JPS6117525A - Catalytic device and catalytic activity - Google Patents

Catalytic device and catalytic activity

Info

Publication number
JPS6117525A
JPS6117525A JP60132874A JP13287485A JPS6117525A JP S6117525 A JPS6117525 A JP S6117525A JP 60132874 A JP60132874 A JP 60132874A JP 13287485 A JP13287485 A JP 13287485A JP S6117525 A JPS6117525 A JP S6117525A
Authority
JP
Japan
Prior art keywords
catalyst
catalytic
reaction
bodies
catalytically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60132874A
Other languages
Japanese (ja)
Inventor
グラハム バター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UK Atomic Energy Authority
Original Assignee
UK Atomic Energy Authority
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UK Atomic Energy Authority filed Critical UK Atomic Energy Authority
Publication of JPS6117525A publication Critical patent/JPS6117525A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Industrial Gases (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は反応に対する触媒の存在下にCOまたはCO□
と水素とを反応させることによりメタンを生成させる方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention discloses that CO or CO□ in the presence of a catalyst for the reaction
The present invention relates to a method for producing methane by reacting hydrogen with hydrogen.

COまたはCogと水素との反応によるメタンの生成(
一般に「メタン化」と称される)はよ(知られた反応で
ある。例えばセグリン(L。
Production of methane by reaction of CO or Cog with hydrogen (
It is a well-known reaction, commonly referred to as "methanation", such as segrine (L).

Seglin)による[合成ガスのメタン化(Meth
anation of 5ynthesis Ga5)
 J 、AC3146、ワシントンDC(1975)参
照。反応に対する公知触媒は触媒目的に表面積を高める
ため内部空間のランダムな綱状構造を、例えば溝および
(または)細孔の形態で有する触媒ベレットの形態にお
りるNiとAl2O,の組合せである。この種のペレ・
ントは例えばマグロ−・ヒル(Mc Graw−11i
+1)発行の[ケミカル・アンド・キャタリチノク・主
ンジニアリング(Chemical and Cata
lyticEngineering) (1976) 
’j中のカルベリ (J、J。
[Synthesis gas methanation (Meth
anation of 5 synthesis Ga5)
See J. AC3146, Washington, DC (1975). A known catalyst for the reaction is a combination of Ni and Al2O in the form of a catalytic pellet having a random linear structure of internal spaces, for example in the form of grooves and/or pores, to increase the surface area for catalytic purposes. This kind of Pele
For example, McGraw-Hill (McGraw-11i)
+1) Published by [Chemical and Catalychinoku Main Engineering]
(1976)
Kalveli in 'j (J, J.

Carberry)による論文中に記載される。Carberry).

メタン化における触媒ベレットの使用に関する問題は、
それらが流れに過度の抵抗を与え、エネルギーを消費す
る圧力低下を生ずることである。
The problem with the use of catalyst pellets in methanation is
They provide excessive resistance to flow and create energy-consuming pressure drops.

また規制した内部溝を有し、圧力低下問題を克服した支
持体被覆触媒は触媒活性物質の過度の被毒および(また
は)エージングをうけ、また高価な多量の不活性支持体
を使用する。
Also, support-coated catalysts that have regulated internal channels and overcome pressure drop problems are subject to excessive poisoning and/or aging of the catalytically active material, and use large amounts of expensive inert supports.

米国特許第4,337,028号には触媒組成物がセラ
ミック組成物のモノリス構造全体に均一に散在した触媒
活性物質を含む触媒系、およびそのような系のガスター
ビン焼成器のような燃焼法における適用が記載される。
U.S. Pat. No. 4,337,028 discloses a catalyst system in which the catalyst composition includes a catalytically active material uniformly dispersed throughout a monolithic structure of the ceramic composition, and a method of combustion of such a system, such as in a gas turbine sinter. Applications are described.

しかし燃焼法は多量かつ優勢な割合の空気の存在下に起
り、所望生成物を生成させる化学合成に関連がない。
However, combustion methods occur in the presence of large amounts and predominant proportions of air and are not associated with chemical synthesis to produce the desired products.

