JPS6117402Y2 - - Google Patents

Info

Publication number
JPS6117402Y2
JPS6117402Y2 JP1979053351U JP5335179U JPS6117402Y2 JP S6117402 Y2 JPS6117402 Y2 JP S6117402Y2 JP 1979053351 U JP1979053351 U JP 1979053351U JP 5335179 U JP5335179 U JP 5335179U JP S6117402 Y2 JPS6117402 Y2 JP S6117402Y2
Authority
JP
Japan
Prior art keywords
shaft
generator
turbine
phase difference
elastic modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979053351U
Other languages
Japanese (ja)
Other versions
JPS55154456U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1979053351U priority Critical patent/JPS6117402Y2/ja
Publication of JPS55154456U publication Critical patent/JPS55154456U/ja
Application granted granted Critical
Publication of JPS6117402Y2 publication Critical patent/JPS6117402Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、例えばタービン・発電機の軸のよう
な回転軸の疲労を監視する装置に関するものであ
る。 従来のタービン・発電機軸系の概略図を第1図
に示す。第1図において、1は発電機ロータ、2
はタービン、3は励磁機、4はタービン間、ター
ビンと発電機、および発電機と励磁機を結合して
いる軸である。このように構成されているタービ
ン・発電機軸においては、突発短絡時、再閉路な
どにおいて4の軸に衝撃的なトルクが加わりター
ビン、発電機、励磁機などの慣性質量の軸で構成
されるねじり振動系のために4の軸がねじり振動
を起こし軸材が疲労することがある。この疲労は
ねじり振動がおこるたびに累積され、もしもこの
累積疲労が軸の累積疲労強度に達すると軸は疲労
破壊をし回転機全体に多大な損傷をもたらす危険
性があるため、現在特に大型の回転機、例えばタ
ービン・発電機のような軸に対して、その疲労損
傷度をいかに正しく推定するかが技術的問題点と
なつている。従来の軸監視装置は、たとえば特開
昭53−73301号公報に記載されているように、上
に述べたねじり振動が発生したとき生ずる衝撃的
なトルクの大きさとそのトルクが起こる回数とを
記録し、あらかじめ実験で軸に生ずるトルクの大
きさとそれが起こる回数で決まる軸材の疲労損傷
度を求めておき、第1図のようなタービン・発電
機の軸の疲労損傷度を求めようとするものであ
る。しかしながら軸に変動トルクが加わつた時の
軸の疲労損傷度を求めることは、トルクの変動パ
ターンや突発的な大きなトルクなど影響要素が多
く、現在のところ現象論的仮説の域を出ず、従来
の軸監視装置で軸材の疲労損傷度を正しく推定す
ることは困難である。 本考案は、上に述べた技術的問題点を考慮し、
上記の如き軸系の疲労損傷度を監視するためにな
されたもので、その目的は軸材の弾性係数を計測
して軸系の安全度を監視する軸監視装置を提供す
ることにある。 上記目的を達成するために本考案の回転機の軸
監視装置は軸の2ケ所以上の場所に設置され軸の
回転数に比例した周波数の電気パルスを発生する
パルス発生器と、前記電気パルスの位相差角を検
出する位相差角検出装置と、発電機の出力を測定
する電力計と、前記軸の回転数と前記電気パルス
の位相差角と前記発電機の出力とを用いて前記軸
の弾性係数を計算する演算装置と、この弾性係数
を表示する表示器とを備えた構成とし、軸の弾性
係数が回転機の運転中逐次計算表示されるように
する。すなわち、パルス発生器によつて軸の2ケ
所以上の場所の回転数に比例したパルスを発生
し、位相差角検出装置によつてこのパルスの軸の
場所間の位相差角を検出する。他方、電力計によ
つて発電機の出力を測定する。そして、演算装置
によつて前記軸の回転数と前記電気パルスの位相
差角と前記発電機の出力とを用いて前記軸の弾性
係数を計算し、表示器によつてこの弾性係数を表
示する。 以下本考案の一実施例を図面に基づいて説明す
る。第2図は、本考案による軸監視装置を設置し
たタービン・発電機の軸系である。図中5はター
ビンと発電機間の軸に取付けられた回転パルス検
出用の歯車、6は電磁ピツクアツプなどのパルス
発生器、7は軸の2点間の電気パルス位相差角検
出装置、8は発電機の出力線、9はワツトメー
タ、10は軸の2点間の相対ねじれ角、軸に発生
するトルク及び軸材の弾性係数を求めるための演
算装置、11は指示・記録計である。 以上のように構成された軸監視装置において、
6のパルス発生器が軸4の回転速度に比例した周
波数のパルスを生じ、電気パルス位相差角検出装
置7により軸の2点間の電気パルス位相差角を検
出し、10は演算装置により軸の2点間の相対ね
じれ角が計算される。一方ワツトメータ9によ
り、これと発電機の回転数とにより軸に発生する
トルクが求められる。この回転数は発電機出力線
8から得ることができる、軸に生ずるトルクを
T、軸の2点間の相対ねじれ角をθとすると θ=Tl/GIp (1) なる関係が成立する。ここでlは軸の2点間の距
離、Ipは軸心に対する断面2次極モーメント、G
は軸材の横弾性係数である。 一般に、軸の2点間の距離lと軸心に対する断
面2次極モーメントIpはタービン・発電機の運転
中に変化しないので、運転中の軸材の横弾性係数
の変化は、軸に生ずるトルクTと軸の2点間の相
対ねじれ角θを上述の如く求めて、(1)式により計
算することができる。これを10の演算装置内で
The present invention relates to a device for monitoring fatigue of a rotating shaft, such as a shaft of a turbine or generator. A schematic diagram of a conventional turbine/generator shaft system is shown in FIG. In Fig. 1, 1 is the generator rotor, 2
3 is a turbine, 3 is an exciter, and 4 is a shaft connecting the turbines, the turbine and the generator, and the generator and the exciter. In a turbine/generator shaft configured in this way, in the event of a sudden short circuit, reclosing circuit, etc., an impact torque is applied to the shaft No. 4, resulting in twisting caused by the shaft of the inertial mass of the turbine, generator, exciter, etc. Due to the vibration system, shaft 4 may experience torsional vibration, which may cause fatigue of the shaft material. This fatigue accumulates every time torsional vibration occurs, and if this cumulative fatigue reaches the cumulative fatigue strength of the shaft, there is a risk that the shaft will fail due to fatigue and cause great damage to the entire rotating machine. A technical problem is how to accurately estimate the degree of fatigue damage to the shafts of rotating machines, such as turbines and generators. Conventional shaft monitoring devices record the magnitude of the shocking torque that occurs when the above-mentioned torsional vibration occurs and the number of times that torque occurs, as described in Japanese Patent Application Laid-open No. 53-73301, for example. However, the degree of fatigue damage of the shaft material, which is determined by the magnitude of the torque generated on the shaft and the number of times it occurs, is determined in advance through experiments, and the degree of fatigue damage of the shaft of the turbine/generator as shown in Figure 1 is determined. It is something. However, determining the fatigue damage degree of a shaft when fluctuating torque is applied to the shaft is currently limited to a phenomenological hypothesis, as there are many influencing factors such as the torque fluctuation pattern and sudden large torque. It is difficult to accurately estimate the degree of fatigue damage to shaft members using shaft monitoring equipment. This invention takes into consideration the technical problems mentioned above,
