

そのためトランジスタ72がオンされ、切替弁54が励
磁されるため黒ポート位置をとり、ダイヤフラム50に
負圧ポンプ58よりの負圧が作用し、遮断弁44は破線
のように開放する。その結果排気ガスの一部分がバイパ
ス32に向かわず直接出口バイブ30に向かう。次の2
20のステップでは出力ポートロ8よリラッチ70にセ
ット信号が出されトランジスタ76がオンされヒータ4
2が作動される。そのため、トラップ36は、バルブ4
4の開によって通過ガス量が減少したことと相まって高
温となり、トラップ素子36に捕集されたパティキュレ
ートの着火が行われる。第5図の次のステップ240で
はフラグFのリセット、155ではθMAX 、θMI
Nのリセットが行われる。
Therefore, the transistor 72 is turned on, the switching valve 54 is excited and takes the black port position, negative pressure from the negative pressure pump 58 acts on the diaphragm 50, and the cutoff valve 44 opens as shown by the broken line. As a result, a portion of the exhaust gas does not go to the bypass 32 but goes directly to the outlet vibe 30. Next 2
In step 20, a set signal is output from the output port 8 to the relatch 70, the transistor 76 is turned on, and the heater 4 is turned on.
2 is activated. Therefore, the trap 36
4 is opened, the amount of gas passing through the trap element 36 is reduced, and this results in a high temperature, and the particulates collected in the trap element 36 are ignited. At the next step 240 in FIG. 5, the flag F is reset, and at 155, θMAX, θMI
N is reset.

タイマがトラップ内でのパティキュレートの焼却が完了
する適当な時間Tに達すると、第7図の時間割り込みル
ーチンが開始し、400でタイマのリセット、410で
はラッチ71がリセットされトランジスタ78はオフし
、遮断弁14が閉鎖される。420ではラッチ70がリ
セットされ、トランジスタ76がオフとなりヒータ42
は通電停止される(第8図(へ))。
When the timer reaches an appropriate time T to complete incineration of the particulates in the trap, the time interrupt routine of FIG. , the isolation valve 14 is closed. At 420, latch 70 is reset, transistor 76 is turned off, and heater 42 is turned off.
is de-energized (FIG. 8).

発明の効果 アクセル開度等の運転条件の安定を検知して背圧が所定
値を越えたかどうかを見ることによつ′て、再生開始時
の誤検知を解消すること力(できる。そのため焼却行程
の適正な制御を行うこと力(できる。
Effects of the Invention By detecting stability of operating conditions such as accelerator opening and checking whether back pressure has exceeded a predetermined value, it is possible to eliminate false detections at the start of regeneration. The ability to properly control the process.

これに対し、もし誤検知があるとすると〕々ティキュレ
ートの蓄積の少ないときヒータを*1mすることになる
。パティキュレート蓄積の少なし)ときヒータ制御する
とヒータに近い部分のノくテイキュレ′ −トのみ燃焼
し、後方まで延焼せず着火しなpz。
On the other hand, if there is an erroneous detection, the heater will be turned off by *1 m when there is little accumulation of ticulates. If the heater is controlled when there is insufficient particulate accumulation, only the particulates near the heater will burn, and the fire will not spread to the rear and will not ignite.