本発明は上記問題の1つまたはより多くの軽減を意図し
、反応に対する触媒の存在のもとでCOおよび(または
)CO□と水素との反応によりメタンを生成させる方法
を提供するもので、触媒は1つまたはより多くの不連続
触媒ボディの形態であり、ボディまたは各ボディは反応
物質および反応生成物に対し規制した予め定めた次元の
多数の内部溝および配列を有し、一様かつ均一に分散さ
れた反応に対する触媒活性物質を含む。
The present invention is intended to alleviate one or more of the above problems and provides a method for producing methane by the reaction of CO and/or CO□ with hydrogen in the presence of a catalyst for the reaction. The catalyst is in the form of one or more discontinuous catalyst bodies, the or each body having a large number of internal grooves and arrangements of predetermined dimensions regulating the reactants and reaction products, uniform and Contains homogeneously dispersed catalytically active substances for the reaction.

従って本発明は被毒およ°び(または)エージング問題
を減少させるために十分な触媒活性物質の保存を有し、
また反応物質1(類)および(または)生成物(類)の
流れに過度の抵抗を与えないような形状である1つまた
はより多くの触媒ボディを提供する。
The present invention therefore has sufficient storage of catalytically active material to reduce poisoning and/or aging problems;
It also provides one or more catalyst bodies that are shaped so as not to provide undue resistance to the flow of reactant 1(s) and/or product(s).

好ましくは触媒活性物質は触媒または各触媒ボディの5
0重量%以上を構成し、例えば重量割合で75%以上ま
たは90%以上、あるいは実質」二触媒または各触媒ボ
ディのすべてを構成することができる。触媒活性物質以
外の物質は触媒ボディまたは各触媒ボディ中に存在すれ
ば、例えば1種またはより多(のキン青石、アルミナ、
ジルコニア、粘土およびセラミックバインダーであるこ
とができる。また触媒ボディまたは触媒ボディ頻中−へ
多孔度を導入するため、あるいはその機械的強度を高め
るために添加剤を混合することができる。
Preferably the catalytically active material is the catalyst or each catalyst body.
It may constitute 0% or more by weight, for example 75% or more or 90% or more by weight, or even substantially all of the catalyst or each catalyst body. Substances other than catalytically active substances may be present in the or each catalyst body, for example one or more of
Can be zirconia, clay and ceramic binders. Additives can also be mixed in to introduce porosity into the catalyst body or catalyst body core or to increase its mechanical strength.

触媒活性物質は好ましくはアルミン酸ニッケルに関連し
た酸化ニッケル(n)であり、酸化ニッケル(I[)は
完全ムこまたば部分的に還元することができる。触媒活
性物質の他の例は通常A1..03と組合せたRu、C
oおよびFeであるが、しかしこれらは硫黄により容易
に被毒され、また使用中メタン以外の炭化水素を生じそ
の結果炭化問題を起す不利益を存する。さらに他の例は
硫化物の形態のMOおよび(または)Wであり、それら
は硫黄被毒に耐性である。
The catalytically active substance is preferably nickel oxide (n) associated with nickel aluminate, the nickel oxide (I[) being capable of being fully or partially reduced. Other examples of catalytically active materials are typically A1. .. Ru, C combined with 03
o and Fe, but they have the disadvantage of being easily poisoned by sulfur and of producing hydrocarbons other than methane during use, resulting in carbonization problems. Still other examples are MO and/or W in sulfide form, which are resistant to sulfur poisoning.

ボディまたはボディ類は、例えば延びて内部溝を構成す
る多数の実質的に平行な溝を存するハニカムの形態であ
ることができる。各ハニカムは、例えば直円柱の形態で
あることができ、その曲面は連続的であり、反応物質(
類)および生成物(類)に対して実質的に不透過性であ
り、溝は円柱の主軸に平行である。ハニカムまたは各ハ
ニカムは便宜には溝を規定するように相互に結合した交
互する平坦および波状シートを含むことができる。
The body or bodies may, for example, be in the form of a honeycomb having a number of substantially parallel grooves extending therethrough and defining internal grooves. Each honeycomb can, for example, be in the form of a right cylinder, the curved surface of which is continuous, and the reactants (
) and product(s), and the grooves are parallel to the major axis of the cylinder. The or each honeycomb may conveniently include alternating flat and corrugated sheets interconnected to define grooves.