This was developed to monitor the degree of fatigue damage of the shaft system as described above, and its purpose is to provide a shaft monitoring device that measures the elastic modulus of the shaft member and monitors the safety level of the shaft system. In order to achieve the above object, the shaft monitoring device for a rotating machine of the present invention includes a pulse generator installed at two or more locations on the shaft and generating electric pulses with a frequency proportional to the rotation speed of the shaft, and a pulse generator that generates electric pulses with a frequency proportional to the rotation speed of the shaft. A phase difference angle detection device that detects the phase difference angle, a wattmeter that measures the output of the generator, and the rotation speed of the shaft, the phase difference angle of the electric pulse, and the output of the generator are used to determine the angle of the shaft. The apparatus is configured to include an arithmetic device that calculates the elastic coefficient and a display that displays the elastic coefficient, so that the elastic coefficient of the shaft is calculated and displayed sequentially during operation of the rotating machine. That is, a pulse generator generates pulses proportional to the number of revolutions at two or more locations on the shaft, and a phase difference angle detection device detects the phase difference angle of the pulses between the locations on the shaft. On the other hand, the output of the generator is measured by a wattmeter. Then, a calculating device calculates the elastic coefficient of the shaft using the rotation speed of the shaft, the phase difference angle of the electric pulse, and the output of the generator, and displays this elastic coefficient on a display. . An embodiment of the present invention will be described below based on the drawings. FIG. 2 shows the shaft system of a turbine/generator equipped with a shaft monitoring device according to the present invention. In the figure, 5 is a gear for detecting rotational pulses attached to the shaft between the turbine and the generator, 6 is a pulse generator such as an electromagnetic pickup, 7 is an electric pulse phase difference angle detection device between two points on the shaft, and 8 is a gear for detecting rotational pulses. 9 is a wattmeter; 10 is an arithmetic device for determining the relative torsion angle between two points on the shaft, the torque generated on the shaft and the elastic modulus of the shaft material; and 11 is an indicator/recorder. In the axis monitoring device configured as above,
A pulse generator 6 generates pulses with a frequency proportional to the rotational speed of the shaft 4, an electric pulse phase difference angle detection device 7 detects the electric pulse phase difference angle between two points on the shaft, and a calculation device 10 detects the electric pulse phase difference angle between two points on the shaft. The relative torsion angle between the two points is calculated. On the other hand, the wattmeter 9 determines the torque generated on the shaft based on this and the rotational speed of the generator. This rotational speed can be obtained from the generator output line 8, and where T is the torque generated on the shaft and θ is the relative torsion angle between two points on the shaft, the following relationship holds: θ=Tl/GIp (1). Here, l is the distance between two points on the axis, Ip is the polar moment of inertia with respect to the axis, and G
is the transverse elastic modulus of the shaft member. Generally, the distance l between two points on the shaft and the polar moment of inertia Ip with respect to the shaft center do not change during operation of the turbine/generator, so changes in the transverse elastic modulus of the shaft material during operation are due to the torque generated on the shaft. The relative torsion angle θ between the two points of T and the shaft can be obtained as described above and calculated using equation (1). This is done within 10 arithmetic units.