このようなことが何回か重なると後方番こ多量のノぐテ
ィキュレートが蓄積してもヒータの近くのツマティキュ
レートが微少のため後方まで着火させることができずフ
ィルタのつまり圧損大、燃費悪イヒの問題に至る。また
、いずれ着火できる状態番こなったとしても後方のパテ
ィキュレートが多量のため発熱量が大き過ぎ計う・ノブ
(触媒担持セラミックスフィルタ)の熱的負荷が大とな
り、耐久性を損なう恐れがあった。本発明はこのような
おそれを解消するものである。
If this happens several times, even if a large amount of fuel accumulates at the rear, the fuel near the heater is so small that it will not be possible to ignite it all the way to the rear, resulting in blockage of the filter, high pressure loss, and reduced fuel consumption. Which brings us to the problem of evil. In addition, even if the state is reached for ignition, the calorific value is too large due to the large amount of particulates at the rear.The thermal load on the knob (catalyst-supported ceramic filter) will be large, which may impair its durability. Ta. The present invention eliminates such concerns.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の構成を示す概略図、第2図は、本発
明の実施例の全体構成図、第3図は、制御回路のブロッ
ク図、 第4図から第7図は、本発明のソフトウェアを示すフロ
ーチャート図、 ・第8図は、本発明の作動タイミング図、第9図は、回
転数、アクセル開度に対する再生開示背圧設定値を示す
図。 8・・・エンジン本体、 36・・・トラップ、42・
・化−タ、   44・・・遮断弁、60・・・制御回
路、 6゛1・・・アクセル開度センサ、 62・・・回転数センサ、64・・・背圧センサ。 第3図 6乙 第4図 図 第6図 第7図
FIG. 1 is a schematic diagram showing the configuration of the present invention, FIG. 2 is an overall configuration diagram of an embodiment of the present invention, FIG. 3 is a block diagram of a control circuit, and FIGS. A flowchart diagram showing the software of the invention. - Fig. 8 is an operation timing diagram of the invention. Fig. 9 is a diagram showing regeneration start back pressure setting values with respect to rotation speed and accelerator opening. 8... Engine body, 36... Trap, 42...
Converter, 44... Shutoff valve, 60... Control circuit, 6゛1... Accelerator opening sensor, 62... Rotation speed sensor, 64... Back pressure sensor. Figure 3 6 Figure 4 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 次の各要素より成るディーゼル機関のパティキュレート
浄化装置、 (イ)機関の排気管に設けられたパティキュレートトラ
ップ、 (ロ)パティキュレートトラップの上流における排気管
に設置される背圧センサ、 (ハ)機関の運転条件センサ、 (ニ)運転条件に応じて再生時の設定背圧値を演算する
手段、 (ホ)運転条件センサからの運転条件の信号により運転
条件の安定を判別する手段、 (へ)運転条件が安定中において背圧が設定背圧値を越
えたか否か判定する再生時判定手段、(ト)再生時判定
手段からの再生信号によって駆動されトラップに捕集さ
れたパティキュレートの再生焼却を行う焼却手段。
[Claims] A particulate purification device for a diesel engine comprising the following elements: (a) a particulate trap installed in the exhaust pipe of the engine; (b) installed in the exhaust pipe upstream of the particulate trap. Back pressure sensor, (c) Engine operating condition sensor, (d) Means for calculating set back pressure value during regeneration according to operating conditions, (e) Stabilizing operating conditions by operating condition signals from operating condition sensor. (f) Regeneration time determination means for determining whether the back pressure exceeds a set back pressure value while operating conditions are stable; An incineration method that regenerates and incinerates collected particulates.
JP59121947A 1984-06-15 1984-06-15 Particulate purifying apparatus for diesel engine Granted JPS611816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59121947A JPS611816A (en) 1984-06-15 1984-06-15 Particulate purifying apparatus for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59121947A JPS611816A (en) 1984-06-15 1984-06-15 Particulate purifying apparatus for diesel engine

Publications (2)

Publication Number Publication Date
JPS611816A true JPS611816A (en) 1986-01-07
JPH0559246B2 JPH0559246B2 (en) 1993-08-30

Family

ID=14823854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59121947A Granted JPS611816A (en) 1984-06-15 1984-06-15 Particulate purifying apparatus for diesel engine

Country Status (1)

Country Link
JP (1) JPS611816A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2860832A1 (en) * 2003-10-09 2005-04-15 Renault Sa Controlling engine with particle filter for engine exhaust gases, comprises use of criterion indicating stable engine operation to define when to regenerate filter
EP2495420A3 (en) * 2011-01-13 2012-09-12 Hitachi Construction Machinery Co., Ltd. Exhaust gas purification system for working machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047936A (en) * 1983-08-26 1985-03-15 Mitsubishi Motors Corp Measurement of particulate trap level for diesel engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047936A (en) * 1983-08-26 1985-03-15 Mitsubishi Motors Corp Measurement of particulate trap level for diesel engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2860832A1 (en) * 2003-10-09 2005-04-15 Renault Sa Controlling engine with particle filter for engine exhaust gases, comprises use of criterion indicating stable engine operation to define when to regenerate filter
EP2495420A3 (en) * 2011-01-13 2012-09-12 Hitachi Construction Machinery Co., Ltd. Exhaust gas purification system for working machine

Also Published As

Publication number Publication date
JPH0559246B2 (en) 1993-08-30

Similar Documents

Publication Publication Date Title
US20040172935A1 (en) Regeneration of particulate filter
KR920703975A (en) Control system for regeneration system of diesel particle trap
US20040173090A1 (en) Engine exhaust gas purification device
JP2005048742A (en) Fuel injection control device for diesel engine
JP3010927B2 (en) Adsorbent self-diagnosis device for internal combustion engine
JPS611816A (en) Particulate purifying apparatus for diesel engine
JPS6193219A (en) Diesel particulate oxidizer system
JPS62162762A (en) Exhaust gas purifier for diesel engine
JPS632004B2 (en)
JPS62291414A (en) Exhaust emission control device for diesel engine
JP2842048B2 (en) Fuel cut control device for internal combustion engine
JP3370705B2 (en) Engine secondary air pump controller
JPH0232807Y2 (en)
JP7447823B2 (en) engine control device
JP2595237B2 (en) Failure diagnosis device for exhaust gas recirculation device
KR100552722B1 (en) a device and the method for a reduction NOx and PM of diesel engine
JP2543607B2 (en) Engine exhaust purification device
JP3010855B2 (en) Self-diagnosis device in secondary air supply device of internal combustion engine
JPH0551045B2 (en)
JP2550560B2 (en) Catalyst overheat prevention device for internal combustion engine
JP2004204809A (en) Apparatus for diagnosing catalyst deterioration of engine
JPH0623536B2 (en) Exhaust gas purification device for diesel engine
JP2004108248A (en) Secondary air supply system
JPH0134648Y2 (en)
JP2020153250A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term