ボディおよびボディ類ば粉末触媒活性物質からセラミッ
クボディの製造技術に知られた方法により製造すること
ができる。例えば粉末物質を結合剤(類)と混合して熱
可塑性および凝結性を与え(可塑剤もまた含めることが
できる)、混合物をボディを規定するシートに造形し、
シートを所望のボディ形態に結合させて焼成し最終ボデ
ィを与えることができる。あるいはボディまたはボディ
類を適当なダイを用い適当な混合物の押出により、例え
ば真空押出により製造することができる。
The body and bodies can be manufactured from powdered catalytically active material by methods known in the art of manufacturing ceramic bodies. For example, mixing the powder material with a binder(s) to give it thermoplastic and setting properties (a plasticizer may also be included), shaping the mixture into a sheet defining a body,
The sheets can be bonded into the desired body configuration and fired to provide the final body. Alternatively, the body or bodies may be produced by extrusion of a suitable mixture using a suitable die, for example by vacuum extrusion.

ボディまたはボディ類は特定の要求に従う形状および大
きさの範囲内にあることができ、またそれらの容器中の
配列の範囲にあることができる。
The bodies or bodies can range in shape and size according to particular requirements, and can range in arrangement within the container.

例えば多数のボディを容器中にランダムまたは規則的に
配列することができ、後者の場合にボディは容器中に密
に適合する形状に切って「空所」を最小にすることがで
きる。ボディ類は個々の容器中の外側次元で同一でもま
たは異なってもよい。
For example, a large number of bodies can be arranged randomly or regularly in a container, and in the latter case the bodies can be cut to a shape that fits closely into the container to minimize "void space". The bodies may be the same or different in their outer dimensions within the individual containers.

あるいは単一ボディまたは小数のボディを容器中に与え
ることができる。
Alternatively, a single body or a small number of bodies can be provided in a container.

次に本発明を実施するいくつかの方法が次のように単に
例示として記載される。本発明の実施例でない比較試験
A、BおよびCもまた以下に含まれる。
Several ways of carrying out the invention will now be described by way of example only. Comparative Tests A, B and C, which are not examples of the invention, are also included below.

実施例1 (al粉末の調製 CN i、  (NO3)2:l  (HzO)a (
458,18g il、58モル)を蒸留水(400c
n+)に溶解した。
Example 1 (Preparation of al powderCN i, (NO3)2:l (HzO)a (
458,18g il, 58mol) in distilled water (400c
n+).

〔Aβ (No:1)3)  (H2O)9 (675
,00g ;1.80モル)を蒸留水(900,ff1
)に溶解し、次いで水性硝酸ニッケル中へかきまぜなが
ら混合した。混合物を0.25時間かきまぜた。次いで
生じた混合物を蒸留水(1,、100、ff1)中の尿
素(254,47g;4.27モル)の溶液に急速にか
きまぜながら滴加した。添加が終った後、反応混合物を
栓をしないフラスコ中で約95℃で74時間塾成した。
[Aβ (No:1)3) (H2O)9 (675
,00g; 1.80 mol) in distilled water (900,ff1
) and then mixed into aqueous nickel nitrate with stirring. The mixture was stirred for 0.25 hours. The resulting mixture was then added dropwise to a solution of urea (254,47 g; 4.27 mol) in distilled water (1,100, ff1) with rapid stirring. After the addition was complete, the reaction mixture was incubated at about 95° C. for 74 hours in an open flask.

フラスコをからにし7、混合物を急速にかきまぜて0.
5時間均質化した。
Drain the flask 7 and stir the mixture rapidly until 0.
Homogenized for 5 hours.

分散系のpl(ば7.80であった。その物質をさらに
開放ビーカー(5p)中で60℃で17.5時間熟成し
た。残留物を急速にかきまぜながら1.5時間にわたっ
て蒸留水(約200cJ)と混合し安定なチキソトロピ
ー性分散系(約400c/)を得た。
The pl of the dispersion was 7.80. The material was further aged in an open beaker (5p) at 60° C. for 17.5 hours. 200 cJ) to obtain a stable thixotropic dispersion (approximately 400 cJ).

NiおよびAllの含水酸化物を含む分散系を約−80
℃で乾燥し、250μmにふるい、次いで450℃で1
時間か焼すると酸化ニッケル(IF)およびアルミン酸
ニッケルを含む粉末が得られた。
A dispersion containing hydrated oxides of Ni and All at approximately -80
Dry at °C, sieve to 250 μm, then sieve at 450 °C for 1
After time calcination, a powder containing nickel oxide (IF) and nickel aluminate was obtained.