【表】 繰返し荷重による低炭素鋼の弾性係数Gの変化 第3図により、疲労破壊に至るには、超微視的
なクラツク発生前のゆるやかな弾性係数の低下、
微視的なクラツク発生に伴う弾性係数の急激な低
下の2段階に弾性係数が変化することがわかる。
また疲労破壊が生じないような応力に対しては材
料の弾性係数はほとんど変化が見られない。 以上のことより、本考案の軸監視装置により、
軸材の弾性係数の変化を記録してゆけば軸材の疲
労損傷度を推定でき、タービン・発電機軸の安全
度を知ることができる。すなわち軸材の弾性係数
が変化しない間は、軸の疲労損傷はほとんどない
と考えてよい。また弾性係数がゆるやかに変化し
はじめたら、微視的クラツクの創成の段階である
から弾性係数の変化を注意深く観察する必要があ
る。また弾性係数が急激に変化しはじめた時は、
微視的クラツクの発生・進展の段階と考えてよ
く、運転停止等の処置を取る必要がある。 以上の実施例においては、タービンと発電機間
の軸の2点間の相対ねじれ角を検出し、軸に発生
しているトルクとによりタービン・発電機間の軸
の横弾性係数の変化を求め、疲労損傷度を推定し
たが、これは何もタービン・発電機間の軸だけで
なく、タービン間、発電機と励磁機間の軸の2点
間の相対ねじれ角を測定すれば、同様にして各軸
の疲労損傷度を推定できることは言うまでもな
い。以上の実施例においては、軸の2点間の相対
ねじれ角の検出に軸に設けた回転パルス検出用歯
車5と電磁ピツクアツプを用いたパルス発生器6
を用いたが、これは軸の2点間の相対ねじれ角が
検出できれば何でもよく第4図に示すようにギヤ
ツプピツクアツプセンサ12を用いてもよい。こ
れは軸4上に位置のわかつている2点に突起物1
3を設け、ギヤツプピツクアツプセンサ12によ
り突起物がセンサ上を通過するタイミングを2点
で比較すれば相対ねじれ角を測定できる。またフ
オトカプラのようなものを用いて光学的に軸の2
点間の相対ねじれ角を測定してもよい。 以上説明したように、本考案によると、タービ
ン・発電機軸に対して、運転中の軸の2点間の相
対ねじれ角と軸に発生しているトルクとにより軸
材の弾性係数が計算できその値の変化を常時監視
することにより軸材の疲労損傷度を推定すること
ができる。
[Table] Changes in the elastic modulus G of low carbon steel due to repeated loading. Figure 3 shows that in order to reach fatigue failure, a gradual decrease in the elastic modulus before ultramicroscopic cracks occur,
It can be seen that the elastic modulus changes in two stages: a rapid decrease in the elastic modulus due to the occurrence of microscopic cracks.
Furthermore, the elastic modulus of the material shows almost no change under stress that does not cause fatigue failure. From the above, the axis monitoring device of the present invention allows
By recording changes in the elastic modulus of the shaft material, the degree of fatigue damage to the shaft material can be estimated, and the safety level of the turbine/generator shaft can be determined. In other words, as long as the elastic modulus of the shaft material does not change, it can be considered that there is almost no fatigue damage to the shaft. Furthermore, if the elastic modulus begins to change gradually, it is necessary to carefully observe the change in the elastic modulus, as this is the stage where microscopic cracks are being created. Also, when the elastic modulus starts to change rapidly,
This can be considered to be a stage in which microscopic cracks have occurred and progressed, and it is necessary to take measures such as stopping the operation. In the above example, the relative torsion angle between two points on the shaft between the turbine and the generator is detected, and the change in the transverse elastic modulus of the shaft between the turbine and the generator is determined based on the torque generated on the shaft. , the degree of fatigue damage was estimated, but this can be done similarly by measuring the relative torsion angle between two points of the shaft between the turbine and the generator and the exciter, as well as the shaft between the turbine and the generator. Needless to say, the degree of fatigue damage for each axis can be estimated using In the above embodiment, a rotational pulse detection gear 5 provided on the shaft and a pulse generator 6 using an electromagnetic pickup are used to detect the relative torsion angle between two points on the shaft.
However, any sensor may be used as long as the relative torsion angle between two points on the shaft can be detected, and a gap pickup sensor 12 as shown in FIG. 4 may be used. This means that there are protrusions 1 at two known positions on axis 4.