(b)触媒ボディの製造 生じた粉末(40g)を次にポリビニルブチラール(P
VB)  (15g)とトライブレンドした。
(b) Preparation of catalyst body The resulting powder (40 g) was then treated with polyvinyl butyral (P
VB) (15 g).

次いでメチルエチルケトン(MEK)(15g)および
フタル酸ジビニル(DBP)(7,5g)の混合物をホ
バート(llobart)ミキサーを用いてトライブレ
ンド中へ混合した。生じた「ペースト」を二本ロールミ
ル(ローラーは約90℃に水蒸気加熱した)中で圧延し
約0.5〜0.8mm (0,,02〜0.03インチ
)厚さの均質な「ゴム引き」シートを得た。次いでシー
トを次のように:ローラー1〜3、約40℃に油加熱、
ローラー4、周囲温度に加熱したローラーで4本ロール
カレンダーに通した。得られたシートは約0.15mm
 (0,006インチ)の厚さを有した。
A mixture of methyl ethyl ketone (MEK) (15 g) and divinyl phthalate (DBP) (7.5 g) was then mixed into the triblend using a llobart mixer. The resulting "paste" was rolled in a two-roll mill (rollers heated with steam to about 90°C) to form a homogeneous "rubber" approximately 0.5-0.8 mm (0.02-0.03 inches) thick. I got a "pull" sheet. The sheet is then heated as follows: rollers 1-3, oil heated to about 40°C;
It was passed through a four roll calender with Roller 4, a roller heated to ambient temperature. The obtained sheet is approximately 0.15mm
(0,006 inches).

シートの2試料を次いでコルゲータに供給し、平坦シー
トに結合したシヌソイド波形(1mm波)シートを生成
させた。ついでコルゲート複合物を密にハンドロールし
てコルゲートモノリス(1cm直径XZcm長)を生成
させた。「生」片を空気中で室温から400℃まで5℃
m1n−’で加熱することにより脱接合剤した。冷却し
た片を次にi、 i 50℃で、約4〜5時間にわたっ
て徐々にこあ温度にあげた後1時間か焼した。か焼温度
は粉巣のニッケル分が後のメタン化反応の触媒作用に使
用中安定であること、例えば反応物質の1つがCOであ
る場合のニッケルカルボニルとしての損失を防ぐこと、
を保証することができる。片を炉中で冷却し、冷却した
ときダイヤモンドソーで適当な長さに切った。
Two samples of the sheet were then fed into a corrugator to produce a sinusoidal corrugated (1 mm wave) sheet bonded to a flat sheet. The corrugated composite was then tightly hand rolled to produce a corrugated monolith (1 cm diameter x Z cm length). ``Raw'' pieces in air from room temperature to 400℃ at 5℃
The bonding agent was removed by heating at m1n-'. The cooled pieces were then calcined at 50° C. for 1 hour after being gradually raised to the furnace temperature over a period of about 4-5 hours. The calcination temperature is such that the nickel content of the powder nest is stable during use in catalyzing the subsequent methanation reaction, e.g. to prevent loss as nickel carbonyl when one of the reactants is CO;
can be guaranteed. The pieces were cooled in the oven and cut to length with a diamond saw when cool.

(C)触媒デバイスの製造 上記(blのように製造した触媒ボディを入口および出
口を有する通例の円筒状容器中に床としてランダムに集
成した。生じたデバイスの特性は次のとおりであった: 床の深さ        :  8.5cm床の断面積
      :32.2cJ各触媒ボデイの長さ  :
’1.03cm各触媒ボディの直径  :  1.0]
cm容器中の空間率    :0.42% 試験A NiおよびAβ203からなり、各ランダムな網状構造
の内部空間を有する商業的に使用される型のものと同様
の触媒ペレ・ノドを入口および出口を有する通例の円筒
状容器中に床としてランダムに集成した。生じた比較デ
バイスの特性6才次のとおりであった: 床の深さ         :10.5cm床の断面積
       :32.2e艷各触媒ペレツトの長さ 
 :  1.10cm各触媒ベレットの直径  :  
1.10cm空間率         :0.44%−
¥+ 1および試yJ上人の 媒デバイスの試罵実施例
1および試験Aのデバイスの空気の流量に関する圧力低
下特性をそれぞれ測定した。試験は周囲温度および圧力
で行ない空気密度は1.29kpm−”と仮定した。試
験の結果は表1に要約される。
(C) Preparation of Catalytic Devices Catalyst bodies prepared as above (bl) were randomly assembled as a bed in a conventional cylindrical container having an inlet and an outlet. The properties of the resulting device were as follows: Bed depth: 8.5cm Bed cross-sectional area: 32.2cJ Length of each catalyst body:
'1.03cm Diameter of each catalyst body: 1.0]
Vacancy in the cm vessel: 0.42% Test A A catalyst pellet nod consisting of Ni and Aβ203, similar to the commercially used type with random network internal spaces, was used at the inlet and outlet. Assembled randomly as a bed in a customary cylindrical container with The characteristics of the resulting comparison device were as follows: Bed depth: 10.5 cm Bed cross-sectional area: 32.2 cm Length of each catalyst pellet
: 1.10cm diameter of each catalyst pellet :
1.10cm void ratio: 0.44%-
Pressure drop characteristics with respect to the air flow rate of the devices of Example 1 and Test A were measured, respectively. The tests were conducted at ambient temperature and pressure and assumed an air density of 1.29 kpm-''. The results of the tests are summarized in Table 1.

表1 実施例1および試験Aのデバイスはできるだけそれらの
特性を匹敵させた二表1の結果は圧力低下が試験Aのデ
バイスに対するよりも実施例1のデバイスに対して非常
に低いことを示す。
Table 1 The devices of Example 1 and Test A were as comparable in their properties as possible. The results in Table 1 show that the pressure drop is much lower for the Example 1 device than for the Test A device.

実施例2 実施例1の(blのように製造した単一触媒ボディを入
口および出口を有する容器中に組合せ、触媒デバイスを
構成した。ボディはガス透過性の格子上に支持され、反
応物質を分散させるためSiO□ウールプラグを触媒ボ
ディ入口側上に備えた。
Example 2 A single catalyst body prepared as in Example 1 (bl) was assembled into a vessel having an inlet and an outlet to form a catalytic device. The body was supported on a gas permeable grid to carry the reactants. A SiO□ wool plug was provided on the inlet side of the catalyst body for dispersion.

実施例3〜5 さらに、製造における触媒ボディのか焼温度がそれぞれ
1.250℃(実施例3) 、L 35’0℃(実施例
4)およびL 400℃(実施例5)であったことを除
き実施例2のように触媒デバイスを製造した。
Examples 3-5 It is further noted that the calcination temperatures of the catalyst bodies in the manufacture were respectively 1.250 °C (Example 3), L 35'0 °C (Example 4) and L 400 °C (Example 5). A catalytic device was prepared as in Example 2, except that:

試験B 試験Aに用いたような、実施例2に用いたように容器中
で1.150℃でか焼したペレットをランダムに集成す
ることにより触媒デバイスを製造した。
Test B A catalytic device was prepared by randomly assembling pellets, as used in Test A, calcined at 1.150° C. in a container as used in Example 2.

試験C ペレットを450 ”Cでか焼したことを除き試験Bに
記載したように触媒デバイスを製造した。
Test C A catalytic device was prepared as described in Test B except that the pellets were calcined at 450''C.

上記デバイスを供給原料がCO,l!:H2を1:4の
モル比で含んだメタン化反応に対して試験した。
The feedstock for the above device is CO, l! :H2 in a molar ratio of 1:4 was tested.

生成ガスは未反応H2、主割合のCHaおよび小割合の
CO□を含有した。流量は約80 a(min−’であ
り、時間基準のガス空間速度(GH3V)は1.25 
x 10’ h−’であった。各デバイス中の触媒の体
積は空間率を無視して0.385cJであった。
The product gas contained unreacted H2, a major proportion of CHa and a small proportion of CO□. The flow rate is approximately 80 a (min-'), and the time-based gas space velocity (GH3V) is 1.25
x 10'h-'. The volume of catalyst in each device was 0.385 cJ, ignoring porosity.

各デバイスに対して有意なメタンが形成された最低温度
を測定した。結果は次の表に要約され、表には前記温度
は1バイト」温度として示される。
The lowest temperature at which significant methane was formed was determined for each device. The results are summarized in the following table, where the temperatures are shown as 1 byte' temperatures.