3 is provided, and the relative torsion angle can be measured by comparing the timing at which the protrusion passes over the sensor at two points using the gap pick-up sensor 12. Also, using something like a photocoupler, the two axes can be optically
The relative twist angle between points may also be measured. As explained above, according to the present invention, the elastic modulus of the shaft material of the turbine/generator shaft can be calculated based on the relative torsion angle between two points of the shaft during operation and the torque generated on the shaft. By constantly monitoring changes in the value, it is possible to estimate the degree of fatigue damage to the shaft material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のタービン・発電機の概略構成
図、第2図は本考案の一実施例の軸監視装置を設
置したタービン・発電機の概略構成図、第3図は
疲労による材料の弾性係数の変化を低炭素鋼につ
いておこなつた実験結果を示す特性図、第4図は
本考案の他の実施例の軸監視装置を設置したター
ビン・発電機の概略構成図である。 1……発電機ロータ、2……タービン、3……
励磁機、4……軸、5……回転パルス検出用歯
車、6……パルス発生器、7……電気パルス位相
差角検出装置、8……発電機の出力線、9……ワ
ツトメータ、10……演算装置、11……指示・
記録計、12……ギヤツプピツクアツプセンサ、
13……突起物。
Figure 1 is a schematic configuration diagram of a conventional turbine/generator, Figure 2 is a schematic diagram of a turbine/generator equipped with a shaft monitoring device according to an embodiment of the present invention, and Figure 3 is a diagram showing the elasticity of materials due to fatigue. FIG. 4 is a characteristic diagram showing the results of an experiment of changing the coefficient on low carbon steel. FIG. 4 is a schematic diagram of a turbine/generator equipped with a shaft monitoring device according to another embodiment of the present invention. 1... Generator rotor, 2... Turbine, 3...
Exciter, 4... Axis, 5... Rotating pulse detection gear, 6... Pulse generator, 7... Electric pulse phase difference angle detection device, 8... Generator output line, 9... Wattmeter, 10 ...Arithmetic device, 11...Instruction/
Recorder, 12... Gear pickup sensor,
13...Protrusion.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] タービン等の原動機と発電機とよりなる回転器
の軸の2ケ所以上の場所に設置され軸の回転数に
比例した周波数の電気パルスを発生するパルス発
生器と、前記電気パルスの位相差角を検出する位
相差角検出装置と、前記発電機の出力を測定する
電力計と、前記軸の回転数と前記電気パルスの位
相差角と前記発電機の出力とを用いて前記軸の弾
性係数を計算する演算装置と、この弾性係数を表
示する表示器とを備えたことを特徴とする回転機
の軸監視装置。
A pulse generator that is installed at two or more locations on the shaft of a rotor consisting of a prime mover such as a turbine and a generator, and that generates electric pulses with a frequency proportional to the rotation speed of the shaft, and a pulse generator that generates electric pulses with a frequency proportional to the rotation speed of the shaft, and The elastic modulus of the shaft is determined using a phase difference angle detection device for detecting, a wattmeter for measuring the output of the generator, the rotational speed of the shaft, the phase difference angle of the electric pulse, and the output of the generator. 1. An axis monitoring device for a rotating machine, comprising an arithmetic device for calculating and a display device for displaying the elastic coefficient.
JP1979053351U 1979-04-23 1979-04-23 Expired JPS6117402Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979053351U JPS6117402Y2 (en) 1979-04-23 1979-04-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979053351U JPS6117402Y2 (en) 1979-04-23 1979-04-23