表2 表2中の結果は、実施例2〜5のデバイスが試験条件で
試験BおよびCのデバイスと同様の活性を有することを
示す。実施例1のデバイスもまた同様の活性を示すであ
ろうことは妥当な仮定である。
Table 2 The results in Table 2 show that the devices of Examples 2-5 have similar activity at the test conditions as the devices of Tests B and C. It is a reasonable assumption that the device of Example 1 would also exhibit similar activity.

ス差11虞娑夏菰遵Jの′ デバイスに寸する拭■ 前記デバイスをそれぞれ種々の温度で前記メタン化反応
に対して試験した。生じたメタンの体積百分率(Vlo
)を測定し、結果は2デバイスそれぞれに対して第1図
にグラフで示した。第1図を参照すると実施例2のデバ
イスが試験Bのデバイスよりも高い活性を示すことを認
めることができよう。
The devices were each tested for the methanation reaction at various temperatures. Volume percentage of methane produced (Vlo
), and the results are shown graphically in FIG. 1 for each of the two devices. Referring to FIG. 1, it can be seen that the device of Example 2 exhibits higher activity than the device of Test B.

実施例2のデバイスを、700 ’Cで異なる時間水蒸
気エージングにかけた後280℃および600℃で同様
に試験した。結果は第2図にグラフで示した。第2図を
参照するとデバイスが600℃で触媒的に活性であるこ
と、およびこの高温活性の水蒸気失活が700°Cにお
ける48時間の水蒸気エージング後有意でないことが認
められよう。
The device of Example 2 was similarly tested at 280°C and 600°C after being subjected to steam aging at 700'C for different times. The results are shown graphically in Figure 2. Referring to FIG. 2, it can be seen that the device is catalytically active at 600°C and that steam deactivation of this high temperature activity is not significant after 48 hours of steam aging at 700°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のデバイスおよび比較デバイスに対する
触媒活性と湿度との間の関係を示し、第2図は本発明の
デバイスの2つの異なる温度における触媒活性に対する
エージングの影響を示す。 :艮凌(0C)
FIG. 1 shows the relationship between catalytic activity and humidity for devices of the invention and comparative devices, and FIG. 2 shows the effect of aging on catalytic activity at two different temperatures for devices of the invention. : Ai Ling (0C)

Claims (3)

【特許請求の範囲】[Claims] (1)反応に対する触媒の存在下にCOおよび(または
)CO_2と水素とを反応させることによりメタンを生
成させる方法であって、触媒が1つまたはより多くの不
連続触媒ボディの形態であり、ボディまたは各ボディが
反応物質および反応生成物に対し規制した予め定めた次
元および配列の多数の内部溝を有し、一様にかつ均一に
分散した反応に対する触媒活性物質を含むことを特徴と
する方法。
(1) A method of producing methane by reacting CO and/or CO_2 with hydrogen in the presence of a catalyst for the reaction, the catalyst being in the form of one or more discrete catalyst bodies; characterized in that the or each body has a plurality of internal grooves of predetermined dimensions and arrangement regulating the reactants and reaction products and contains the catalytically active substance for the reaction uniformly and uniformly distributed; Method.
(2)触媒活性物質がアルミン酸ニッケルに関連した酸
化ニッケル(II)である特許請求の範囲第(1)項記載
の方法。
(2) A method according to claim (1), wherein the catalytically active material is nickel(II) oxide related to nickel aluminate.
(3)多数の不連続触媒ボディが供給反応物質のための
入口および反応生成物のための出口を有する容器中にラ
ンダムに集成され、各ボディが溝を規定するように結合
した交互する平坦および波形のシートを有するハニカム
を含む特許請求の範囲第(1)項または第(2)項に記
載の方法。
(3) A number of discrete catalyst bodies are randomly assembled into a vessel having an inlet for the feed reactants and an outlet for the reaction products, each body having alternating flat and A method according to claim 1 or 2, comprising a honeycomb with corrugated sheets.
JP60132874A 1984-06-18 1985-06-18 Catalytic device and catalytic activity Pending JPS6117525A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB848415475A GB8415475D0 (en) 1984-06-18 1984-06-18 Catalyst device
GB8415475 1984-06-18

Publications (1)

Publication Number Publication Date
JPS6117525A true JPS6117525A (en) 1986-01-25

Family

ID=10562594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60132874A Pending JPS6117525A (en) 1984-06-18 1985-06-18 Catalytic device and catalytic activity

Country Status (2)

Country Link
JP (1) JPS6117525A (en)
GB (2) GB8415475D0 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2043400A (en) 1998-12-07 2000-06-26 Syntroleum Corporation Structured fischer-tropsch catalyst system and method for its application
AU2002310799A1 (en) * 2001-05-03 2002-11-18 Atotech Deutschland Gmbh High temperature-resistant catalyzer consisting of an "ab204" spinel and the excess oxide of metal "a" on a carrier and method for the production thereof
WO2010006386A2 (en) 2008-07-15 2010-01-21 Universite Catholique De Louvain Catalytic co2 methanation process
CN110479280B (en) * 2019-07-17 2022-09-13 华南理工大学 CO low-temperature selective methanation Ni-ZrO 2 /NiAl 2 O 4 Catalyst, preparation method and application thereof
CN113134356B (en) * 2021-04-25 2023-05-02 内蒙古工业大学 Aluminum-based MOFs derived Ni-based catalyst, preparation method and application thereof in CO methanation reaction

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3453146A (en) * 1966-01-03 1969-07-01 Texas Instruments Inc Method and apparatus for reforming carbonaceous fuels and operating fuel cell
GB1405405A (en) * 1971-06-25 1975-09-10 Johnson Matthey Co Ltd Platinum group metal catalysts
GB1402207A (en) * 1972-03-03 1975-08-06 Siemens Ag Catalyst and its use in hydrocarbon cracking processes
GB1509557A (en) * 1975-05-15 1978-05-04 Ici Ltd Catalyst precursor compositions
FR2328656A1 (en) * 1975-10-22 1977-05-20 Azote & Prod Chim NEW STEAM REFORMING CATALYST
GB1603101A (en) * 1977-03-28 1981-11-18 Johnson Matthey Co Ltd Catalytic methanation of synthesis gas
EP0021736B1 (en) * 1979-06-27 1985-12-04 Imperial Chemical Industries Plc Catalytic process involving carbon monoxide and hydrogen

Also Published As

Publication number Publication date
GB8415475D0 (en) 1984-07-25
GB2160542B (en) 1988-12-29
GB8514579D0 (en) 1985-07-10
GB2160542A (en) 1985-12-24

Similar Documents

Publication Publication Date Title
US4337178A (en) Catalyst for steam reforming of hydrocarbons
CA1222631A (en) Catalytic partial oxidation process
JP4216067B2 (en) How to generate a gas rich in hydrogen
US4089941A (en) Steam reformer process for the production of hydrogen
US4367166A (en) Steam reforming catalyst and a method of preparing the same
US4906176A (en) High temperature stable catalyst, process for preparing same, and process for conducting chemical reaction using same
US7070752B2 (en) Supported perovskite-type oxides and methods for preparation thereof
US4863707A (en) Method of ammonia production
EP1885492B1 (en) Selective oxidation catalyst containing platinum, copper and iron to remove carbon monoxide from a hydrogen-rich gas
DE69702190T2 (en) SYSTEM FOR PARTIAL OXIDATION REACTIONS
JPH04501974A (en) High surface area cordierite catalyst support structure
EP0082614B1 (en) Process for steam reforming a hydrocarbon feedstock and catalyst therefor
BR112013020271B1 (en) Method for preparing a catalyst suitable for use in a steam reforming process
US2606159A (en) Depth-controlled impregnation of alumina-base catalyst pellets
JP2001316682A (en) Process for catalytic conversion of carbon monoxide by means of water in hydrogen-containing gas mixture
US4034061A (en) Aluminum borate catalyst compositions and use thereof in chemical conversions
EP0021736B1 (en) Catalytic process involving carbon monoxide and hydrogen
RU2204434C2 (en) Catalyst and a method for production of hydrogen/carbon monoxide mixture
JPS6117525A (en) Catalytic device and catalytic activity
USRE32044E (en) Catalyst for steam reforming of hydrocarbons
DE69110650T2 (en) Catalyst for the oxidation of carbon-containing compounds and process for its preparation.
JP2024500507A (en) Methane reforming catalyst and its manufacturing method
WO2022108478A1 (en) Catalyst for heterogeneous reactions with reduced catalyst bed flow resistance
RU2383389C1 (en) Catalyst head element, preparation method thereof (versions) and method of carrying out catalytic exothermal reactions
RU2248932C1 (en) Catalyst (options), method for preparation thereof (options) and synthesis gas generation method (option)