Publications (2)

Publication Number Publication Date
JPS55154456U JPS55154456U (en) 1980-11-07
JPS6117402Y2 true JPS6117402Y2 (en) 1986-05-28

Family

ID=28946164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979053351U Expired JPS6117402Y2 (en) 1979-04-23 1979-04-23

Country Status (1)

Country Link
JP (1) JPS6117402Y2 (en)

Also Published As

Publication number Publication date
JPS55154456U (en) 1980-11-07

Similar Documents

Publication Publication Date Title
US12044594B2 (en) Abnormality diagnostic method and abnormality diagnostic device for rolling bearing
US7770440B2 (en) Method to test a dynamic torque-generating device and a device to determine the dynamic behavior of a driving shaft
EP2259033B1 (en) Angular and torsional vibration monitoring of rotordynamic systems
JP2011145295A (en) Apparatus and method for diagnosing vibration measurement and rotating machine
CA2701979A1 (en) Method for determining fatigue damage in a power train of a wind turbine
JP2006322934A (en) Test method of torsional vibration attenuator
EP2019302A1 (en) Method and system for non-contact sensing of the torque of a shaft
JP2008298527A (en) Vibration diagnostic method on rotating machine and its vibration diagnostic device
US20220252478A1 (en) Method and drivetrain test bench for detecting an imbalance and/or a misalignment
CN104330214B (en) Simple field dynamic balancing method
JPS6117402Y2 (en)
JPH073360B2 (en) Shaft torsional vibration monitoring device
US10551277B2 (en) Engine performance monitoring using strain sensor attached to drive shaft
Ganeriwala et al. Using operating deflection shapes to detect misalignment in rotating equipment
JP2005098258A (en) Method for detecting axial torsional vibration of turbogenerator
JPS6059052B2 (en) Rolling mill axis monitoring device
JPS62151725A (en) Cracking abnormality diagnosing device for rotary shaft system
JPS61181904A (en) Measuring or monitoring axial displacement of rotating body without contacting
JPH0514854B2 (en)
EP1489401A1 (en) Method for determining wear or damage in a drive assembly
関根広介 et al. Measurement of booster pump vibration in a hemodialysis machine and assessment of operational status by Fast Fourier Transform analysis
JPS62833A (en) Abnormality diagnosing device for rotary machine
Ibraheem et al. Experimental Investigation for Single Plan Balancing Impellers between Bearings Using Frequency Response Function
JPS5833781B2 (en) Turbine generator shaft monitoring device
JPH03279836A (en) Unbalance monitoring diagnostic device for rotary machine